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ABSTRACT

The energy function approach usually associated with clas

sical mechanics is applied to the single loop, linear, time-varying

R(t) - L(t) - C(t) network. Time dependent Lagrangians and Hamiltonians

are formulated which lead to a phase plane description of the network

behavior. A set of the stability criteria in terms of the time depen

dence of the network elements is derived.
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I. INTRODUCTION

The techniques of classical mechanics have offered many

simplifying analytical tools and increased insight in areas where they

are applicable. It is unfortunate that many of the most powerful aspects

of classical mechanics (e. g., the Hamilton-Jacobi partial differential

equation for Hamilton's principle function) have been hitherto mostly

confined to conservative (lossless) systems.

Two problems arise in the application of these energy principles

to variable networks:

1) inclusion of dissipative effects in the energy formulation, and

2) accounting for non-holonomic constraints.

It is true that Rayleigh's dissipation function allows the inclusion

of dissipative effects in the energy formulation, but there the

dissipances give rise to a function separate from the Lagrangian.

Consequently, the dissipative and the conservative parts of the system

are divorced and the formulation seems only useful for determining

the governing set of differential equations.

In order to describe the network in terms of strictly differential

quantities, it is important that the charge q be chosen as the fun

damental coordinate when the series RLC branch is taken as basic

(the constraints are then on branch currents at nodes). Similarly,

-1-



the choice of the parallel RLC structure as basic dictates that the

flux <j> be the fundamental coordinate. The familiar Kirchoff current

and voltage laws then take the form of non-holonomic [l] differen

tial constraints:

A ajkqk =° ^jk'*-1*' atnode J (1)
k

Z bjk*k =° (bjk =-1*' around looP J (2)

In systems which contain time-dependent inductances and capaci

tances (L(t) and C(t)) one may go blithely ahead and write the energy

relations as though the constraints were holonomic. These systems

might be dubbed "quasi-conservative" in that they can be handled by

methods identical to those for time-invariant LC networks [2].

Lossy networks, employing time-dependent resistances (R(t)),

on the other hand, definitely require the non-holonomic constraint

relations.

Classically the method of Lagrange undetermined multipliers [l]

has been used for handling constraints of the form (1) and (2); it

too can be used here, but the resulting equations tend to obscure the

desired information. A second method for overcoming the problem of

non-holonomic constraints is to extend the number of coordinates be

yond that dictated by the topology of the system. Properly done, this
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extension places the resistances in the position of providing holo-

nomic constraints on the coordinates (inductance currents and capaci

tance voltages) [3,4]. Again, the differential equations of the system

may be found, but few further insights are gained.

The results to be presented represent a thorough exploitation

of the energy function concept for a single degree of freedom dissipative

network, and are presently being investigated for possible means of

extension to higher order systems.

II. FORMULATION OF ENERGY FUNCTIONS

Consider the single-loop lumped linear time-varying network

of Fig. 1. The linear second-order differential equation governing its

behavior is

i(Lq) +Rq +^q =v (3)

Following . Friedman [ 5] this equation can be recast as

The arguments of the functions will be omitted for notational con

venience -- strictly speaking, we should write R(t), q(t), etc.

The end points in these integrals are always to be 0 and t, hence

t

Sz«'S rdt-

-3-



exp dt < (f|at)llqexp(^at)dt LqeXp

-vexp^ Jdt^
(4)

^=0.

Since only the single loop is being considered the multiplier,

exp l-\ —dt J may be dropped (it is this contrivance which gives

rise to the difficulties encountered later with non-holonomic con

straints in multi-degree-of-freedom systems). Hence, the governing

differential equation in its final form is

d_
dt

Lq exp (fE*)+£«-»(jE*)"TMp(jE*)"°
(5)

To obtain an "energy" formulation (5) must be shown to be

the consequence of some variational principle. The usual method [6]

is to employ the definite integral

j"{l p* e*p(Jzdt)l+ hqexp (j* r4 ve*p(j h) f6*dt =°
hl ' ' J(6,
Under the usual condition that the variation 6q vanishes at the end

points t. and t? , the first term in the integrand may be integrated

by parts yielding

jT (6<l) = 6q» see Hildebrand [ 6].
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I expU r dt -Lq6q +p-q6q -v6q dt = 0. (7)

Upon multiplication by -1 and removal of the variation from under

the integral, (7) becomes

k / C p \! l ' ?. l 7.
dt . (8)6Iexp(I rdt)iiLq2""feq2+vq

For a demonstration that the extrema in (8) actually lead to the desired

differential equation (5) see Appendix I.

The quantity in brackets in (8) is recognized to be the usual

Lagrangian [ 7], hence we may define a modified Lagrangian

A *

L(q» q» t) = exptedt
1*2 1 2^-Lq --^q +vq

The Euler -Lagrange differential equation,

/ ^
d /8L

A
9L

dt\8q/ 8q
= 0

is the expected equation of motion (5).

III. EXTENSIONS

(9)

(10)

The modified Lagragian (9) leads to a modified Hamiltonian

through a Legendre transformation. First we must define the conjugate

momentum [8] associated with the canonic coordinate q:
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_ 8 L(q, q, t)

aq

(ft*)-p = Lq exp

From the Legendre transformation,

H(q, p, t) = p q - L(q, q, t),

we obtaine the modified Hamiltonian

(11)

(12)

(13)

H(q,p,t) =̂ p2 exp \-§ | dtj+ ^ q2exP^J fjdtJ "vqexp^J £*
(14)

Hamilton's canonical equations for this system take the form

and

8H 1 / f R,\
q" 8F= Lpexp\"J LdtJ

8H 1 I

p=-8o;= -cqexpl ^dt) +vexp(^dt).

(15a)

(15b)

Hence, the problem can be reformulated in terms of a first order

matrix differential equation

-iexp(I dt

M-fHMM /«expjf|dt\
\J L ;

• w (16)

A solution of the Hamilton-Jacobi partial differential equation

will yield q(t) [9]; this equation is
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where

9S(q,t) _
~T5— - p- (18)

If we consider the homogeneous case, where the drive v=0, the

Hamilton-Jacobi equation becomes

The solution may be taken to be of the form

s" \ W) ' (20)
Inserting (20) in (19) yields

^[M-yH^H'H-'""2!?" = 0 (21)

which leads to the homogeneous first order nonlinear differential

equation for f(t)

l-iexp^dtj^-Iexp^fdt)^. (22)
This equation is recognized to be the Riccati equation [10], which

may be transformed into a linear second-order differential equation

by the change of variables
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f(t) =-Cexp(-J ^dt)| . (23)
This substitution leads ultimately to the equation

dt [cz exp (-n*)] +rZeXP ("I I*) <24>
The system represented by this equation, when multiplied by the

proper impedance normalization (LC ), has the remarkable property

that it creates exactly as much energy as the original homogeneous

system (5) dissipates and vice-versa. Hence the two systems used

in conjunction (connected in series or similarly fed by the same

source) form a conservative oscillatory system.

Suppose now that the term associated with the capacitance

does not exist (i. e. , 1/C=0). The Riccati equation (22) then has a

closed form solution

f(t) =j ^ exp (- Jrdt )dt +a (25)
where a is an arbitrary constant of integration. Hence,

S^ljiexp (-££*) dt+a] (26)
From Hamilton-Jacobi theory, q may now be solved for in terms

of time and constants (perhaps related) a and p with the relation

« 8S(q, t, a)
P= 8^ L ' <27>
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Therefore,

q(t) =Jl$ Kj-exp M j-dtj dt +a . (28)
Since in this system only the current is of importance, a is of

no consequence, and

i(t) =q(t) =JT$ j- expf -J £dtj . (29)
This result could have been, of course, easily obtained by direct

integration of the first order linear differential equation, but derived

in the above manner it does demonstrate the inherent simplicity of the

energy approach. Again analytical mechanics has shown itself to

be readily applicable where the answer is also obtainable by straight

forward methods, but the hope for the method is not in the providing

of exact solutions so much as to provide insights into those problems

where perhaps exact solutions cannot be obtained.

IV. STABILITY AND PHASE PLANE PHENOMENA

Returning to Hamilton's canonic equations (15), we can formu

late in the usual manner an equation for the orbit in the phase plane:

Unlike the usual orbit equations, (3) still exhibits a time-dependence.

It may, however, be partially integrated as follows:
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J" qdq=-^ £exp UjS-dtj pdp

J,2.K-y£«p(-2f£*)pdp
The second term on the right can be integrated by parts,

(31)

(32)

j-£(U.2j>,)p4,.^£.4>j>)

But

£[M-2 H4*I«>H HI t • (34)

Therefore,

(35)

dt

Finally, the integrated orbit equation (32) is

12 1 2 C

2q + 2P LeXp C-r £-) --**$• -ai&—H"s-3«
(36)

Substituting the expression for p in terms of q (12) gives

1 2, !T r*'Z TT ±lC -2T2rd/C\ 2RCl A* I17\
2q +2LCq =K+2j q L L^ ^ UJ

o

K is merely a constant depending upon the observed values of

q and q at the chosen time origin.
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Equation (37) may be used to provide a stability criterion:

since q2 and q 2are positive, the left hand side of (37) is positive, K

is positive; hence, if the integrand in the last term on the right is

always negative, the left hand side must decrease to zero. Moreover,

if the integrand is always positive q or q increase without bound, and

instability ensues. The simple stability criteria are

±(£) . ^L <o, Vt >t => stability (38a)
dt L _ 2 o

JLi

_±(£) _^C >o, Wt >t => instability (38b)dtlL' L2 v o

This stability criterion has been previously obtained by Gadsden [11]

from an entirely different approach. He also obtained the stability

criterion

*_ (£\ >0 \/t>t => stability (39)
dt L x o

It is easily seen that Gadsden's stability criteria are but the extreme

two of the set of bounds on q and q. Upon re-examination of (30),

it is seen that it can be broken up as

where

(.^dtjpdp,aq.dq = - bexp(-\ —dt pdp, (40)

b _ C
a " L

11-
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Integration of (40) as above yields

iaq*+Ibexp (^^)p2 =K+^q2[f]dt+if P2i[bexp(-2^t)}t
t t

o o

(42)

Again substituting in (16a) gives

|aq2+ibL2q2=K+|\ q"|=i|dt+£\ q" |L~^-2RLb |dt. (43)
t

o

A simple application of the bounding conditions follows upon the choice

of

a = exp (-at) (44a)

b =£ exp (-at) (44b)
L

12 .2
Then from (43) it is easily seen that the growth of y(q +LCq )

is bounded by exp(at) when

-a<0, (45a)

-L2a - L2~ (£) - 2RC <0, (45b)
at L —

1 + ? 7

because then the left hand side of (43), which is now -re (q +LCq )

12 .2is decreasing. Hence, y(q +LCq ) can always be bounded from

above by a series of exponential arcs.

Note that the selection a=L/C, b=l yields the stability

criterion

tf^]«if«*[>-'M">
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£<§><<>. Vt>V (46)

Multiplication of the left hand side of the inequality by the nega-

2 -2
tive number -C L gives

C d . L . d . C . . rt ,a-,\
-72dt(c) =dT(i:)>0 (47)

L

Hence, this particular choice of a and b gives Gadsden's second

stability criterion.

It is interesting to note that so long as the elements L

and C vary between finite positive values, the system point spirals

about the origin in the phase plane in the clockwise direction, similar

to what would be encountered in the time-invariant system (see fig. 2).

Consider the new set of variables in the phase plane

Then,

/~~2 2
* =.yq +p (48a)

0 = tan" ^ . (48b)

q +p \ q(£
Substitution of relations (16) gives

^[-Mrs-K-M-W]
(50)

Substitution of the inverse transformations of (48),
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q = r cos 9 (51a)

p = r sin 9 (51b)

into (50) yields

0=- ^exp[C jUtJcos29 +̂ expf-^d*) sin2 e] <52>
Since 0 is always negative, the system point must encircle the

origin in the clockwise direction.

An approximate solution to the orbit equation can be obtained

if the function

[r-»HH
is approximated by a series of steps. Its time derivative then gives

rise to a train of impulses and the integrand on the right hand side

of (36) merely provides new initial conditions for short arc approxi

mations of the phase plane trajectory. This is not the usual piece-

wise constant approximation and it should be even more accurate.

V. CONCLUSIONS

If the energy function analysis introduced here can be

extended to higher order systems, it should enjoy an extensive

domain of applicability. Its utility in answering questions of stability

and qualitative behavior of networks could make it a powerful tool of

network analysis. Work is currently under way to effect the extension

by modifying matrix differential equations of the type (3).
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APPENDIX I

To demonstrate rigorously that the variational principle (8)

leads to the differential equation (5) consider the integral

J-=J expfj ^dtj JL(q+€il)2--^(q+€ri)2+v(q+€T1) dt
c

t.

where n(t) is an arbitrary function vanishing at t. and t_. We

must show that

6J_ =6(—— ] =0
C \ *€ /.=0

leads to equation (5):

-^=j expf \ —<ltjL(q+€TJ ^ __. (q+€Tj)T| +vn dt

t
2

\jSr) =T exp(Irdt)Uq*-£qn +vJdt
6=0 t L J

Integrating the first term by parts and setting the right hand side

equal to zero yields;

[exp(j £*) I.*,^ +|{- A^4 exp (J ^]-i,«p(y |dt)
1

dt = 0 .vexp(j" gdtjjn
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+s

The bracketed term vanishes because n(t) is zero at the end points,

and by virture of the arbitrariness of r\ (the fundamental theory of

the calculus of variations) the term in braces in the integrand must

be zero, hence

-i[Lqexp(Jrdt) -hex*(§ rdt) +vexp(frdt 1 = 0

This equation, except for the minus sign introduced in deriving

(8), is the equation of motion (5).
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R(t) L(t)
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v(t) 6 ttJLmmamm C(t)

Fig. 1 Time-Varying RLC Loop.
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Fig. 2 Phase-Plane and the Associated System Trajectory.
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