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I. INTRODUCTION

1.1 Statement of the Problem

An important problem in the analysis of control systems is that of

stability. In the case of linear time-invariant systems, the differential

equations describing the dynamic behavior of the system can be analysed very

simply to determine the stability properties of the system. In particular, the

Routh-Hurwitz tests can be applied to the characteristic equation associated

with the system to determine if the eigenvalues of the system have negative

real parts. If this is the case, the system is asymptotically stable (a. s. ).

Since the stability of linear systems is independent of the initial disturbance,

the system is also asymptotically stable in the large (a. s. i. 1. ).

In the case of the nonlinear systems, the problem is not so easily

solved. Methods have been developed to determine the a. s. of nonlinear

systems by considering a linearized system formed by replacing a nonlinear

function by its incremental slope at the equilibrium point. However, these

methods do not give any information regarding the allowable initial distur

bances for which the system will be a. s. , which is essential in practical

stability problems.

A problem then of great interest and importance in the analysis of

nonlinear control systems is that of determining the region of a. s. and, in

particular, that of determining if the system is a. s. i. 1. This problem would,

of course, be greatly simplified if a linearized model of the nonlinear system

could be used to determine the stability properties of the system.

In 1949, M. A. Aizerman made the following conjecture concerning

the stability of the zero equilibrium point of the system of equations,

x = Ax + b f(xx) (1)

where x is a column vector whose elements (x,, x,,,. . , x ) are the state
— VI* .2* ' n'

variables of the system, x is the derivative of x with respect to time, A
* ~"

is an nxn constant matrix, b is a column vector and f(x.) is a continuous

single-valued scalar function with f(0) equal to zero.

* Aizerman assumed that the state variables were chosen in such a way

that the nonlinearity only appeared in one of the differential equations,

that is, b has only one non-zero element. Since it is sometimes con

venient not to choose the state variables in this manner, this assumption

will not be made here.
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Aiz e r man*s C onj e ctur e

If the nonlinearity is replaced by a linear gain kx

to form the linearized system,

x =A x +b kxt =G (k) x (2)
and it is determined that this (.inear system is asymptotically

stable for any k in a certain open interval (k~, k_), then

the nonlinear system (1) is a. s. i. 1. for any f(x ) satisfying

the inequality,

k< 2- <k,
Xl 2

If this conjecture were true, a. s. i. 1. could be insured for a nonlinear

system simply by restricting the nonlinear function to be bounded within certain

limits determined from a linear stability analysis. However, this conjecture

is not true in general. The objective of this report is to present a procedure

which can be used to verify this conjecture for certain nonlinear control systems.

For some cases it is not possible to verify the conjecture above, but

it is possible to verify the slightly modified version which follows:

A Modified Conjecture

If the linear system (2) is asymptotically stable

for any k in a certain open interval (k., k?), then the

nonlinear system (1) is a. s. i. 1. for any f(x.) satisfying

the inequality

f<x.)

*I +«<-^" <k2
where € is an arbitrarily small positive constant.

In this report, nonlinear control systems of the type shown in Figure

1 will be considered.

*•"' Some known counterexamples are discussed in Appendix I.
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r = a ^ e » \r~ f(e) ^ H(s)

i J\

Figure 1

The system is assumed to have unity feedback, but since it is also assumed

that the input r is equal to zero, more general cases can be reduced to

this form. The transfer function H(s) will be assumed to have a number

of poles at least one greater than the number of zeros. Furthermore, it
will be assumed that H(s) has real coefficients in its numerator and

denominator polynomials which is always the case if H(s) represents a
transfer function between two real valued functions of time.

If the error e, which is the input to the nonlinearity, is chosen

as the first state variable, the dynamic behavior of this system can be

described by a system of differential equations in the form of system (1).
In order to simplify the algebra of this investigation, it will be assumed

that A, b andx have real elements. This is always possible if the above
restrictions on H(s) are satisfied.

The second method of Lyapunov provides a rigorous basis for the

investigation of nonlinear system stability and can be used to verify Aizerman's
conjecture when it is true if a proper Lyapunov function can be found. The

problem to be considered by this investigation is that of determining Lyapunov
functions of the Lur'e type which will verify Aizerman's conjecture for a
particular system or class of systems.

I. 2 Review of Earlier Work

Since the publication of Aizerman's conjecture, several Russian

authors have verified the conjecture for certain classes of second and third

order systems using the second method of Lyapunov. Malkin and Erugin3
investigated the second order case and proved that the modified conjecture

-3-



was true for second order systems like that of Figure 1 with H(s) having

at least one more pole than the number of zeros.
4

V. A. Pliss made a detailed study of a class of third order systems

in which the transfer function H(s) had two zeros and three poles. He found

the conjecture to be true for some combinations of the system parameters

and to be false for other combinations.
5

E. A. Barbashin verified the modified conjecture for the class

of systems in which H(s) has one zero at the origin and three poles.

The above authors all used a Lyapunov function of a form first

proposed by Lur'e and Postnikov consisting of a quadratic form of the

variables of the system plus an integral of the nonlinearity. However, their

aim was to verify the conjecture for particular classes of systems and not

to present methods for the determination of Lyapunov functions. Consequently,

they do not describe the process by which their respective Lyapunov functions

were found.
7

Lur'e developed a method for the determination of Lyapunov

functions for nonlinear systems which consisted of using a special type of

quadratic form, the parameters of which must be determined by solving a

set of quadratic equations. These equations become very difficult to solve

for third and higher order systems. Furthermore, Lur'e was only concerned

with systems which would be a. s. i. 1. for any nonlinearity in the first and
*

third quadrants.
o

Rekasius and Gibson have extended the methods of Lur'e to cover

wider classes of systems by using certain transformations of variables which

modify the nonlinear function. This allows systems to be considered which

are stable only for nonlinearities in a sector of the first and third quadrants.

The difficulties in solving a set of quadratic equations for the parameters of

the Lyapunov function are, however, still present.
9

Ingwerson developed a method for the generation of Lyapunov functions

which he was able to use to verify Aizerman's conjecture for the class of

systems in which H(s) has three poles and no zeros. Ingwerson's method

is not direct, however, in that it involves intuition or considerable trial and

error in selecting the form for a certain matrix involved in Ingwerson's

procedure.

* Russian authors refer to these nonlinearities as "Class A" nonlinearities.
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Schultz and Gibson developed a method for the generation of Lyapunov

functions which they termed the variable gradient method. This method re

duces the amount of trial and error necessary in generating a suitable Lyapunov

function but does not eliminate it entirely. In this case, a form for the deriva

tive of the Lyapunov function is found which must be constrained to be at least

negative semi-definite. , For third and fourth order systems the general con

straints are usually not sufficient to completely determine the Lyapunov function.

Thus,further assumptions must be made on a trial and error or intuitive basis.

This makes the method very difficult to use for generating Lyapunov functions

which will verify Aizerman's conjecture for third order systems and virtually

impossible to use for fourth order cases due to the very broad stability state

ment the Lyapunov function must verify.

Recently, there has been much interest in a method for the generation
11 12of Lyapunov functions developed by Zubov ' who has shown that a Lyapunov

function must satisfy a certain partial differential equation. Szego13,14 and
15

Margolis and Vogt have successfully applied this method to certain second

order systems.to determine quantitative results regarding regions of asymptotic
stability and the location of limit-cycles. Margolis and Vogt have also shown
that in some cases it is possible to construct an approximate series solution

for the Lyapunov function which can be programmed on a digital computer.
However, because of computational difficulties, the Zubov method does not

readily lend itself to the determination of Lyapunov functions ior a system of
order greater than two.

A result equivalent to that of Ingwerson's was proven recently by

Bergen and Williams using a physical argument to help determine the Lyapunov
function. This physical argument formed the basis for the development of the
procedure presented in this report.

I. 3. Summary of Results

A direct procedure for the determination of Lyapunov functions of

the Lur'e type which verify Aizerman's conjecture for a particular nonlinear
system is developed. The problem of determining the Lyapunov function for

the nonlinear system is reduced to that of determining a common,Lyapunov
«

function for a family of linear systems. It is shown that the derivative of this

function must satisfy certain constraints in order to be a suitable Lyapunov
function for this family of linear systems. These constraints require the

-5-



derivative of the Lyapunov function to be zero along specified vectors de

termined from the dynamics of the linearized system. The derivative of

the Lyapunov function is constructed incorporating these constraints which

considerably reduces the number of parameters to be determined. The

elements of the Lyapunov function itself are then found by solving a set of

linear algebraic equations.

This procedure is a direct process by which the Lyapunov function

can be found if it exists without resort to tibial and error methods and con

sequently is well suited for application to third and higher order systems.

Several third and fourth order examples are presented to demonstrate this

procedure.

II. THE SECOND METHOD OF LYAPUNOV

II. 1. Theorems on Stability

The second method of Lyapunov constitutes a set of theorems on the

stability of differential systems of the type

x = F(x) (3)

with F (x) = 0 only if x = 0. These theorems allow the stability of the

system to be investigated by considering a scalar function of the variables

of the system, V(x). The properties of this function and its derivative formed

in the following manner,

V (x) = AV ' x = A V F(x)

where A V represents the transpose of the vector -AV, can be examined

without any knowledge of the solution to the differential equations of the

system.

Two theorems which will be of use in this investigation are stated

below.

Theorem 1

If V(x) is a scalar function with continuous first

partial derivatives for all x such that

(1) V(x) > 0 for all x ^ 0 and V(0) = 0

(2) V(x) < 0 for all x ^ 0 and V (0) = 0

and (3) V(x) -»oo as ||:xi|-#-co
where ilxll is any norm of the vector x,

then system (3) is a. s. i. 1.
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Theorem 2

If condition (2) of Theorem 1 is replaced by

V(x) < 0

and the origin is the largest invariant set for which V(x) = 0,

the theorem is still valid.

For detailed proofs of these theorems, the reader is referred to the
17book by LaSalle and Lefschetz . Intuitively, the Lyapunov function V(x) may

be thought of as a distance or potential function which is always positive ex

cept at the origin where it is zero. If this function is always decreasing by

virtue of the system of differential equations (3), then it seems apparent

that the system will be a. s. i. 1. . In the case of Theorem 2, V(x) may be

zero at certain points in the state space. But if the system point cannot

remain within a set of points for which V(x) = 0, the function V(x) must

then, necessarily,decrease to the zero value at the origin.

II. 2. Lyapunov Functions

The simplest positive definite function which can be used as a

Lyapunov function is a quadratic form

V(x) = x' Px

where P is a real symmetric positive definite matrix. For linear systems

which are a. s. i. 1. , a function of this type may always be found which will

satisfy the conditions of Theorem 1.

For nonlinear systems, this type of function is useful to some ex-
18

tent. Aizerman pointed out that a function of this type could be used to de

termine a sub-interval of the interval (k k ) such that if the nonlinear function

— was bounded within this sub-interval, the system would be a. s. i. 1.
xl

Lur'e found that if a term incorporating an integral of the nonlinearity

xi
were added to the quadratic form in the following manner V(x) = x' Px_ +v f f(u)du

* A set of points in the state space is said to be invariant if the system point

x(t) remains in the set for all time if the initial point x( t ) is in the set.
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where v is a scalar constant, a more useful function was obtained for non

linear systems. This term allows the Lyapunov function to compensate some

what for changes in the characteristics of the nonlinearity. Unfortunately,
2

this compensation only affects the x term of the quadratic form as can be

seen by replacing f(x ) by kx to obtain

VL &) =*' E* +*I kxi'
However, attempts at using the nonlinearity in other forms in the

f(x ) 2
Lyapunov function such as x, f(x ) or — x_ lead to taking a derivative

of the nonlinear function when V (x) is calculated. This, then, usually leads

to making restraints upon the derivative of f(x ) as well as upon f(x ) itself in

order to insure stability. The term used by Lur'e, however, possesses the ad

vantage of being differentiable without taking the derivative of f(x ).

As pointed out earlier, previous authors have unanimously used a

function of this type to verify the conjecture even though they may have derived

the function by a method of generating Lyapunov functions of a more general

nature. Pliss was able to prove that the conjecture was not true for all the third

order systems of the type he investigated for which a function of the Lur'e type

did not exist which would verify the conjecture. This then is a good indication

of the usefulness of the Lur'e type of Lyapunov function in verifying Aizerman's
conjecture.

IU. REDUCTION TO A LINEAR PROBLEM

III. 1. Introductory Remarks

The problem under consideration is that of determining a Lyapunov

function x

V(x) = x' P x + v f f(u) du
o

for a nonlinear system (1) such that it satisfies all the conditions of Theorem 1

or 2 for any f(x ) satisfying

kl< ^ <k2
where k and k are the limits of stability for the linearized system (2).

If f(x ) is replaced by kx , the following linearized Lyapunov function
is obtained.
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VL (x) =x' P x +^ kXj
By letting

or

and

X1 = a££ where a a

VT (—) =*'£ —+~k k —' ———
V (x) = x'P (k)x where P (k) = P +-*£ a a'

Computing the derivative of V(x) using system (1) and the derivative of VT (x)
using system (2), it is found that

Yk

V(x) =
*(*,))=x' [p A_+ A'p] x+ — x' |Pba' +ab' Pf| /a a' A+A' aaflx

yK'T r i+X _J_ x' faa'ba' +ab'aa'| x

VL^ =- [EA +A'P1 * +k*' fpba' +a b'P +? (a a'A +A'a a') 1 2E
+-^ k x' fa a'b a' + ab' a a'1 x

or V (x) =•«' Q (k)x which defines Q(k). Note that the linearized function is the

f(xx)
same function of k as the original function is of — .

That is, l

VL (x, k) = V xt
— x.

f(xx)

This fact will enable the problem of determining the function V(x) for the

nonlinear system (1) to be reduced to that of determining the function VT (x) for

the linearized system (2). Pliss originated this result in his study of third

order systems.

The function VT (x) is positive definite for a certain value of k if
L — .

P(k) is a positive definite matrix. Similarly VT (x) is negative semi-definite

for a certain value of k if Q(k) is positive semi-definite. The tests for

positive definiteness or positive semi-definiteness of a matrix are presented in

Appendix II.

-9-



III. 2. Theorems on Equivalence

The following theorem will now be proven.

Theorem 3

Proof

If a Lyapunov function VT (x) can be found for the
L —

linearized system (2) such that for all k, < k < k_,

V_ > 0 for all x ^ 0
J-i —

VT < 0 for all x

and x =J) is the only invariant set by virtue of system
f(x )

(1) for which V (x) equals zero if k < — < k , then the non-

linear system (1) is a. s. i. 1. for all f(x ) satisfying

ki < —*1 xx <k2.

Assume that v > 0 which can always be accomplished by reversing the

sign of f(x,) if necessary and that k, < — < k~. Then
1 1 x. 2

/kl 2
f(u) du > Y-p" x« *or a11 x-

1 1

and V(x) > VT (x, kt) > 0 for all x,

Furthermore, since VT (x, kt) is a positive definite quadratic form
J-i — I

VL (x, kj-^co as
Consequently,

V(x) •oo as •oo

Since VT (x, k) is equivalent to V

V (x) < 0 if 1^ <

Then if x= 0 is the only invariant set for which V (x) = 0, the conditions of

Theorem 2 are satisfied and the nonlinear system (1) is a. s. i. 1.

This theorem can be used to verify Aizerman's conjecture if the

linearized Lyapunov function VT (x) can be found. The following theorem will
be of use in verifying the modified conjecture.

— <k,.
xl - 2

-10-
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Proof

Then

and

Theorem 4

If a Lyapunov function VT (x) can be found for the
j_i —

linearized system (2) such that for

1^ < k < k2,

VT > 0 for all x ^ 0
L —

VT < 0 for all x

and x = 0 is the only invariant set by virtue of system (1)

for which V (x) equals zero if k- < — < k_, then the

nonlinear system (1) is a. s. i. 1. for all f(x.) satisfying

f(x.)
kj + c< — <k2

Again assume that v > 0 and k. + € < — < k,.

VL(x) > 0 for k > kp
VL(x, ^ •+ €) > 0

f(x,)
V(x, _i ) >VL (x, 1^ +€) >0 .

The completion of the proof follows as for Theorem 3.

This theorem allows the cases to be treated for which Vy (x, k.)

is not positive definite but rather positive semi-definite.

IV. RESTRICTIONS ON Q(k)

IV. 1. Introductory Remarks

Consider the matrix equation relating Q(k) to P(k) and G(k):

P(k) G(k) + G'(k) P(k) = - Q(k) (4)

The objective now is to find a solution to this equation such that

P(k) is positive definite and Q(k) is positive semi-definite for all k in

the open interval (k., k_). In order to accomplish this result, the general

form of this equation will be investigated. Equations of this form have been
19 *investigated by Bellman using Krone eke r products to write the equations

* See Appendix III for a definition of Kronecker products, their properties

and a demonstration of this procedure.
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for the coefficients of the matrices. For the general matrix equation

Y C + C' Y = - D, (5)

the equations for the coefficients are given by

h ® Cf + C' ® fly = - d (6)
where ® designates the Kronecker product and

y =

11

In

21

2n

nn

•first row of Y

•second row of Y

etc.

d =

D
11

In

>21

'2n

D
i_ nn J

2 2Let K equal the n xn matrix defined by the sum of Kronecker products,

K = I®C' + C'®J[ .

Bellman has shown that the matrix equation (5) has a solution for Y for an

arbitrary matrix D if all the eigenvalues of C have negative real parts.

This was accomplished by showing that under this condition, the matrix K

is non-singular and consequently,

y = K"1 d .
This does not place any restriction upon the matrix D in order for

a solution to exist for Y. For the matrix equation (4), it is known that the

eigenvalues of G(k) have negative real parts for all k in the open interval

(k , k?). However, G(k.) and G(k-) must have eigenvalues with zero real
parts if (kt,k?) is the maximum open interval for which G (k) has eigen
values with negative real parts. Now if the matrix C of the general equation

(5) has eigenvalues with zero real parts, then K will have eigenvalues equal

to zero. If K is singular, it is known that in order for a solution to exist,

the verctor d must be orthogonal to all vectors z^ which are eigenvectors

for the eigenvalues of zero of the matrix K. That is,

z' d = 0

for all z such that

z • K = 0 .

This fact can be used to place restrictions upon the matrix D. In

the next section, a theorem will be proven which relates these restrictions

* In some cases k? may be infinite in which G(k) may have eigenvalues
with negative real parts for arbitrarily large k.

-12-



to certain eigenvectors of C. It will be assumed that D is positive semi-

definite since this is a necessary restriction on Q(k) for the purposes of

this report.

IV. 2. Necessary Conditions

In order to develop the restrictions on Q(kj) or Q(k2) to satisfy
the necessary conditions for a solution to exist for P(K-) or P(k~), the

following two lemmas will be proven.

LEMMA 1

If u. and u. are eigenvectors of the matrix C such that
-1 -j B -

C u. = \. u.
1 l—i

C u. = X.. u.
- -J J -J

then u. £> u. is the left eigenvector of K corresponding to the eigenvalue

i J

Proof

(u. ® u.)' K = (u.1 ® u.') (I ® C! + C ® I)
x—i —y — —i —J — — — —

= u.' ® u.1 C + u.1 C ® u.1
-i -j - -l - -j

= X.. u.' ® u.1 + X. u.' ® u.'
j-i -j 1-1 -j

= {\. + \.) u.1 ® u.V

which proves the lemma.

LEMMA 2

Proof

Let u. =
—l

(u. ® u.V d = u.1 D u.
v-i -j7 - -i --J

Uil
u

12

u
in

then (u. 0 u.)' = (Ujl uy, u.2 u.' u_n u.')

and (u. ® u.)' = u.t u.1
l-i -j' ll-j

= u. D u.
-i --J

11

D
In

+ u._ u.'
i2-j
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Proof

The following theorem will now be proven.

Theorem 5

A necessary condition for equation (5) to have a

solution is that

Du = £

for every vector u such that

C u = 0 or C u = jwu .

If there is a u. such that
—l

C u. = 0,
i

then by Lemma 1,

(u. ® u..)» K = 0.
—l —r —

Thus in order for a solution to exist

(u. ® u.)« d = 0,
—i — r — '

or using Lemma .2

u.' D u. = 0.
—l 1

Since D is assumed to be positive semi-definite, the minimum value of

u.' D u. is zero and can only be assumed along an eigenvector of D. Thus

D u. = 0.

Now, if there is a u. such that
' —l

C u. = jwu, ,
1 J —1 »

then, since C is real, there is also a u. (equal to the complex conjugate of

u.) such that
—i7

C u. = -jcou..
J -J

Then (u. ® u.)' K= 0
v-i -j' -

and necessarily (u. ® u.)' d = 0
7 —i —y —

or u.' D u. = 0.
-i --J

Let u. be split into its real and imaginary components,

*i =% +&z
then u. = w1 - jw~

and u.' D u. = 3' 5^i + ™? ' £ ™? ~ ^ .
Again since D is assumed to be positive semi-definite,

Dwt = Q
and D w^ =0
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or equivalently D u. = 0

which completes the proof of the theorem.

Therefore, for k equal to k- or k equal to k, (if k, is finite),

Q(k.) or Q(k?) must satisfy the necessary conditions of Theorem 5 in order

to guarantee that equation (4) will have a solution. As will be shown later,

this fact can help to determine Q(k) and subsequently P(k).

IV. 3. Treatment of Double-Zero Cases

Systems may be encountered for which G(k«) has two eigenvalues

equal to zero, but only one eigenvector. It will be shown in this section that

the constraints of Theorem 5 must also be applied to Q(k-) with regard to the

generalized eigenvector for the zero eigenvalue.

Assume that the matrix C of equation (5) has two eigenvalues equal

to zero and that C is in the Jordan canonical form (which can always be

accomplished by a suitable transformation if necessary). Then

C =

0 1 0

0 0 0

0 0

where J is an n-2 x n-2 Jordan matrix. Computing the general form of

D it is found that

~0 Y.

Yll2Yl2-D=YC + C!Y =

Thus, in order for D to be positive semi-definite, it is necessary that

Y.. be zero. This means that Y cannot be positive definite and in order

for it to be positive semi-definite, it is necessary that the first row and

column of Y be zero. Then Y.~ equals zero and the second row and column

of D must be zero which means that the generalized eigenvector of C for

the zero eigenvalue,

0

1

It has been assumed that Y is symmetric.
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must be an eigenvector for D for the zero eigenvalue. That is,

52i2 = ^-
The following theorem has, therefore, been proven.

Theorem 6

If C has two eigenvalues equal to zero with one

eigenvector u. and one generalized eigenvector u~, then

in addition to the condition of Theorem 5, it is also necessary

that

5^2= °
in order for a solution to exist to equation (5) such that Y

and D are both positive semi-definite.

Note that because of the fact that in this case, Y can only be positive

semi-definite, it will be impossible to satisfy the conditions of Theorem 3

for systems of this type. It will be possible, however, in many cases to

satisfy the conditions of Theorem 4 and verify the modified conjecture.

V. THE CONSTRUCTION OF Q (k)

V. 1. Construction of Q(k.) and Q(k2)

It has been shown that in order for a Lyapunov function to exist which

will verify Aizerman's conjecture or the modified conjecture for a par

ticular system, it is necessary that Q{K) and Q(k2) satisfy the con
ditions of Theorem 5 and in some cases, Theorem 6. In order to use

these conditions to help specify Q(k), a technique for constructing a matrix

to have certain specified eigenvectors will be described.

Suppose it is desired to construct a matrix D to have a set of k

eigenvectors u., u2, . . . , u, for the eigenvalue zero. Let

T = *1 u.
^k h.

-J
h i,—n-k

where the h. are a set of vectors linearly independent of the u.. In most

cases that will be ei

vectors of the form

-16-

cases that will be encountered, the h. can be chosen as simple one-element



h. =
—1

Then let

T'1 u. =

D=(T~V 0 . . . 0

: b

0 9

where B is an arbitrary positive semi-definite n-k x n-k matrix.

Now, since

0

•th
l position

,-1

D u. = 0 .

Using this procedure, Q(k.) and Q(k_) can be constructed to be as

general as possible and still satisfy the necessary condition of Theorem 5.

Q(k) has not been completely specified, however, because of the arbitrary

matrix B. In the next section, further restrictions will be developed which

will help to determine the elements of B.

V. 2. Further Restrictions

Consider the general form of Q(k) given by the relation

- Q(k) = P A+A'P +k [P ba' +a b1 P +^ (aa •A+A1 aa 'jl
+X k [aaj ba_' +ab '̂ aa_'j

derived in section III. 1. Notice that the terms involving k have elements

only in the first row and column due to the presence of the vector a. This

means that Q(k) can only vary in the first row and column as the parameter

k is varied.

-17-



Now suppose that both k and k- are finite and Q(k ) and Q(k~)
1 £t ^— 1 — Lt

are constructed as described in the previous section. Then all the elements

not in the first row and column of Q( k ) and Q(k?) must be equated. This
will reduce the arbitrariness of Q(k) considerably.

Now, if there is no upper limit k2, then Q( k) must remain posi
tive semi-definite for arbitrarily large values of k. This condition can

also be used to help specify Q( k) by placing restrictions upon the terms

of Q(k) involving k. However, this restriction will not be used until the

actual determination of the Lyapunov function is attempted which will be de

scribed in the next section.

VI. DETERMINATION OF THE LYAPUNOV FUNCTION

VI. 1. Solving For The P..

The general form of Q(k) can be found by letting P have un

determined elements P.. and computing Q(k) using the differential equations

for the particular system under consideration. Equating this Q( k) for k

equal to k to the Qk constructed by the method of the previous chapter,

a set of equations for the P.. and y are obtained. Also, another set of

equations can be obtained for Q(k2) if there is a finite k_. Otherwise,
additional constraints can be placed upon the general form of Q(k) to insure

that Q( k) remains positive semi-definite for arbitrarily large values of k.

The problem now is to solve these linear equations to determine the

P.. and v. Because of the structure of the equations, they are most easily

solved by the method of substitution and elimination of variables. In many

cases, Q(k.) and Q(k-) will not be completely specified by the previous

constraints placed upon it and there will be undetermined coefficients in

the equations for the P.. resulting from this. In some cases, these un-

determined coefficients will be specified in the process of solving for the

P.. and v. In other cases, there may be coefficients of this type which

will remain completely arbitrary as long as they are selected to maintain

the positive semi-definiteness of Q(k.) or Q(k7).

These equations for the P.. do not always have a solution, either

because of the fact that Aizerman's conjecture is not true for the particular

system under consideration or because of the fact that a Lyapunov function

of this type does not exist which will verify the conjecture. In these cases,

-18-



it will be found that when the equations are solved by substitution and elimi

nation it will be impossible to satisfy all the equations and maintain Q(k)

positive semi-definite.

VI. 2. Application of Theorem 3 or 4

If a solution can be found to the equations for the P.., it is necessary

to check the Lyapunov function thus determined to see if it will satisfy the

conditions of Theorem 3 or Theorem 4 in order to verify Aizerman's con

jecture or the modified conjecture. Due to the manner in which Q(k) was

constructed, it will be at least positive semi-definite for the values of k

in the interval (k , k_). P(k) can be checked for positive definiteness using
1 Lt —

the tests of Appendix I. In some special cases, POO will only be positive

semi-definite which will require the use of Theorem 4 to prove the a. s. i. 1.

of the nonlinear system.

In most cases, Q(k) will be positive semi-definite and there will

be a vector, say v, in the state space for which

V (v) = - v' Q(k)v = 0.

It is then necessary to verify that the system point of the nonlinear system

cannot remain in this vector. This is accomplished by computing v using

the differential equations of the system. Then, if v is not co-linear with
f(xt)

the vector v for k. < — < k~, the condition that x = 0 is the only
— L X- c* m~m •—~

invariant set for which V (x) is zero is satisfied.

In some cases, Q(k) may have two independent vectors for which

V (x) will be zero (as in examples 3 and 6). It is then necessary to verify
L —•~

that the system point cannot remain in the plane defined by these vectors.

Once it has been shown that all the conditions of Theorem 3 or 4

are satisfied by the Lyapunov function which has been determined, Aizerman's

conjecture or the modified conjecture has been verified for the system under

consideration. This procedure will be demonstrated by several third and

fourth order examples in the following section.

VII. EXAMPLES

VII. 1. Example 1

Consider the third order system shown in Figure 2. The differential

equations for a set of state variables describing this system are the following:

-19-



x =

r = 0

•9^*

-1 1

0 -1

f(x.)
- _L o

xi

l

3

-1

*<*!> (8 + 4)

(s + I)'

Figure 2

The matrix G(k) for the linearized system is then determined by

replacing f(x.) by kx.. The linearized system is asymptotically stable

for

< k < 8.

For k sr-^, there is one X. = 0; and for k = 8, there are imaginary eigen
values at + j yll .

It is easily determined that

G(k,) u= -jVlTu

5

1 jVu
for u =

i+ jVii"

As demonstrated in the proof of Theorem 5, u can be separated into its

real and imaginary components. Furthermore, any eigenvector can be

multiplied by a constant. Therefore, take

5

1
-1

3il = 3 » ^2 = 0

1 4

-20-



Then

"5
"3 "

1 0 "0 4 0

T =

11
3 0 0

1 4 1

T -1-
4 -2

0

1

Q(k2) =(T2"V
"0 0 0"

0 0 0

0 0a

T -1
13

Q(k2) =
16a
-8a

4a

-8a 4a"
4a -2a

-2a a

Now for k = - ^ , u. =
41
3

.1-

0 0

Take T^ =
4 0 0

3 1 0

1 0 1
> Tl

-1

1

"3
3

"3
1

-1
Notice, that since T. has an identity 2x2 sub-matrix, and since these

elements of Q(k.) and Q(k_) are going to be equated, QOO can De taken

directly as

-1,qo^j * [tx y
0 0 0

0 4a -2a
0-2a a

-1

Q(k1) =

25

TEa

-5

5

-5

2

4a

-2a

a la

-2a

a

Since a is only a multiplicative constant in both Q(10

and Q(k-), it may be taken equal to one. Then, computing the general

form of Q(k) using

P(k) =

P + 2L k
*11 2

12

13

P P
12 *13

P P
22 23

P P
23 33

-21-



it is found that

Q(k) =

2Pu+kv+2P13

2P12-P11+k(P23^)
2P12-P11+k(P23-l)

2<P22 " P12)

2P13-Pll-3P12+k<P33-^ 2P23 " P12-P13

2P13-Pir3P12+k<P33^)
2P23"P12"P13

2<P33-3P23-P13)

Equating this Q(k) for k equal to k. to the Q(k.) and similarly for Q(k)

for k equal to k~ and solving the linear equations thus obtained, it is

found that

P(k) =

1 + 23 k 5

"E
1

12

5

"E
7

"o"
7

73

1 7

~Z3
31

2T.

It is easily verified that P(k) is positive definite for k- < k < k~.

The only vector x for which

Q(k)x,=

is the vector

2+̂ k

8 - *k1 3 k

7 + 3 K

- [•] •

-i-2k3 3 K

4

-2

i +ik

-2

1

x = 0

Calculating the derivative of this vector using the differential equations of the

system, it is found that

x =

3

5

-2

Therefore, x=_0 is the only invariant set for which V(x) equals zero. The
conditions of Theorem 3 are satisfied and the nonlinear system is a. s. i. 1. for

all f(x.) satisfying

*1 xx <k.
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This then verifies Aizerman's conjecture for this system.

VII. 2. Example 2

The linearized version of the nonlinear control system of Figure
1

3 is stable for k > -
H '

Figure 3

A possible linearized G(k) matrix for this system is

G(k) =

For k = - ry , there is an eigenvalue X. = 0 and an eigenvector

-1 1 1

0 -1 1

-k 0-1

-[•]
Take

Tl =

-1,q{]^) =(tx y

2 0 0

1 1 0

1 0 1

0 0 0

0 a (3
0 (3 1

-1

-1

1

1
1

1

1

0 0

1 0

0 1

^(a+2|3+ l)-±(a+p) -^ (P+l)
-^(a+p) a p
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Using the general form for P(k), it is found that

Q(k) =

2P11+k(2P13+V) 2Pl2-Pll+k(P23- 2>
2P12-P11+k(P23-l) 2(P22"P12)

2P13-P12-Pll+k(P33-Z-) 2P23"P12-P13-P22

2P13-P12-Pll+k(P33-^
2P23"P12"P13~P22

2(P33"P13"P23)

In order for Q(k) to remain positive semi-definite as k approaches

infinity, it is necessary that

P23=i=P33 and 2P13 +^>0-
Equating this Q(k) for k =1^ to Q(kx) above and solving for the P„ and
v by substitution and elimination, it is found that there is a solution for

arbitrary a and p. In fact,

pi3 =-1 and v r+p -*•
So that in order for 2P-~ + "Y > 0,

it is necessary that -r + P -r- > 0-
a and p must also be restricted so that Q(k) is positive semi-definite, that

is,

a - p2 >0 .
If P is taken as one and a as six, both the above conditions are satisified

and

7 +Ik•6" +12k

P(k) =

Q(k) =

7

z
J.
2

7 + k

7

" 2

- 1

7

"o"
1

" 1
11 13

12

13

IT

13

12 _

7

2
- 1

2

3
1

1 1

In this case, P(k) ia positive definite for k > - ^, and Q(k) is positive
definite for k > - -^. Thus, all the conditions of Theorem 3 are satisfied
and the nonlinear system is a. s. i. 1. for

f(^)
>-\
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which verifies Aizerman's conjecture for this system.

VII. 3. Example 3

The linearized version of the nonlinear control system of Figure 4

has two eigenvalues equal to zero for k = 0 and is asymptotically stable

for k > 0.

r = 0 xi
(B + l)

s*(s + 4)

Figure 4

A possible G(k) matrix for this system is

G(k) =
0 1 1*

0 0 1

k 0 -4

For k = 0, the eigenvector u and the generalized eigenvector u? for X.= 0

are

Ul =

r l-i
o

o.

and u? s
0i

1

0

Therefore, Q(1jl ) must have the form

fo o o"|W =[o o oj
Using the general form of P(k) and including the restriction that the first

row and column of P(0) equal zero (developed in, Section IV, 3),it is found that

^k(P. ^ ^23-^ k<P33
k(R

Q(k) =

33 -*>

0

4P - P
23 22

-25-
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In order for Q(k) to be positive semi-definite as k approaches infinity,

it is necessary, that

P -^- P
*23 "2 *33'

Then equating this Q(k) to Q(10 with a = 6, it is found that

P(k) = and Q(k) =

Now V (x) s 0 when x =s

Then x s P 1
It is, therefore, impossible for x to remain in the plane x~ = 0 where

V (x) = 0 for k > 0 unless x as 0. Consequently, x = 0 is the only invariant

set for which V (x) = 0. The conditions of Theorem 4 are satisfied and the

modified conjecture is true for this system. That is, the nonlinear system

is a. s. i. 1. for all f(x ) such that

f(xx)
x.

>€

where € is an arbitrarily small positive number.

VII. 4. Example 4

Consider the nonlinear control system of Figure 5.

r = 0

k>^ .CL f(Xj)

Figure 5

-26-
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For this system, the following matrix is obtained as the linearized G(k),

[-1-k 1 1

-8k -1 8

-8k 0 -1

This matrix has eigenvalues with negative real parts for

- -sr <k< I
or for <9> < k.

Thus, there are two separate ranges of k for which the linearized system

is asymptotically stable. Only the first interval will be considered in this

example.

For k = •»> there are imaginary eigenvalues at X. * + j yl5 with the

eigenvector

2=LI]+i2VS[]]
Take T.

-1
12

1

T 4 i

-l.Q(k2) = (t2 y -1
T
-2

Ik
9
2

"7
4

L 7

2

3

1

"3
1

1

For k = - -g- , there is an eigenvalue X. = 0 with
o

••[]
Take T. =

* 1
8

9
8

W

0 0

1 0 -1

1 0 0

8

9
8

TO"

1 0

0 1

-27-
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-1.Qtty = (tx y

0 0 0

o I-'

o --i l

-l

784

(SI)1
14

"ST
28

"ST

Using a general form for P(k) it is found that

Q (k) =

14 28

"m "5i

1

"3
J.
2

2P11 2P12-P11 2P13"*Pir8P12

2P12-P11 j 2(P22-P12) 2P23-P12-P13-8P22
2P13-P11-8P12 2P23-P12-P13-8P22 2<P33"P13-8P23>

V2P11+16P12+16P13 P12+8P22+8P23-^ P13+8P23+8P33.,y
2

+k P12+8P22+BP23^ ° °
P13 +8P23+8P33"^ ° °

V 0 0"

+ k
L

0 0 0

-0 0 0-

By letting k. = - -m- in this Q(k) and equating it to the Q(kj) above and
2letting k- =^ and equating it to the Q(k_) above, nine linear equations in

the P.. and v are obtained which can be solved by substitution and elimi-
ij Y

nation to find that

8 128k

121 + 121
-7 -2

P(k) *
-7

TZT"

-2

65 -9

-9 81
W3 "Z5Z .121 '

" 16 4T2T 4•&* +
256 ,2 2
TZTK "IT

-i-k 4

11 + 11

and Q(k) =
-2

• £*
1

•3
-1

2

_4<• £* - ;
L

1
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It is easily verified that P(k) is positive definite for all k such that

1 2- -i- < k <£ . Q(k) is positive semi-definite and Q(k) x = j)_ only if

*•[•]"
Since x =I6 I , the point x =j)_ is the only invariant set for

which V (x) s 0. Because of the fact that P(iO is not positive definite,

Theorem 4 will have to be used. Thus the nonlinear system is a. s. i. 1.

f°r 1 f<xl> 2

and the modified conjecture is true for this system.

VIL 5. Example 5

The third order nonlinear control system of Figure 6 has two

poles at s s 0 in the transfer function of its linear part. The linearized

version is asymptotically stable for all k > 0.

r = V1. \r f(x.) (s + 1) (s + 3)

s2 (s +2)J * ~J

Figure 6

For this system,

G(k) =
•k 1 1

•k 0 1

•k 0 -2
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For k = 0, the eigenvector and generalized eigenvector for v = 0 are

0ri •
0 and

.0 .

~o 0 o"
0 0 0

0 0 v

Ul = *•[]
Take 0(1^) =

Using the general form of P( k) again with P12 and P13 equal to Zero
Q(k) =

2 "Pll +k<P22 +P23 " 2> "Pll +k( P23 +P33 ' %)
0

2kPu +vk'

"Pll +k(P22+ P23" 2 >
-P11 +k(P23+P33-|) 2P23 " P22

2P - P
**23 *22

4P33 " 2P23

In order for Q(k) to be positive semi-definite as k approaches infinity,

it is necessary that

P22 + P23 = 2 = P23 + P33
Equating this Q( k) for k = ]e to Q(k ) above and setting a equal to three,

it is found that

P(k) =

V (x) = 0 only for

Then x s

_0 .

-k2* 0 0 3k" 0 0

0 1
1

2
and Q(k) = 0 0 0

0
1

2
1 0 0 3

:{i

Thus x s 0 is the only invariant set for which V (x) = 0. All the condi

tions of Theorem 4 are satisfied and the modified conjecture is true for this

system.
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VII. 6. Example 6

The linearized version of the nonlinear control system of Figure 7
21

has one zero eigenvalue and two purely imaginary eigenvalues for k-= - -yr-

21
However, the linearized system is stable for all k >.- -=- .

r = 0. "V1 » r^ f(xx) (s + l)2
(s+ i)(s+ 7) (s+3)J m rJ

Figure 7

A possible G(k) matrix for this system is

G(k) =

-7-k 1 1

2k -3 -2

k

1 0 -i

In order to impose the constraints of Theorem 5 upon Q(k.), it is necessary

to make Q(10 equal the zero matrix since it must have three independent

eigenvectors for the eigenvalue zero. Using the general form of P(k), it

is found that

Lll q12 ql3

Q(k) = q12 q22 q23

L13 L23 H33

-31-



where in - 14pu+ k<2Pir4pi2+ Pi3>+1fc2
1l2 " 10P12-P11 +k<P12-2P22 +I P23 " I >

15 P
q13 = ~T 13 T ""12

*22 " 2(3P22-P12)
7

q23 = 2 P23 + 2P22 " P12 " P13

q33 = P33 + 23 " 2P13

+ 2P P11 +k(P13.2P23+7P33-^)

J

The elements in all but the first row and column of Q(k) must be set equal

to zero. Then, in order for Q(k) to remain positive definite as k approaches

infinity, the coefficients of k in all but the one-one position must be set

equal to zero. Consequently, all the constant elements of Q(k) must be

zero except for the term in the one-one position. Furthermore, when

21
k = - -»-, this term must also be zero.

Arbitrarily set P30 = 1. The equations obtained above may then
be solved to determine that

P(k) =

and Q(k) =

75 j. V 15
T +k T 2

15 5 3

T" * "3

2 3
2 -3 1

(k+ 5-) (2k +25) 0 0

0 0 0

0 0 0

21Now, Q(k) is positive semi-definite for k > -»-, and Q(k) x = j) only
if xt s 0. In this case

x =

x2 + X3

-3x2 - 2x3

x3
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In order to remain in the plane x. = 0, it would be necessary for x2= - x3<

0

Then x =

-x.

L~2" J

Consequently, x? could not remain equal to -x, and the system could not
remain in the plane x = 0. Therefore, x =J) is the only invariant set

for which V (x) = 0. The conditions of Theorem 3 are, therefore, satis

fied and the nonlinear system is a. s. i. 1. for all f(x.) such that

f(xx)
> - 5L

2

and Aizerman's conjecture is true for this system.

VII. 7. Example 7

r = 0
f(Xj)

1

(s + I)4

Figure 8

For the control system of Figure 8, the following G(k) matrix

was obtained.

G(k) =

-110 0

0-110

0 0-11

-k 0 0 -1

-33-



G(k) has eigenvalues in the left-half plane for

- 1 < k < 4.

For k equal to 4, there are imaginary poles at h> j. An eigenvector for

these poles is

*" 1

1 +j

-2(l-j)

u =

Let u* = *2

Q(4) =

-1,Q(4) =(T2 *) '

4a + 16|3 + 16

4[a + 3p + 2 ]

2a + 4(3

2(3 + 4

u =

rln

1

1

U

1 0 0 0

Take T. =
1

1

1

0

0

1

0

0

1 0 0 1

0

0

a

P

and T

-1

10 0 0

110 0

0 2 10

2 2 0 1

-4(a + 3p + 2) 2a + 4p 20 + 4

4(a + 2p + 1) -2(a + 0) -2(p + 1)

-2(a + p) a p

-2(p + 1) p 1

Now for k equal to minus one, G(k) has an eigenvalue equal to zero and

the eigenvector,

-34-



0 0 0 0

0 4(a + 2p + 1) -2(a + p) -2(p + 1)

and Q(-l) =(Tj'V 0 -2(a + p) a p ll
0 -2(p + 1) p 1

a + 2p + 1 -(2a + 4p + 2) a + p p + 1

Q(-l) =
-(2a + 4p + p) 4(a + 2p + 1) -2(a + p) -2(p + 1)

a + p -2(a + p) a p

P + l -2(p + 1) (3 1

Using the general form for P(k), the following Q(k) is obtained,

Q(k) =

2Pu+k(2P14+Y)

-1

2P12-P11+1(P24-1) 2P13 "P12+kP34
2P12-Pn+k(P24-^) 2(P22-P12) 2P23-P13-P22

2P13"P12+kP34

2P14-P13+kP44

2P -P -P
23 *13 *22

2P24"P14"P23

2(P33-P23)

2P -P -P
^34 *24 *33

2P14-P13^P44

2P24"P14"P23
2P -P -P
^34 *24 *33

2(P44-P34)

Equating this Q(k) for k = -1 and k = 4 to the Q(-l) and Q(4) above, a

set of linear equations for the P.. and v is obtained. Solving these equations

by substitution and elimination, it is found that there is a solution if

Y+ 2p = i

Thus-, any a and p may be chosen as long as they satisfy this equation

and satisfy the constraint

a - p2 >0

to insure that Q(k) is positive semi-definite. Take p s 0 and a = -i .

P(k) =

12 ^ 19 , 1 7

T + Iok -i
"3 10

-1 2
2

3 "
9

20

1 2 13 1

~3 3 z*r W
7 9 i 3

„ nr 20 w 3 J

P(k) is positive definite for k > - 1.
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Since Q(k) =

24 33 , 22 7 , 3^1,83,
T + TO "T "3k 3 + ~rok3+3k

22

8

3

3

1

ft

k 6

k -.1

+ 4 k -2

-1

J.
2

-2

0

Q(k) x is zero only when x =

0

1

2

L2

But, then x =

' 1

1

0

-2

Therefore, x = 0 is the only invariant set for which V(x) = 0. All the con

ditions of Theorem 3 are satisfied and Aizerman's conjecture is true for this
system.

VII. 8. Example 8

The fourth order example of Figure 9 is similar to the preceding
example.

r = 0'<P^
«*!> 1

(s + l)(s + 2)(s + 3)(s + 4)

Figure 9
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The linearized system is stable for k in the interval (-24, 126). Proceeding

exactly as was done in the preceding example, it is found that there is a

solution for this case if

a + 2p = 9.

Then choosing a = 0 and a =9, it is found that

P(k) =

Q(k) =

1017 ^ 5, 81
To"+ 8K,nr

81

W

243

87

1U

1017

T

387

81

"3

24

L "3*

333

"nr

99

9
"?0

81

W

21

TIT

3~+ l^k
l

TO

243

~W

99

93

"?0

3

Tff

387

117

-27

-6

87

1o

9

3

TO

1

3

21

W
81

*3"

27

9

0

-i-k10 K 24 + Lk3" + 3k

-6

0

1

Once again, the conditions of Theorem 3 are satisfied and Aizerman's con

jecture is true for this system.

VII. 9. Example 9

The nonlinear control system of Figure 10 has two zeros and four

poles in the transfer function of its linear part.

lHqI



A possible G(k) matrix for this system is

G(k) =

- 0 l 1 1"

0 -2 -1 3*
0 0 -2 --1

L-k 0 0 -4J

G(k) has eigenvalues in the left-half plane for any k > 0. For k = 0, G(k)

has an eigenvalue equal to zero with an associated eigenvector,

1

u =

Let Tx =

and Q(0) =

0

0

L 0 J

1 0

0 1

0 0

.0 0

0

0

0

0

11

12

13

12

22

23

13

23

33J

Using the general form of P(k), it is found that

Q(k) =

^11

*13

,Lqi4

*12

q22

q23

q24

H13

q23
q33

q34

ql4

q24

q34

q44|
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where 111 • 2kP14
*12 " 2P12-P11 +k <P24 " I >
1l3 =2P13+P12-PU+k<P34-^>
q14 =4P14 +P13 +P12 - Pu +k (P44 - I
^22 " 2(2P22 - P12>
<*23 = 4P23 + P22 " P13 12

q24 =6P24 + P23 + P22 " P12 " P14
q33 = 2(2P33 + P23 - P13)

I34 =6P34 + P33 + P23 + P24 " P13 " P14

<144 = 2<4P44 + P34 + P24 " Pl4)

In order to insure that Q(k) remains positive semi-definite for arbitrarily

large k, it is necessary to require that

P = ^L - p - p
*44 2 34 " *24 *

Then by equating Q(k) for k = 0 to the Q( 0) above and solving the equations

thus obtained for the P.. and v, it is found that there is a solution if

4 Bll +7 B12 - 2B13 +B33 =4

*** %Bll +3 B12 3B13 1 B22 + B23 7 2

Let B<2 = B.3 = B23 = 0 and B33 = 1. Then, solving the two equations
above, it is found that

Bu = 8 and B22 = 2.

Then, it is found that

P(k) =

16 +
k

4
8 4 1

8 6
3

2

1

4
3 7 1

2 ~f 4

1
1 1 1

4 1 4
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and Q(k) =

2k

0

0

LO

All the conditions of Theorem 3 are satisfied and Aizerman's conjecture

is true for this system.

VIII. CONCLUSION

A direct procedure for the determination of Lyapunov functions of

the Lur'e type which verify Aizerman's conjecture for particular nonlinear

systems has been developed. This procedure will, in fact, determine the

function if it exists for the system under consideration. However, it is

not known in general that a function of this type will exist to verify Aizerman's

conjecture for all systems for which the conjecture is true. This procedure

then represents a method for examining a sufficient condition for Aizerman's

conjecture to be true.

This procedure is cumbersome to apply to fourth and higher order

systems since the number of equations that must be solved for the parameters

of the Lyapunov function becomes very large. Nevertheless, this procedure

furnishes a straightforward method of determining the function which is

seriously needed for higher order systems since it is practically impossible

to determine a suitable function by other methods of generating Lyapunov

functions which inherently rely on a certain amount of intuition or trial and

error.

APPENDIX I: COUNTEREXAMPLES

21Krasovskii developed the following counterexample to Aizerman's

conjecture. He considered a second order system

x = x + y + f(x)

y = - x - y

«—-;..;•• -2x

with f(x) = -

f ( X)

-x
1 + e

-2
e

1 + e
-1

for x > 1

for x > 1
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It is easily verified that a solution to this system for x(0) equal to one is

x( t) = t-e + 1 + e

y(t) = e"x(t> -x(t)

Thus x(t) goes to infinity and y(t) goes to minus infinity as t goes to

infinity. However, Aizerman's conjecture proposes that this system would

be a. s. i. 1. for any nonlinearity such that

f(x)
>0

Since this condition is satisfied by this unstable system, Aizerman's con

jecture is false in this case.
4

Pliss has shown that many counterexamples exist in third order

cases. In particular, for the system

x = y - f(x)

y = z - x

z = --ax - bf(x)

Pliss has shown with a very long and detailed mathematical argument that

it is possible for a periodic solution to exist for this system with f(x)

satisfying the conditions of Aizerman's conjecture (and also the modified

conjecture of this paper).

APPENDIX lit TESTS FOR POSITIVE DEFINITENESS

OF A MATRIX

The matrix

11 12 In

P =
21 22

2n
P

nn

is positive definite if all the principal minors of P are positive, that is, if

Pll > °>
11 12

P P
21 ^22

>0, > 0.
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The matrix P is positive semi-definite if all the principal minors are

non-negative.

APPENDIX III: KRONECKER PRODUCTS

The Kronecker product of two matrices A and B is defined as

B =

*11 2 ^2

A2l5

.LAnlS

A222

^nS

A' B
nn —j

2 2
Thus if A and B are both nxn matrices A ® B is a n x n matrix.

Consider a second order example of the equation,

YC + C'Y = -D.

The equations for the coefficients are

Yll Cll + Y12 C21 + Cll Yll + C21 Y21 = " Dll

Yll C12 + Y12 C22 + Cll Y12 + C21 Y22 =' D12

Y21 Cll + Y22 C12+ C12 Yll + C22 ?*1 = - D21
Y21 C12 + Y22 C22 + C12 Y12 + C22 Y22 = " D22

These equations can be written in the vector form

Cll + Cll

'12

'12

0

21

Cll+ C22
0

C12

21

Cll + C22

'12

0 "Yll" "Dll"

C21 Y12 D12

C21 Y21 D21

C22+ C22 Y22 D22
— -1 -

The matrix on the left can be expressed as

I_ ® C' + C' ® I_ .

This procedure can be generalized for matrices of larger dimension.

Some properties of Kronecker products are the following:

(1) If X.. is an eigenvalue of A and |i. is an eigenvalue of B, then

X.. |i. is an eigenvalue of A ® B.

(2) If X.. and X.. are eigenvalues of A, then X.. + X.. is an eigenvalue of

I_®A + ASH.

(3) (A®B) (COD) = AC ®BD.
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