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ABSTRACT

A usual way of finding the. response of a system B, at time t, to some

input u, is the following: first, decompose the input into a set of 6-functions;

next,. find the response of B at t to each individual. 6-function, and finally,

add up all the. contributions.

In this study an alternative method of finding the response of B at t

is proposed. By this method we use the adjoint system B , .and the procedure
*

is the following: apply a 6-function at time t to B , and find its response for

all t. Then "weigh" this response according to the input u. and thus get the

response of the original system at time.

A comparison between these two methods shows. that while in the usual

method a whole set of 6-functions has to be applied to the system B, only one

6-function has to be applied to B , namely at time t. However, in the usual

method we have to find the response only at one point, while in the proposed

method the response at all t is needed.

These concepts are further generalized.

Also some reciprocity relations between B and B are derived,

relations which are a natural extension of the "reciprocity theorem" in various

fields such as circuit theory, electromagnetics, etc.

The application of this adjoint method of solving linear problems is

illustrated by several problems in circuit theory,and in control system theory.

It is hoped that this study will point out the usefulness of the adjoint

system, and show how this system can be applied, in a systematic way, to

solve certain linear problems.
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I. INTRODUCTION

Frequently it happens that while solving the general problem of finding

the response of a given system we encounter the adjoint system. In this paper

we shall demonstrate the following rule: in order to find the response of a

system, it maybe convenient, and sometimes necessary, to investigate the

behavior of the adjoint system rather than that of the original system itself.

The familiar convolution integral is a simple illustration of this rule.

By this integral we compute the output z(t) of a linear, single-input, single-

output system, as. a function of the input v(t), namely,

+ 00

z(t) =J* h(t ;t) v(r)dT (1)
- 00

Here h(t ; t) is the response of the system at time t, as a result of a unit

impulse appliedat time t. A consideration of (1) shows that we are more interested

in the behavior of h(t ; t) as a function of t, than in the behavior of h(t ; t)

as a function of t. (t, and not t, is the variable upon which the integration is

performed.1) In other words, we are less concerned with the time behavior of

the impulsive response h(t ; t), than with the behavior of h(t ; t) as we vary

the time of application t • But h(t ; t) as a function of t, for a fixed t, happens

to be exactly the time behavior of the impulsive response of the adjoint system.

To show in an even more convincing way why we are interested in the

adjoint system, let us try to compute, analogically, the output z(t) using the

convolution integral. In order to generate h(t ; t) as a function of t we will

have to set up the adjoint system, feed it with a unit impulse, multiply its response

by v(t) (which is given) and then integrate. This procedure is illustrated in

Figure 1.

h(r jt)

z(t)

6(t-T)

u(t)

Adjoint

System

Figure 1.
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In this paper we shall show, in a way as general as possible, the reason

for the frequent, and in some occasions, unexpected appearance of the. adjoint

system. Once this reason is understood, a systematic approach to the solution

of linear problems, by the use of the adjoint system, can be developed.

In Sections H-XI the theory will be presented in an abstract way, while

Sections XII-XDI will be devoted to the application of the theory to specific

systems.

II. THE VECTOR SPACE

4-. 4<

Let U be a vector space over the field of the complex numbers C We

shall denote the elements of U by u, with or without subscripts, and the elements

of C by Greek letters. Thus we write:

U = {u} or U = {u.} , C = {a, p, ..: }

Examples: Although in the following treatment we shall

use the terminology of abstract vector spaces,

i. e., we shall not specify the nature of the

elements u, it might be helpful to have several

concrete examples of vector spaces in mind.

(i ) All vectors £ = (z z . . ., z ) in the

n-dimensional Euclidean space form a vector

space; the z.'s are fixed complex numbers,

(ii) All continuous functions f(- ) defined over the

interval (0, 1). form a vector space,

(iii) All n-dimentional time varying vectors z^(t) =

[ z,(t), zAt)> • • •, z (t)], the components of

which are in tCAa., b] form a vector space.

For precise definition see, for example, Reference 1.

^_[a, b] is the set of all function f(t) defined for almost all t in [a, b] such
that /b i|.f (t)| 2dt <co.

-2-



Ill, THE INNER PRODUCT

Let us define an inner product over the vector space U, and denote it by

< • • • >u-

Definition: An inner product over a vector space U is a mapping of U x U into

C, such that ¥u., u.eU there corresponds one, and only one, aeC

written

<u., u.>TT = a
i J U

and which satisfies the following three conditions:

(i) <Uk, au. + pu.>u= a<uk,ui>u+p<uk,u.>u ^ u., u. ^ 6 U;

¥ a,peC

(ii) <u^ uj>u= <u., u^y ¥ u., u € U

where the bar stands for "complex conjugate,

(iii) <u, u>u>0 Vu^oc U

Examples: We shall present several examples of inner

products over different vector spaces.

(i) Let v and z be any two constant vectors, which

belong to the n-dimensional Euclidean vector

space, the components of which are complex

numbers. We define
n

Y - *: v, z > = / v. • z.

i=l

where v. is the complex conjugate of the i-th

component of v.

^

To avoid confusion, the four letters u, w, x and y with or without subscript

will always denote elements of the sets U, W, X and Y respectively. Other

letters, such as v, i, z, with subscript will denote components of the vectors

v, i, z.
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(ii) Let v(.) and z(.) be any two elements of the

vector space which consists of all real valued

functions in *£2 over the interval (0, l)f We
can define

1.

<v{i), z(-.)>* \ v(t) • z.{t) dt
0

as an inner product in cC~*
(iii) LetE(x, y, s) be the complex amplitude of the

electric fteld. We define:

<EJ*> y» *)> £b(x, y, z)> =
+co +oo +co 3

J J J ) SJjTxTyT^y* Ebi^x# y» z)»dxdydz
-oo -co-co i=?i

IV. THE LINEAR OPERATOR

Let also W be a vector space over C (with elements w),. and let us

define,an inner product over W, which will again be denoted by < * , * >w«
Next we define a linear operator, L which will map U into :W.

Definition; A linear operator with domain U and range in W, is a mapping of

U into W such that Vue U there corresponds a unique wc W written

Lu^w (2)

and that satisfies the following condition:

L(«ul+ MJ » aL^ +pLfu,) VUjl, u. €Uj.^fi.piC

To translate the above notions into system terminology: let B be a linear

system* characterized by the operator Lr u is the input to B. w is the

output of B, also referred to as the response of B to u. The different

terms are exhibited by the following block-diagram (Figure 2):
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u-input

B-Linear System

w-output

Figure 2.

Examples; Several examples of linear operators will be

presented,

(i) B is a linear, single-input, single-output

system; u= v(t), w= z(t), and L is an integral

operator. Here,-.Equation (2) reads:

t

z(t)= J h(t ;T) v(t) dT.
-co

(ii) B is an electric circuit consisting of resis

tors and constant current sources, u = I =

(L, I., .,., I ) where I. is the strength of

the current source connected between the j-th

node and the datum. wr v •« (v^ v2, ..., v )
n'

where v. is the voltage between the j-th node
j

and the datum. Here L is the inverse of the

admittance matrix of the circuit, and Equation

(Z) reads

: * / G"l± =v
(iii) B is a linear system (suchas- a general RLC

circuit), characterized by its state variable

equations, u * v(t) - [v.(t), . ,., v (t);] is the

forcing vector, w » z At) ? [^(t), , f,, zJt)l is

-5-



the state vector and L is a system of first

order linear differential equations. Equation

(2) reads

^ ) " . ±{t)~ Az(t;) + Dv(t)
where A is a qxq constant matrix and D is

a q x p constant matrix,

(iv) In electrostatics, let u = p(x, y, z) be the

charge distribution, and let w = JS(x, y, z) be

the corresponding electric field. Here L is

given by

L= -grad Jj^-j-l^du
asE =-grad* &*=̂ ^ fife^dv.

V. THE ADJOINT OPERATOR

*To each operator L we shall correspond an adjoint operator L , which

is a mapping of W into U, written

* . . L*w =u (2')
and which is defined as following:

Definition: The adjoint of the operator L, for a specific definition of an inner
_————— ^

product over U and over W, is a linear mapping L of W into U such
that ¥ we W there corresponds.a unique ue U, and such that

<L*w, u^* <w, Lu>w ¥ue U; Vwe W (3)
Note that the left hand inner product is defined over U, while the right hand

+
inner product is.defined over W.

In the special case that L =j L , the operator L is said to be self-adjoint.
In case that L is a differential operator, the initial (or boundary) con-

ditions will be considered as part of L; thus in finding L , the corresponding

boundary conditions will have to be found. £lso, two operators will not be self-

-g; —<ri ••-. •• •- • •••- •

To be precise, we remark that a necessary condition for L to have an adjoint

is that U be a Hilbert Space.
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ajoint unless both operators as well as their corresponding boundary conditions

are equal.

Recall that we have denoted by B the system whose operator is L;
9jC Sit i$C

similarly let us denote by B the system whose operator is L . B will be

called the adjoint system. We have denoted by w the response of B to the input
# * * #

u; thus let us denote by w the response of B to the input u . (Note that w e U

and u € W.') In operational notation we write

L u = w (4)

It would be instructive to draw the block-diagram of B and B in the

following way (Figure 3):

B

U-spac

W-space

\

Figure 3.

thus emphasizing the fact that the domain and the range interchange when passing
*

from L to its adjoint L
«.•

Example: If L is a matrix whose elements are complex

numbers then L is the conjugate of the trans-
* ——s{e

pose of L, i. e. L = L . This statement will

be proved in Section XII.

VI. THE RECIPROCITY THEOREM

An immediate result of the definition of the adjoint operator is the following

theorem called the reciprocity theorem.
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Theorem: For two adjoint systems B and B ,and two particular definitions of

inner products over U and over W,

<w , uXy = <u , w>w, (5)

where u and w are, respectively, the input and the output of B, and u

and w are, respectively, the input and the output of B . (As in Section

IV, u denotes an element of W, and w belongs to the set U. Also
#

note that u is not the complex conjugate of u. . . )

Proof: We start with (3), the definition of the adjoint operator, and replace there

w by u , thus we get,

<L u , u>IT = <u , Lu>w. (5a)

Now from Equations (2) and (4) we have

Lu = w and L u = w (5b)

Inserting (5b) into (5a) we get

<w , u^ = <u , w>wr , u^ = <u ,

and thus the theorem is proved.

Q. E. D.

2
We remark that it is V. H. Rumsey who introduced the term "reprocity theorem"

in a sense.similar to that presented here.

VIL THE ELEMENTS OF U AND W AS FUNCTIONS

Until now we have not specified the nature of the elements of the sets U

and W. Now let each element of U be a complex valued function, defined over

some domain X. In other words, let each element of U be a mapping of the

set X (with elements x), into the complex plane C. Thus,

u. : X —*- C V u. 6 U
i l

or Vu. € U and Vx.e X there corresponds one, and only one, a e C written:

u.(x.) = a ,
i y

We shall also say that a is the value of u. at x.. and call x. the point

at which u. is measured, or the point of observation.
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We let also the elements of W be mappings, this time from a set Y (with

elements y), into the complex plane C. Thus,

w. : Y—*• C Vw.« W
J J

Examples: We present here several examples of sets of

functions U, and sets of points of observa

tion X.

(i) Let U be the set of all real valued continuous

functions.defined over the real line Here,

U = {u(.)} X = {-co<x< +00}

and u(x) is the value of some u at some x.

(ii) Let U be the set of n-dimensional vectors v,

and let X be the set which consists of the

integers 1,2, ..., n. Here the value of v

at i, 1 < i < n, is simply the i-th component

of v, i. e., _v(i) = v. •

Adopting this convention, we can think of

picking out a component of a vector y^ as of
evaluating the vector at some integer. This

is a natural way of extending the terminology

of functions of continuous variables to vectors,

and it enables us to use the same notation for

both scalar and vector functions,

(iii) Refer back to example (iv) of Section IV.

There, , U is the set of real valued functions

of three variables; X is the physical three

dimensional space; W is.a set of functions of

four variables; and Y is a four dimensional

space in which three of the variables can vary

continuously, along the real line, while the

fourth variable takes only the values 1, 2 or 3.

Note that in this example neither U and W

nor X and Y are equal sets.

-9-



VIII. THE 6-FUNCTION

We introduce a 6-function over U, denoted by 6 (•]•)> as a mapping
of X x X into the complex plane C; thus. ¥x., x. e X there corresponds a

unique a e C and we write:

6 (x. I x.) = a
i ' y

Without specifying the properties of the mapping .6 (•)•) it is clear
that 6 (•( x.), with x. held constant, is an element of U, since it maps X
into C. Similarly, 6 (x. |«) with x. held constant is also an element of U.

^ TT
We now define the 6-function 6 (•{•).

Definition: 6 (*|*)> called a 6-function over U for a certain.inner product,

is a function which has the.property that

<6U(.|x.), u>TT = u(x.) Vx.€ X; Vue U (6)
1 y u j j

We must admit that the introduction of the 6-function is done in a

somewhat rough way In many cases 6 (• | x.) will not be an ordinary membe;
U i *of the set. U# (6 (• | x.) is not always a function but is a distribution in the

sense of L. Schwarz.

Nevertheless, it is convenient to consider 6 (• I x.) as an ordinary
U 1 ^

element of U. Moreover, we shall say that 6 (• x.) is "zero" for all values
J U 1x,^X,. Our justification to this is that when the function <6 (»| x.), •>«

operates,upon some u., it is only concerned with the values of u. at x., while

the values that u, takes at all other x. ^x. have no influence on the result

of the operation.

The first argument of 6 (-|<) will be called the point of observation,
and the second will be called the point of application. We shall also say that

6 (•( x.) is a 6tfunction over U located at x..

Examples: We illustrate some possible forms of the

6-function can take, with two examples,

(i) The 6-function for the set U of continuous

functions, and for the following definition

of the inner product

-10-



+ 00

<ua(t)jUb(t)>U= J «*(*>%(*>dt
-oo

is the familiar Dirac 6-function 6(t-t,),

since

+co

6(t-t1)u(t)dt = u^)
-00

(ii) Let U be the n-dimensional Euclidean

space, and let the inner product be the

usual scalar product of two vectors. . Then

the 6-function is

6U(.| j) = (0,0, ..., 0,1,0, ... 0)
j-th comp.

IX. CONSEQUENCES OF THE RECIPROCITY THEOREM

Let G(*| x.) denote the response of the system B to a 6-function
input located at x.,*and let it be called the impulsive response of B. Thus,

G(.| x.)= L6U(.| x.) (7)
where 6U(» | x.)e U and G(»| x.)€ W. Here again the first argument of G
will be called the point of observation while the second will be called the

point of application.

Similarly let G (»| y.) denote the impulsive response of B , i.e.,

G (♦! y.) = L 6 H yt)

Here 6W(*| y.Je Wand G*(-| y^c U.
The most important consequence of the reciprocity theorem is the

following:

Consequence 1: The output w(y.) of B at y., due to an input u, is given

by the inner product of the impulsive response of the adjoint system

B to an impulse located at y., with the input u to B, i. e.,
l
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w(y.) =<G*(-| y.), u(.)>u (8)

and this holds Vy.e Y and Vug U.

% UProof: In (5) we set u = 6 (•] y.), thus:
sk TT

<w , u^ = <6 (.| y^, w>w (8a)

Now by the definition of the 6-function (6), the right side of (8a) is simply

w(y.). Also, w in (8a) is the response of B to 6(» | y.); thus by definition
.s{e .* $ i ♦ # i *

w = G (*| y.). Inserting w = G (»| y.) in (8a) we get

<G*(-| yj, u>v =w(y.)

which completes the proof.

Q. E. D.

Consequence 1 is a special case of the reciprocity theorem when the

input to the adjoint system is a 6-function. The second consequence is a

still more limited special case; let also the input to the system B be a 6-

function, located at x., i. e., set
j

u = 6U(.| x) (9)
J

By substituting (9) into (8) we get the second consequence:

Consequence 2: The response of B at y., as a result of a 6-function input

located at x., is equal to the conjugate of the response of B at
j

x. as a result of a 6-function input located at y.,

G(x. | y.)= G*(y. | x.) (10)
4

A similar result to (10) is also given by P. H. Morse and H. Feshbach.

X. EVALUATION OF THE RECIPROCITY THEOREM

AND ITS CONSEQUENCES

In this section we shall compare two methods of solving for the

response of a system.

-12-



From Consequence 1 we have:

w(y.) =<G*(.| Y{h u(*)>u (11)

We shall call the method of deriving w(y.) by (11) the adjoint method.
$ i •

Here we make use of the adjoint system B , or more specifically: we have

to set up the adjoint system and find its response at all points of observation,

as caused by a 6-function located at the point y..

Using Consequence 2 we can replace G (• | y.) by G(y. |») in (11).
Thus we get an alternative expression for w(y.), i. e.,

wty) = <G(y. |.), u(.)>u (12)

The method of deriving w(y.) by use of (12) will be called the direct

method. With this method we have to find the response of the system B

itself at the fixed point y., as a result of 6-functions located:at.

all possible points of application.

The difference between these two methods is exhibited by block

diagrams in Figure 4.

The.direct method is, in fact, the "usual" way of finding the

response of a system. Namely, first we find the response of the system

to 6-functions located at all possible.input points, and then we add up all

the contributions, weighing each single response according to the actual

strength of the input at the corresponding point.

The ajoint method furnishes us with an alternative way of finding

the response. This way is less intuitive than the direct method, but seems

to be simpler from the experimental point of view, since we have to apply

the input at only one point, (the point at which we want to find the response).

Example: We shall compare the direct method with

the adjoint method for the case of a single-

input, single-output, linear, time-variant

system. Here U = {u(» )} is the set of
all functions u(» ) which can serve as an

input; for example, we could limit our

selves to all functions in SC^ "W =
{w(« )} is the set of all the corresponding
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outputs. We define an inner product over

U:

+00

<ua(%)' %{%)>V= J ua(t)ub(t)dt
-oo

and consequently the 6-function will be the

usual Dirac 6-function, i. e,,

6U('| t^) =6(t-tx)
Also.the inner product and the ft-function

in W will be chosen to be the same as in

U. Now, let us denote the response of B

at t-2 to an impulse at t, by Mr 2 *Ti),
and similarly, let h (t, ; t.) denote the

response of B at t, to an impulse at t. .

Thus,

G(t2| tx)- h(T2;T1) and G (tJ t^ -

h*(r2JTx).
Using this notation we get from Equation

(11) (the.adjoint method)

+ 00

w(t) =J h*(tjT)u(t)dt (13)
-co

and from Equation (12) (the direct method)

we get

+00

w(t) * C h(T;t) u(t)dt (14)
-co

In this example it is obviously easier to

find h (t j t ) than h(r ; t); h (t j t) can be

found by measuring for all t the response

of B to an impulse applied at t. On the

other hand, the direct method would require
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an infinite number of experiments: to find

h(T ; t) we must apply to B an impulse at

time t, and observe the response at t, and

repeat this experiment for all times of appli

cation t. In Section XII we shall see an

example where both the direct and the adjoint

methods are practical, and the decision as to

which method should be used will depend

solely on the technical details of the experi

ment.

Consequence 2, which is a special case of the reciprocity theorem

(Section VI), is a natural extension of what is usually referred to as the

"reciprocity theorem" in various fields such as circuit theory, electromag

netics, etc. While the usual "reciprocity theorems" are stated for self-

adjoint systems only, Consequence 2 extends this notion to systems which are

not necessarily self-adjoint. This point is illustrated in Section XII (Problem

1).

XI. GENERALIZATION OF THE CONSEQUENCES

Let us recall how we derived the two consequences from the reciproc

ity theorem. We started with Equation (5) (the reciprocity theorem), and

replaced u , and later on, also u by 6-functions. However, it is not essen

tial to proceed in this way. Any other function could do as well as the 6-

function. To state the following generalisations of the consequences in a

precise way, we have to define a projection.

Definition: We define the projection of u. along u. to be the result of the
i j

inner product of u. and u. (in this order), i. e. ,

projection of u. along u. = <u. , u. >__

Using the term "projection" we can rephrase the reciprocity theorem

in the following way: the projection of w along u is the same as the pro-

jection of w along u, where w is the response of B to u and w is the

-16-



v =G^JL
where G is the admittance matrix of the

circuit, I.--the current sources and v.--

the node voltages,

(ii) RCL circuit fed by sinusoidal sources, if

we are interested only in the steady-state

behavior,

(iii) Laplace-transformed linear time invariant

systems,

(iv) Time variant systems in which the state

vector z satisfies the differential equation

z(t) = A(t) z(t) z(t0) = z0

Here z(t) is given in terms of the initial

state zQ and the state transition matrix,

i. e.,

£(t) = 5 (t; t0)z0

We define the inner product of two m-dimensional vectors v and v,

as

m

<2». lb>v = 2/
i=l

V . V, .
ai bi

where v . stands for the complex conjugate of the i-th component of v .

Similarly, we define the inner product of two n-dimensional vectors

z and z, as
—a —b

n

<z • z, >_ = / z .• z, .
—a —b Z Zj ai bi

i=l

It is easy to verify that these definitions satisfy the conditions of

Section IH.

Now, let v --an n-dimensional vector--be the input to the-adjoint

system B and let us.denote by L its operator which is still unknown. In

order to find L we set, according to (3),

-18-



<Lv , v >z =<v , L v >y

Expanding both sides of this .equation we get:

n / m \ m / n \

i=l\j?l / j=l \ipl
\

from which follows that

* " t
L = LC

Thus the adjoint of a matrix operator L is.the complex conjugate

of the transpose of L. Note that a matrix operator is self-adjoint if, and

only if> it is hermitian.
sjc :{e s}e

Let -z be the output of B as a result of v , i. e.,

z = L v

then the reciprocity theorem states that

<z- » 1 y-z = <V- ' — >V

or in the expanded form,

m

> Z. V. •*= / V. Z.
Li x 1 Li i i
i=l *=1

Note also that the 6-function which corresponds to the above

ti

form:

definition of the inner product << ; >v is an m-vector and has the following

6V(-| j)= (0,0, ... 0,1,0, ... 0)
t
j-th component

Similarly for <, >„, 6 .(•[ j) is an n-vector with all components zero
except for the j-th component which is 1.

To illustrate the procedure of solving problems by the use of the

adjoint method let us present the material in terms of concrete.systems.
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Problem 1: Given a non-reciprocal network comprised of resistors only,

n-current sources are connected between the n-nodes of the. circuit

and the datum. Find the voltage between the k-th node and the datum.

WW vwv W^--AA/V

Solution; LetJt*(L, I-, • '• t, I ) be the current source vector, v= (v., v f
..., v ) be the voltage response vector and let G be the admittance matrix

of the circuit. Then

I = Gv or v = G"11

from which it follows that

<• v* wl>ki xi+ (G~\2 h +•••'+<G"lW^ (15)

,-1We have just seen that if G is known and if we can calculate G

then, of course, the problem is solved. Let us now approach this same

problem from an experimental point of view.

a. The direct method; To find v. , the voltage at the k-th node because of

the current sources^ s (L L ... , I )we first apply a unit source at the

first node, while all other sources are removed and measure the resulting

voltage at the k-th node. Let us denote.this voltage by v) •• Next we multiply
vk ^y the actual strength of the.source at the first node, namely by L. We
repeat this procedure for all nodes and finally, add up all the contributions

to the voltage at the k-th node to get v., i.e.,

vk - Vk Zl +Vk *2 + ••" +vk Xn (16)
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If we compare Equation (16) to (15) we see that v.;' = (G~ ), ., i. e.,
(G* )j. is the response of the circuit at the k-th node, to a unit source con
nected at the i-th node.

A different interpretation to (15) is furnished by

b. The adjoint method: We set-up the adjoint system, which is the system
t

whose operator is G . To find v, , we apply a unit source at the k-th node

of this adjoint system. We measure the responses to this unit source at all
(k) # (k) # (k) *the nodes of the adjoint system, and denote then by v ' j v^ • , ... , vl ' .

Finally,we add up all contributions; thus,

(k)*_ , (k)*T , . (k)* T /17X
v. s v; ' . I + v, ' I_ + ... + v* ' • I (17)

k 1 1 2 2 n n '

(17) follows directly from Consequence 1.

Now comparing (17) with (15) we get a different interpretation for (G~ )..,

i. e., (G"1), . = v. ' *. This leads us to Equation (18),
ixl • *

vf>*-vW (IS)
Equation (18) is a restatement of Consequence 2 (10) for the special

case of d. c. circuits; namely, the voltage response at the k-th node of a

circuit., (as measured by an infinite impedance voltmeter), to a unit current

source at the i-th node is the same as the voltage response of the adjoint

circuit at the i-th node as a result of a unit current source-applied at its k-th

node.

Summary: While in the direct method we had to apply a unit source at all
the n-nodes, we had to measure the response at the k-th node only. Whereas

in the adjoint method we had to apply only one unit source, namely at the k-th

node of the adjoint circuit (later to be called a test source) but measure its

response at all nodes.

Note 1: Which method is better ? The answer depends purely on the technical

details of the experiment: if the measuring instrument is easier to handle

than the source, then we would prefer the adjoint method, and vice versa.

Note 2: In the special case where the circuit is reciprocal, the above developed

procedure remains the same, except that it is not necessary to set up a new
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system since the system is self-adjoint. In this case, Equation (18) is what

is usually referred to as the reciprocity theorem for reciprocal circuits, i. e.,

the voltage response at the k-th node to a unit current source at the i-th node

remains the same if we interchange the location of the source and the voltmeter.

We shall illustrate with three additional problems the different ways in

which the reciprocity theorem can be applied.

Problem 2: Given a reciprocal network comprised of resistors only (i. e., its

G matrix is real and symmetric) fed at its n nodes by the current

sources I = (I ,, I , . . . I ). What are the conditions imposed on
—a ai 3lci an

a source L = (L., L , ... , L ), if it has to produce at the k-th node

the same voltage as I ?

Solution: Apply a test source 1 at the k-th node,

I = (0,0, ..., 0,1,0, ... 0)
—c *p

k-th component

Let v j. v, , denote the voltage at the k-th node when the circuit is

fed by ^1 and I , respectively.

lak=<Za.It> and vbk=<^b'it>

where v , (v.) is the set of voltages resulting from I , (L respectively),
—a "-d —a d

As we require v . = v,,, we must set

<2a.It>= <vb-It> d9)

Applying the reciprocity theorem to both sides of (19) we get

<idV=<4'V (20)
where v. is the voltage at the n nodes as a result of_I . Equation (20) is

the required condition on _L .

Problem 3: Given the same circuit as in Problem 2, also fed by JL . What

would be the amplitude of a source 1^, if it acts only at the b-th
node, and has to produce the same voltage as I at the £-th node?

•—•a
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Solution: This problem is a special case of Problem 3. The form of L is

J^ = (0,0, ..., 0, ^ 0, ... 0)
t
l-th component

where L Q is the unknown. Inserting L into Equation (20) we get,

\i-
<Ia" V

' " ' l

vti

where v g is the voltage at the £-th node as a result of I.

Problem 4: Given a circuit as in Problem 2, fed by^ ; let all resulting

voltages v be known. Then, short the I -th node to the ground.

What will be the new voltage at the n-th node?

Solution: The Unshorted Circuit

WW wv—VW WV--

The Shorted Circuit

/
Short

-VWV W \A/V

Let v be the voltage of the unshorted circuit; let v be the voltage after the

short is applied. We introduce a source JL,
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it * (0,0, ..., o, xi£,o, ... 0)

4 -th component

where the amplitude of I, is such that

-Vol = v«

i.e., v.-1 the voltage resulting from I. at the 4-th node of the unshorted
ii -~i

circuit, is .equal and opposite to v .»

Clearly, ifjL and I, are-applied simultaneously to the unshorted

circuit the resulting voltage at the 1-th node is zero, hence,

Y = v + v.
sn on m

in

To. find v^ we must first compute L -; from Problem 3 it follows
that

lic-
<*o £] >

where v!* is the response to the source V

4IJ* (0,0, ...,0,1,0, ... 0)
4-th component

and yij is.the 4-th component of vi .
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Now to find v. we introduce another test source L* ,
in —t

4n)= (0,0 0,0,1)
f
n-th component

From the reciprocity theorem it follows that

<I(n) (n)
^±t ' -,i. -t • -i *

which, when simplified is sim pie

vin = i4

(n)
V

t4

Thus, finally

v •*
sn

V
on

(n
V

U
)<v»

vt4

I >
o

We conclude this section with three remarks.

(a) Note that the same method of solution was used for all these four

problems: a test source was applied at the point the voltage of which was

to be found.

Thds^idea follows directly from Consequence 1.

(b) If the circuits of Problems 2-4 were not reciprocal, i.e., the corres

ponding operator self-adjoint, the method of solution would remain the

same, only that the test source should have been applied to the adjoint

circuit.

(c) Note that although these four problems were stated in terms of d. c

circuits, the method of solution would remain the same for similar problems

provided the operator is represented by a matrix.

XIII. APPLICATION OF THE ADJOINT METHOD TO SYSTEMS

CHARACTERIZED BY THEIR STATE EQUATIONS

Let the system B be described by the state equations

z(t) 4A(t) z(t).+. v(t) r.. (21)

where z(t) is the state vector, v(t) is the forcing vector, both n-dimensional
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and A(t) is an n x n matrix, whose elements a. ,(t), are continuous functions

of time.

Without any loss of generality we shall assume that the initial condi

tions of this system B are zero, as we can incorporate the initial conditions

into the forcing vector by means of 6-functions. Hence we set

z(tQ) = 0

zfe(t) as
We define an inner product of two n-dimensional vectors z (t) and

—a

V n

* <£a<t>, £b(t)> =J £ zai<t)zbi(t)dt
t i=l

o

where t is the time at which z(t ) = 0 and t, is the time at which the process
o — o — 1 ' r

terminates.

To find the adjoint system B we write (21) in the following form

Lss = v.

For the system B we write

L z^ = v

where L is still unknown.

By definition ;(3),

<Ljz, z > = <£, L z^ >

Expanding the right side we get:

ti n fcl n / n \

<Lz, £*> =y 1 l z.*dt- .j ••£(X aijZj)z*dt
lo i=1 'o frlVH •/

i?=l ° t 1=1 t j=l \i=l "' /

If we set in (22)

-26-
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£*<y= °
then,

n t

/ z.z.

i=l

and we get,

*n • * » t *^
<Lz, z > =^z, -z -A z >.

This shows that the state equations of B are

z (t) = -AC(t) z (t)-v: Ct)

1

= 0

t^

with the initial condition z (t,) = 0.
~~ * ""'

Since z(t ) = 0 and z (t.) = 0, B is non-anticipative, while B is
— o i — ^

completely, anticipative: roughly speaking, B is said to run backwards from

z (t.) to z (t)(t<t.) where state vector, z(t), of B at time t ft < t.)
— 1 — 1 jjj i
depends on the input to B over the interval [ t,, t.].

The reciprocity theorem states, in this case, that,

<v, z > = <z , v > (23)

In the case that the systems B and B have non-zero initial states,

we shall, as we have already mentioned, incorporate the initial states into the

forcing', vectors as 6-functions. More specifically, assume that the initial

states of B and B are respectively z(t ) = z and z (t.) = z., and that,

as before, v and v are the respective forcing vectors of B and B . This

situation is equivalent to the case that both B and B are initially, at rest,
sic A

i.e., z(t ) = 0 and z (t?) = 0 whereas the forcing vectors-are changed into
v +z 6ft-1 ), and v +£, • 6ft-1.). The reciprocity theorem for this case is

<v+z 6(t-tQ), z > = <z, v +a1.«(t-t1)> . (24)

Further, in the case that v = J) and y = 0, which corresponds to

considering the free mtoion of the system, the respective forcing vectors are

z 6(t-t ) and z 6(t-tJ and the reciprocity theorem is simply

G. A. Bliss5 obtained a similar result to (24) by direct computation.



n n

XziVzoi= 1 zi^-2u <25>
i=l i=l

We turn now to the Consequences 1 and 2.

To get Consequence 1 we set:

v* = (0, 0, . . ., 0, 6(t-t.), 0, . . . 0) (26)
f
i-th component

Inserting (26) into (23) we get:

1 n

Zi(tl} = J £ z*(t;tr i)Vj(t)dt l<i<n (27)
fco J=1

tfc sic «{c
where z (tjt , i) is the response of B at t to the v given by (26).

If we compare this with the super

fcl

;(tx) = j 4^; t) v(t) dt
t

o

where d» (t, ; t) is the state transition matrix, it is clear that actually $ (t ; t),

as a function of t, is the impulsive response of the adjoint system.

Now Consequence 2 will tell us that

zi(ti; t0» j) =zj*(to; Vi} (28)
where z^(t, ; t , j) is the response of B at t, to a forcing function

v = (0,0, ..., 0, 6(t-t ), 0, ..., 0)

t
j-th component

Also in this case we have the two methods of solving for the response

of a system: (27) is the adjoint method, and by Substituting (28) into (27) we

get the direct method, i. e. ,
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H n

It is easy to rephrase the four problems presented in Section I so

that they should apply to systems described by their state equations. The

method of solution will remain the same.

Three additional problems will be presented, illustrating possible

ways of applying formulae (24) and (25) to problems in control.

Problem 5: Given a system z(t) =^[z(t), v(t), t] z(t ) = z , where z(t),
. an n-vector, is the state vector, v(t), an m-vector, is the input

vector, and_f is an n-vector defined over R xR xt with com

ponents differentiable with respect to all the variables. A "normal1

input v(t) t <t<t and its corresponding trajectoryss(t)
_ o — *"" e *~"

t < t < t with end point z(t ) = z are also given. At time t.,

t < t. < t , the actual state is measured, and is found, because of

some disturbances, to differ slightly from z(t.). By what constant

factor should the amplitude of v(t) be multiplied, during the time

interval [t , t ], so as to get, for some given a 4 0,

[z(te)-ze]« a= 0 (30). z(t) is the actual trajectory

and z(t .) is its end point. Assume that in the interval [t., t ]

the system is free from disturbances. See Figure 5.

Before starting with the solution let us remark that 1) the length

of the given a is immaterial, and that 2) in the special case that a =

(1, 0, 0, .. ., 0) the condition [z(t ) - z ]• a = 0 is simply z (t ) = z ..
— e —^e ~* jl e . ej.

Solution; In the interval [t., t ], z(t) satisfies the equation

|(t) =i[l(t), S(t), t] (31)

whereat,) is the initial state, and z(t) satisfies the equation

z(t) =^[z(t),(l+|3)v(t), t] (32)
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where z{t.) is the initial state, and 1+ p is the.factor with which we are going

to correct the input v(t), so as to satisfy the end condition (30). Now we set

z(t) = £(t) + z(t) and substruet (31) from (32) and thus get the variational

equation of the s ys tern

P*v(t).i Pttp = zO^-S^) (33)r(t) =
8_f
dz

• *w+Vs
l*<t> 8(t)
v(t) v(t)

which is.correct to the first order. Here we used the notation,

8 f , a f,i [£.(t), v(t), t] ^± [z(t), v(t), t]

8 f

17

d z

a f
~[z(t), v(t),t].

dz »%=

n

a f
~[z(t), v(t), t]

8zn - - 'J z(t)=J(t)

v(t) = ?(t)

Our problem is to find the value of p so that r(t )• a = 0. We introduce now

the adjoint system: let

iV)-^)*^) r*(te)= a
then by (24),

<p(|^) v+r(tx) ott-tj), r*(t)> =<r(t), a6(t-te)>
Expanding (34) we get,

t
e

r*(t1)r(t1)+ j" p(|i-) |**It) dt =r(te). a

thus finally, if we set

-31-

(34)



-£*(£)* r(0
P = 1 ~ (35)

e 8 f o *,
s ^- v-r (t)dt
t.

we get r(t ) a = 0.

*
So, to find p (35), we have to generate r (t), which is the response

of the adjoint of the variational system to the input a. Note that this can be

done before the actual process started. Also v and (-^—~) are known in
advance, thus £(t.) is the only quantity that has to be measured during the

process. Note also that p can be computed continuously, thus.allowing us to

adjust p, continuously, during the process.

Problem 6: Given a system jz(t) = f[js(t), v(t), t] z(t )= z as in Problem 5,
whose input vr. , |,is given. At some given time t- t < t. < t , the

input is shut off, and the resulting trajectory |z(t), with z(t ) = z has

already been calculated. At t.,'the normal shut off time,", the system

is inspected and found to have a slight deviation jr(t.), from its normal

position z(t.). For how long should we delay the shut off so as to get

[z(t ) - z ]• a= 0, where z(t) denotes the.actual trajectory and z(t )

is.its end point. Again it is assumed that in the interval [t,, t ], the
1 e

system is.free from disturbances.

Solution: Let t? be the actual shut off time. As t_-t. is small, the input will
remain constant (to the first order), during this time. Let us denote this con

stant input by v(tj).
Also let us.define a function G(t), where

n t <t<t -i

Q(t) =\ x 2\
1.0 otherwise J

By using (24), letting, as in Problem 5, a be the input to the adjoint of

the variational system, and using the same notation
t

e

r(te).a =r^.r*^) +J /(tKQt)(J~) vCt^dt (36)
fcl
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Now

t
e

j" Jt*(t) •G(t) (|I) v(t)dt= (t^Jr*^) (||) fitj) (37)

Thus finally (inserting (37) into (36)),

is the correct value for t«, so as to get a»jr(t ) = 0. (If t-.-t.) < 0 then we

have to reverse the sign of the input, during the time interval [t., t?], if it
is only physically possible. )

To illustrate a possible application of (25) in the case that the end

condition rather than the initial conditions are known, we present the following

problem.

Problem 7: Given a system the state vector of which satisfies the following

equation

z(t) = JV(t) z(t)

No input is applied to the system. Find the initial conditions z(t )

such that

z(t.) = z. where z_ is given.

Solution: Apply

z*^) a (0,0, ... 0,1,0, ..., 0)
i-th component

$ sjc
to B , and measure the corresponding response z. (t ); repeat this. expe riment

for all i = 1, 2, ... , n. Inserting the results into (25), we get n equation for the

n unknowns z.(t ), and thus find z(t ).
l o — O /

We conclude by mentioning that works by H. S. Tsien, Z. H. Lanning
7 8

and JR,. H. Battin, and W. J. Welch treat some problems in a way related to

this work.
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