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Because the impulse response of a physical network,

co

h(t) = — \ H(jo>) ejwt dw y
-co

,1
is uniquely determined by the real part Fourier integral

co

h(tt = - \ Re-j H(jw)[ coscot dco , (1)

it and its integrals can be bounded in many ways. The integrals

of the impulse response (step, ramp, ... ) can be denoted by

\St) = \ ... \ hW dt .. . dt;
0 0

k times k times

hence, the impulse response is h ft), the ramp response is

h_(t), etc. The even order responses are given by

co

h2n(t) = - * f"1) ~~^ lRei H(Jw)fl cos wt d"-(2)

The cosine inequalities

0

1 - cos cat >

~ 4
ij 1-cos (2aojt) (3)
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used by Papoulis^ to bound the frequency attenuation for filters

with monotonic step response may be applied here to bound

the transient response of positive real network functions. Since

for a p. r. function

| H(joj) iRe * H(joj) y > 0 ,

we have for n even

or

CO gm

—\ —=— Re i H(jco)> (1 - cos cot)dco
*J Jn L I JJh2n(0)-h2n«t> = -

- ^^[Re{H^^[lCTCOS(2a^ **

=̂[h2n<°^h2n<2at>]

4a[h2j°)"h2n<t)] >h2n(0)-h2n(2at), n even. (4)

Similarly,

4a[h2n(0)~h2n(t>] ±h2„(0>"V^' nodd- (5)
Taking n = 0 and a = l, we have the impulse response bound from (4),
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]'-4 h(0)-h(t) > h(0)~h(2t)

or

h(2t) > h(t)-3h(0) . (6)

An even more interesting bound, however, is that obtained on

the ramp response by taking n = l and a = l and employing (5):

[h2(0)-h2(t)J 14|h,(0)-h,(t)| < h2(0)-h2(2t).

Under the obvious condition h_(0) = 0, we have

h2(2t)< 4h2(t) . (7)

But the ramp response is the integral of step response,

consequently

2t t
o o

J hx(t)dt <4C hx(t) dt

t
o

2t
o

t
o

r h (t) dt + \ hxmdt ±4
0 t

o
0

2t
c •

t
o

I h^t) dt i'j h (t^dt .

t
o

0
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From the graphical presentation of a typical step response involved

in the realization of a delay function, we may interpret the ripple

as the shaded area in Fig. 1, represented by the integral on the

right-hand side of f8U Moreover, by one of the usual definitions of
3

rise-time, the area represented by the integral on the left-hand side

of (8) may be taken as t, -t , the delay minus the rise-time. Hence ,

we see clearly the interchange which may be obtained between the

rise "time, delay, and ripple of a network function with a positive

real part,

t,-t < 3 (ripple area). (9)

This is but one of many such bounds on the transient response

which may be obtained from (4) and (5).
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Fig. 1 Delay Function Step Response
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