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ABSTRACT

In this report the general form of the limitations imposed on

driving point and transfer immittances when some part of the input

circuit of a network is fixed is investigated. The limitations are

found to be bounds on the real and imaginary parts of the functions

at points in the right half plane. At certain specific frequencies

determined by the fixed part of the net work, the values of the

immittance function and some of its derivatives are fixed.

These limitations on the values of immittance functions at points

in the right half plane are then expressed in terms of integrals of the

function along the imaginary axis by means of Cauchy's integral formula.

The limitations on integrals are utilized to find limitations on the

characteristics of ideal immittance functions. Several examples are

given to illustrate the use of these limitations.
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I. INTRODUCTION

Electronic circuits such as filters or amplifiers invariably con

tain parasitic elements such as interelectrode capacitance or lead in

ductance. It is well known that these parasitic elements impose cer

tain limitations on the overall characteristics of the circuit. Bode and

others have investigated the limitations imposed by a single shunt capaci-
2

tance on network response functions. Fano has considered limitations

on the reflection coefficient of a given passive impedance. However the

general form of network limitations has not been investigated. In this

report we consider the general limitations imposed on the response func

tions of linear, lumped, time-invariant networks by fixed elements which

the network is required to contain. We first consider limitations on driv

ing point and transfer immittance functions which are imposed by fixing

part of the input circuit of the network. Next limitations on integrals of

these immittance functions are considered. Finally some examples are

given in which limitations on the bandwidth and magnitude of ideal transfer

functions are found.

II. LIMITATIONS ON DRIVING POINT AND TRANSFER IMMITTANCE

FUNCTIONS

Previous investigations of this subject have been concerned almost

entirely with the effects of a single shunt capacitance. In this section

the general restrictions imposed on driving point and transfer immittance

functions by fixed input circuits of any degree of complexity have been

considered.

The term "immittance" is used to indicate either impedance or

admittance. A driving point immittance is an immittance function for
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which the input and output are measured at the same terminal pair

while for a transfer immittance the input and output may be measured

at different terminal pairs.

The general notation K.. rather than Z.. or Y.. has been
ij ij y th

used to indicate an immittance function with excitation at the j
•f*V»

terminal pair and response at the i terminal pair whenever it was

not important to specify either impedance or admittance.

A driving point immittance function is said to be passive at a

point s in the right half plane of the complex frequency variable
o

s if

ArgK(s,o)| 3 | Arg aJ (2:1)
for

ArgSo|< |

If this condition is satisfied in the entire right half plane then
3

K is said to be a positive real or "p. r. " function. We shall refer

to an RLC network whose driving point immittances are p. r. as a

passive network. The transfer immittance of a passive network has

no poles in the right half plane but may have zeros anywhere in the

plane.

A driving point immittance function is said to be active at a

point s in the right half plane if its value at s is the negative
4 m. . • '

of some passive driving point immittance. There are no restric

tions on the transfer function of an active network. Note that a

driving point immittance may be neither active nor passive at a

point s .

General Form of the Limitations on Driving Point Immittance Functions

The general limitations imposed on driving point immittance func

tions by fixing part of the input circuit of the network take the form of

2-



bounds on the real and imaginary parts of the immittance at points

in the right half plane of the complex frequency variable.

Referring to Figure 1, N represents a fixed two-port net-
a

work/while N, represents an arbitrary passive network. N denotes

the overall network consisting of the fixed two-port N terminated

in the passive one-port N . K. is the driving point immittance of

N and K_ is the (p. r. ) driving point immittance of the passive net

work N, . The fixed network N is described by a set of two-port

parameters denoted by k.. , (i, j = 1,2). The k..'s are used here

as a general notation to indicate one of the two-port parameter sets:

open circuit impedance parameters, short circuit admittance para

meters or either of the hybrid parameter sets. Now for the circuit

of Figure 1, the limitations imposed on K. by the fixed network N

are considered.

The admittance K. may be expressed in terms of K? and one

of the sets of k.. parameters as

k21 ^2
*! =*!! -^TKJ <->

or, more convenient for our purposes as

Kj =(ku),

The k.. are all known functions of the complex frequency

variable s since the network N is fixed. Then it follows that for
a

a particular value s of s the expression for K is a function of

K~ only:

r»
k„ - k71 1SA + K2

\ ku - )
k22 + K2

-3-
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fb +K2 \
I C+K2 J^"WlTTK^f <2-4)

where a, b, and c are complex constants. This equation has the form
5

of the well know linear fractional transformation.

K- is the driving point immittance of a passive network and is

therefore a positive real function. Then from the properties of im

mittances stated previously we have for s in the right half plane

| ArgK2| ^ | ArgsJ (2.5)

This represents a wedge shaped region in the right half of the K?

plane, bounded by the lines

Arg K2 = i Argsb (2.6)
These lines are then mapped into arcs of circles in the K.

plane by the transformation (2. 4). The region in the K. plane bounded

by these arcs then represents the allowable values of K. (s ). This

mapping is illustrated in Figure 2 for a particular choice of N . Re-

ferring to Figure 2 (a), N is conveniently represented by its open
a

circuit impedance parameters:

z =

11 s + 1
= z

21
= z

12

z =

22

s + 2

s + 1

Consider the limitations imposed on Z by N at a frequency

s = (1 + j) in the right half plane as represented in Figure 2(b).

Z_ (s ) must fall in the wedge shaped region illustrated in Figure
c» O

2(c) which is bounded by the lines

(2.7)

Arg Z2(sq)= ± Argso= ± -f-
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The allowable values of Z (s ) are obtained by mapping this region
1 o

onto the Z plane via the transformation

zi <8o> =jr^T) i
o

r i + z (s >
c. o 1

L\ o '
+ Z2 <V

(2.9)

This mapping is illustrated in Figure 2(d).

Thus it has been shown that the limitations imposed on K.

by N take the form of bounds on the possible values of K. at

points in the right half of the complex frequency plane. Note that

if k__(s ) is active as defined previously, then K. may have a pole
cL o 1

at s and is therefore unbounded. Also, if N is lossless and
o a

passive then K. may have poles on the imaginary axis and is thus

not bounded there-

The Invariants of Driving Point and Transfer Immittance

For certain frequencies s in the right half plane, the value

of K. may be completely independent of the choice of N, . At these
1 b

frequencies the input terminals of N are "isolated" from the out-

put terminals of N and there is no signal transmitted through the
a

fixed network to N . This may be demonstrated as follows where

N is assumed to be passive.
cL

In equation 2. 4 it may happen that b = c, in which case the

transformation becomes degenerate. In other words the entire wedge

shaped region of allowable values of K_(s ) is mapped into a point

in the K. plane. It is clear that such a value of K is completely

independent of the passive network N,. Such values of K are

referred to as invariants of the driving point immittance. In order to
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investigate such points, in more detail it is convenient to write the

transformation in the form of equation 2. 2. Then note that b = c

implies either

(1) "l^o* k21 <fco> = ° (210)

or

(2) k22(So> = °° ' k12(8o) k21(V K °° <2- U>

In any case, the second term on the right hand side of equa

tion (2. 2) vanishes at these frequencies and we have

W -- ^V <212>

Now suppose that k-pk?! *ias a zero °* or(ier m at s . Then

it follows that in addition to the value of K. at s , the values of the

first(m - 1) derivatives of K. at s are also independent of the

passive network N, and are given by

^^V =klin)(So) ' n < (m - 1) (2.13)

Thus the first m terms of the Taylor series expansion of K (s)

about the point s are invariant quantities and are equal to the first

m terms of the Taylor series expansion of ^ (s) about s .

If N is a lossless network and s iies on the jw axis then
a o

k may have a private pole at s , that is, a pole which does not

appear in k.?k-. In this case the invariant quantities are the co

efficients of the Laurent series of K, about s rather than the
1 o

Taylor series. In the same way k?? may have a private pole at

s = ju> as indicated by equation (2.11) in which case the first (m + 1)
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terms of the series are invariant. If k__ does not have a private pole

at s = jw then (k + K ) may have a simple zero there, in which
o o 2Z c.

case only (m - 1) terms of the series are invariant.

Consider now the transfer immittance K-„ of the overall net-
2i

work N of Figure 1 consisting of N connected in cascade with N .
d a

K~ can be expressed as

K, = 21 b (2.14)
21 k22 +K2

T, in this expression represents some transfer function of the
D

network N, . This may be a transfer immittance or a dimensionless
D

transfer ratio. Now suppose that at a point s in the right half plane

k_ has a zero of order m. Then it can be seen from inspection of

equation 2.14 that K_. must likewise have a zero of at least order m.

The order of the zero can be increased arbitrarily since T, can have
b

zeros of any order anywhere in the plane but it can only be decreased

by one and this only when the zero lies on the jw axis.

Thus the first m (or(m-l) ) terms of the Taylor series expansion

of K_. about s are invariant and are in fact all identically zero

The previous statements concerning invariant quantities are true

for analytic functions of immittances as well as immittances. Thus,

for example, a reflection coefficient is also subject to limitations of

this type. The invariant properties of reflection coefficients have
2

been considered in detail by Fano.

HI. INTEGRALS OF DRIVING POINT AND TRANSFER IMMITTANCE

FUNCTIONS

It has been shown that fixing part of the input circuit of a net

work imposes certain restrictions on the driving point and transfer

immittances of the network at specific points in the complex frequency

-7~



plane. From the point of view of the circuit designer however, it is

of more interest to know how the behavior of the function along the

real frequency (imaginary) axis is restricted. To this end we now

consider the limitations on integrals of network functions evaluated

along the imaginary axis.

Application of the Cauchy Integral Formula to Network Limitations

5
Cauchy1 s integral formula states that if F(s) is analytic

within and on a closed curve C and if 6 is any point interior to

C then

*iF(s ) =-J— W) f(.S)fl ds (3.1)o' 2ttj y s sq

where the integral is taken in the positive sense around C This

formula expresses the value of F(s) at any point inside C in terms

of its values on C.

The most useful curve C for our purposes is illustrated in

Figure 3. This curve consists of a portion of the imaginary axis

from - jR to + jR and a semicircle in the right half plane of radius

R. The small indentations in the path along the imaginary axis are

included to avoid any singularities of the integrand which may occur

there.

With this choice of C the value of an immittance function at

any point in the right half plane can be expressed in terms of an in

tegral along the imaginary axis. If the discussion is restricted to

integrands which are such that the integral over the semicircle

exists and can be evaluated as R becomes indefinitely large then we
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have an equation.of the form

oo

J F(jo) dju +Um ( F(£)_ dg =_ * 2
J ^-8o R-oo y s*So °

•oo

Integrals involving only the real part or imaginary part of a

network function are most useful. In order to obtain such integrals

we can make use of the fact that on the imaginary axis, the real part

of a physically realizable network function is an even function of

frequency while the imaginary part is an odd function of frequency.

Since the integral is over an interval of the imaginary axis which

is symmetric about the origin, the integral of the odd part of the

integrand vanishes. Then a function such as W(s)K(s) can be

chosen as our integrand where W(s) is either an even function or

an odd function which introduces a right half plane singularity at

s and K(s) is the immittance under consideration. If W(s) is

an even function, an integral of the real part of K(s) over the

imaginary axis is obtained and if 'W(s) is odd, an integral of the

imaginary part results. This may be illustrated for the example

shown in Figure 2. A real part integral will be derived in terms

of the possible values of Z.(l + j). The function

W(s) = -, (3.3)
s + 4

is chosen as an even function which introduces right half plane

singularities at s = (1 + j) and (1 - j). Then integrating yields the

result

I Ri(w) w r iJ —j do> =£" Re { (1 +j) Z (1 +jjl (3. 4)
o

The terms due to the paths around the ju> axis poles go to zero.
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In this case no singularities of the integrand can occur on the

imaginary axis and the value of the integral around the large semi

circle is zero. If the possible values of Z.(l + j), illustrated in

Figure 2 (d), are now examined for maxima and minima, the

following numerical bounds for the integral are obtained.

2, . ( R1(W) A „ 3*
do> ^

JO 0) +
80 ^ /_ 4 , 4 v 80 (3.5)

Thus the bounds on Z (1 + j) have been expressed in terms of

restrictions on the values of the real part of Z (jw).

A general form for such integrals for immittance functions

analytic at infinity can be obtained by choosing for the weighting

function W(s), the even function

2/2 2

[S -('o ' "o )]
/ 2 2\ 2 / 2 2\
fcr - o) ) s + lo- +o) ]
Vo o / \ o o /

Wl(8)= 4 , / 2 2A 2 / 2 2T2- <3" 6)
s - 2

for real part integrals and the odd function

2 ( Z Z
W2<«> = 4 . 2U V 2 "/ 2 *2 <3- 7>

8-2(0" -0) IS +0" + GO ;
\0 O / \ O O /

for imaginary part integrals. The resulting integral equations are

oo

j W^jco) ReK(jco)cko = y- Re i g° l- tt £ kW^Jc^)
'o I O j V

(3. 8)

and
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00

(3.9)J W2(jw)ImK(jo») dw =-£- Re {k(8q) - K(co)]

where the k *s are residues at possible imaginary axis poles at
Ct

jw_ of the integrand. These equations relate the values of the real

and imaginary parts of an immittance function along the imaginary

axis to the value of the function at any point s in the right half

plane. It should be noted that these equations have the form of the

familiar Hilbert transforms if s is on the imaginary axis.

Resistance and Reactance Integral Theorems

Bode and others have investigated the limitations imposed on

integrals of driving point immittance functions by a single shunt

capacitance across the input terminals of the network. More generally

their results have been stated for functions whose power series ex

pansions at zero and infinite frequency are known. These results are

the resistance and reactance integral theorems. If the immittance

function ha8 power series expansions at zero and infinite frequency

given by

K(s) = A +B s - AlS2 - B.s3 + (3.10)
o o 1 1

and , ,

K(s) =A - Boo - Al + Bl + (3.11)
oo —=— —=—

s 2 3
s s

then the integrals of the real and imaginary parts of K(s) on the

imaginary axis are given by

oo

/ [Re K(jco)- Ago) dco =- f Bm ' f T\

-11-
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and

/
oo

ImK(joj)

o

*• =I [Aco- Ao] <3-13>

where the k 's are the residues at any possible poles of the inte

grand on the jw axis. For passive networks the residues are

real and non-negative. Bode has also pointed out that integral

equations involving higher ordered coefficients of the two series

expansions can be derived.

In section II it was shown that fixing part of the input circuit

of a network was in general equivalent to fixing the first part of the

Taylor or Laurent series expansion of the function about specific

points in the right half plane. These points are the right half plane

transmission zeros and the private poles of the fixed part of the net

work. Integrals of the real or imaginary parts of the immittance

function along the imaginary axis can be expressed in terms of these

fixed Taylor series coefficients by means of Cauchy's integral for

mula. The remainder of this section is devoted to consideration of

some specific real part integral formulas which may be derived.

Similar formulas for the imaginary part of an immittance can be

derived if desired. The functions under consideration are assumed

to be analytic in the right half plane but logarithmic singularities

and simple poles with positive real residues are permitted on the

imaginary axis. Thus immittances and analytic functions of im

mittance are included.

Integral Formulas for Complex Points

Suppose the first n terms of the Taylor series expansion of an

analytic function about a complex point s =o" + jw in the right

-12-



half plane are given as

K(s) + A + A. (s-s ) + . . . (3.14)
o 1 o

where the A, !s are complex numbers with real and imaginary parts
IV

denoted by

Ak=Ark +JAik (3-15)

so that 2n quantities are specified. For each specified quantity,

a real part integral can be written. The appropriate weighting func-

tions for the k . real part integrals are

{,.-./« +(S.I/-}wlk(s)=Ev^ ,_- + -srr^-h (3-16)

for A , ,
rk and

W.. (s) = EvHl<—]2kv ' I, , k+1 , - ,k+l
o

for A., where Ev denotes "even part of". The resulting real
lk

part integral formulas are, for k=0

(3.17)

r W_(ja>) ReK(jw) da> =-2ttA +ir<r k - ~ Tk W..(jco ) (3.18)
V ' w ro oa>2fcvl0v10'

and

-13-



.oo

/ W20(jo>) Re K(jco) dco =-2irjA.o+ ^j"^ -~ liK™ Z0U<»V) (3-19)

where k , and the k 's represent the residues in possible poles
oo v

of K(s) on the imaginary axis at infinity and jo> respectively.

The summation is over all singularities on the finite imaginary

axis.

For k = 1 the integral formulas are

I W,

o

n(jco) Re K(jco) dco =- 2TrArl +tt k^ - \ ^^^v) (3. 20)

and

/ W21(ju>) Re K(jco) dco =- 2irjAn - y L\WZl^v> <3' 21)IT

V

O

For k ^2 the general formulas are

/
oo

W (j«) Re K(jco) dco = - 2ir A - \ h kvWlk(jcov ) (3. 22)
v

and

oo

I W2k(jto) Re K(jco) dco =- 2TrjA.k - \ Iv^k (jcoy ) (3. 23)

Integral Formulas for Points on the Real Axis

Suppose the first n terms of the Taylor series expansion

of an immittance function about a point cr on the positive real axis

-14-



are given as

K(s) = A + A (s- o- ) + . . . (3. 24)
o l o

where the A !s are real numbers so that for this case only n
K.

quantities are specified. Again a real part integral formula can

be derived for each specified quantity. For the k*h coefficient

the appropriate weighting function is given by

Wfc(s) = EvJ I (3.25)

I c-*0>k+1 J

The resulting integral formulas are, for k = o

"o

W (jco) Re K(jco) dw=-irA+-yk cr - y£k,W(jcov)

for k = 1

oo

(3. 26)

/ Wx(jco) Re K(jco) dco = - irAj + § k^ - fJl^W^) (3. 27)

and for k ^ 2

oo

/ Wk(jco) Re K(jco) dco =- TtA^ - | Jky Wfc (jcoy ) (3. 28)

where as before k and k represent the residues in possible
oo v r F

imaginary axis poles at infinity and jco respectively.
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Integral Formulas for Points on the Imaginary Axis

Points on the imaginary axis cannot be dealt with in the same

way as points in the right half plane since the weighting functions

introduce singularities in the path of integration. This leads in

general to non-convergent integrals. However if that part of the

input circuit which is fixed is a lossless network then a set of real

part integrals can be derived. This follows from the fact that in

this case, imaginary axis transmission zeros are also zeros of

the real part of the input immittance. Thus the even ordered terms

among the fixed Taylor series coefficients are all imaginary while

the odd ordered terms are all real. Under these conditions suppose

that the first n terms of the Taylor series expansion of an immit

tance function about a point jco on the imaginary axis are given as

K(s) = A + A, (s-jco ) + . . . (3. 29)
o 1 o

where the A.,'s are either real or imaginary numbers so that n

quantities are specified. Then the appropriate weighting function

for the k*k coefficient is

f 1
W (s) = Ev ^

/ • \k+1
(3.30)

The resulting integral formulas are, for k=0

oo

I W(jco) Re K(jco) dco =- tt A - jco |k -yl kvWft(J"v) (3- 31>
i o o o & oo & if \j

For k=l the integral formula is
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oo

/ Wx(jco) Re K (jco) dco = ttA. + £ k - ~ £k W.(jco )
1 2 oo 2 *- v 1w v

v

For k > 2 the general formula is

,00

W, (jco) Re K (jco) dco =- ttA - y £ k W. (jco )
k 2 *- v k v

v

Again k is the residue at a possible pole of K(s) at
oo

infinity and the k 's are the residues at any possible poles on

the finite imaginary axis.

Integral Formulas for the Points at Zero and Infinity

Zero and infinity are points on the imaginary axis so that

transmission zeros here of the fixed lossless network are also

zeros of the real part of the input immittance. Thus the even

ordered terms among the fixed Taylor series coefficients are

all zero and the odd ordered terms are all real numbers. Then

suppose the first 2n coefficients of the Taylor series expansion

about zero are given by

K(s) = As + As +

where the A 's are all real numbers. A real part integral

formula can be derived for each non-zero coefficient. The appro

priate weighting function for the k"1 coefficient is given by

Wk(s) =
k+1

.17-
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The resulting integral formula is for k = 1

oo

Wj (jo>) Re K(jo,) d* =- | Ax + f k^ - | JkW^ ) (3. 36)/
9

and for k>l the general equation is

oo

J Wfc(jW) Re K(ju) du> =- | Afc - | £VVJOV > <3- 37>
O

Suppose that the first 2n terms of the power series expan

sion at infinity are given as

Al A3
K(s) = — + — + (3.38)

8

Then again a real part integral formula can be derived for each

non-zero coefficient. The appropriate weighting function for the

k"1 coefficient is

Wk(s) =s " (3.39)

and the resulting integral formulas are for all values of k

oo

L W, (jco) Re K (jco) dco =- \ Au - ~ T k W, (jco ) (3. 40)
kw w ' 2 k 2 *- v kVJ v

o v

Note that for k=0 this is just Bode's resistance integral

theorem with A equal to zero,
oo ^
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Integrals Over Paths of Finite Length

All of the integral formulas which have been derived up to

this point have been over paths of infinite length. This is a con

sequence of utilizing Cauchy1 s integral formula, -which requires a

closed path of integration, in the derivation. In this section how

ever, limitations on integrals of passive driving point immittance

functions over paths of finite length are considered. The driving

point immittance is limited, as before, by fixing part of the input

circuit of the network. This problem has been considered by
6

Spilker for the case of a single shunt capacitance.

The path of integration is restricted to be in the right half

plane so that singularities of the integrand on the path are avoided.

The integration is performed between conjugate points in the right

half plane as illustrated in Figure 4(a) so that the value of the

integral is not a complex number. Of course the value of the

integral is independent of the particular right half plane path as

long as the end points are fixed.

The circuit to be considered is illustrated in Figure 4(b).

Here N is a fixed passive two-port network and N is an arbi-
a d

trary passive one-port with p. r. driving point impedance Z_.

N, is connected to the output of N through an ideal transformer
b a

of turns ratio n. Suppose N is described by its open circuit
a

impedance parameters z.., and consider the integral of Z given

by

s
o

-19-
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It was shown in section II that the integrand, Z , is bounded

at each point of the path of integration and hence the integral must

have both upper and lower bounds. Also it is clear that for a

particular choice of Z_ the integral is a function of n only.

Therefore for each Z? it is reasonable to ask for what values of

n the integral attains its extreme values. Differentiating yields

S° n

w/ r21'12 ii t2ds <3-42)
L z^ + n Z„k [Z22 +*Z2J

Setting the derivative equal to zero gives n=0 and n=oo as solutions

for extreme values of the integral. This corresponds physically to

terminating N in a short circuit or an open circuit. For any other
a

value of n, Z_ can be chosen such that the integral is not zero, for

example Z =z . Thus the extreme values of the integral are given

by

s. s,
o

/ Zl.(s) ds , / _J ds (3.43)
J- U J- yu(8)

s s 11
o 0

'O

To illustrate this result consider again the example of Figure

2. For this example the extreme values of the integral of Z are

found to be

>
j ds

L yn(s)
= j 2 tan -r——

J 2 + cr
0

and
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/
8

O - CO

z _(s) ds = j2 tan
IF ' J 1 + tr

so <

Thus if s is chosen on the imaginary axis, the integral of Z

is bounded by
CO

1 < \ i
tan -5— ^ / R.(co) dco >< tan co

co /

-y^ ^ J R^cojdco ^

IV. LIMITATIONS ON THE TRANSFER FUNCTIONS OF PASSIVE

TWO-PORT NETWORKS

This section is devoted to consideration of the limitations

imposed by lossless two-port networks on passive transfer func

tions. The lossless character of the networks allows us to make

use of certain simple relationships between driving point and trans

fer immittances which are based on considerations of power flow in

the network.

Limitations on the Transfer Function of Lossless Two-Ports

Terminated in a Resistance

In this section we consider the case illustrated in Figure 5

(a) in which N is a fixed lossless two-port network. N is
a a

terminated in a second lossless network N, which is in turn ter-
b

minated in a resistance R . Thus Z_ may represent any p. r.

driving point impedance realized in the Darlington form. The input

to N is an ideal current source L and the output of the system
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is the voltage V2 measured across Rq . The transfer impedance
Z21 is the function whose limitations are of interest.

Since N& and Nb are lossless we can equate the power de
livered to the input of N to the power dissipated in the load re-

a

sistance R .
o

|v,|2[Power in] = | 1^ ReZj =—1 =(Power out]
o

Then upon dividing through by |l| 2 we obtain

v, 2 |Z '2

(4.1)

ReZi =i
o

2 2V
R— (4- 2)

oh

Now it has been shown in section in that from the known prop
erties of the fixed network N we can write a set of integral
equations of the form

oo

/ Wk(jco) Re Z (jco) dco = A (4# 3)

or using (4. 2)

oo , ,2
z21(ju)

o " "o

Wk(joo) _ du = Ak (4 4)

If the desired form of |Z^l is specified then we can immediate
ly obtain a set of equations giving the limitations on this form of mag
nitude function. Of course the form specified must contain the trans

mission zeros of N&. In order that a solution of the set of equations
so obtained exist, it will in general be necessary to allow the driving
point immittance to be a non-mimimum function, that is, to have
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imaginary axis poles. The following simple example illustrates the

technique outlined here.

Referring to Figure 5 (b), the fixed network N is an LC ladder
a

with three transmission zeros at infinity. This particular example

has been chosen in order that the result might be compared with that

obtained by Bode for the case of a single shunt capacitance. For

this particular network, according to the results obtained in section

III, we can write three equations involving integrals of the real part

of the driving point impedance Z_. These are

co

/ »!<»>*» =£- " l-£kv <4-5>
O 1 V

00

I »V» dw =feVlk) - f l Vv2 (4- 6)
\ 1/ \ 1/

oo

/ u4Rl(<o)dco=^J^ (l+cM- llK,»v4 (4-7)

The k *s represent the residues of any imaginary axis poles

of Z which may be present and the coy's represent the locations

of such poles. The form of | Z | can be specified as long as the

transmission zeros at infinity are included. The simplest choice

for |Z-J is a lowpass function;of bandwidth co ,. equal"to a constant

K, in the passband and zero outside the passband. With this choice

the integrals can be evaluated to give
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R" % '^ " — ^ \ <4" 8>
o

7 3
2 co

K o

R 3
o

=(i^)(i^)-*" ^-^V<-v2 (4-9)
7 5

.2 co

t^-(*)(*)(»*)-*-?>.•.♦ -
The first of these equations is the same as the result ob

tained by Bode for the case of a single shunt capacitance. The

additional equations represent constraints imposed by the in

ductance and second shunt capacitance. In order that these equa

tions have a solution it is in general necessary that Z have at

lease one pole on the imaginary axis. Such a pole must lie out

side the passband and since the network is passive the residue at

the pole must be positive. For a pole on the imaginary axis at

co , these last two conditions lead to the following inequalities:

co, >co _v K II • 3tt \ ov 1' - 1
1 °=^— J— > — / 7=^ (4.11)

k, ».*#J5- <i -F±Fr)

If ]$l and co are eliminated from (4. 8), (4.9), and (4.10)

then an equation in the following normalized variables is ob

tained.
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x=f2 J5 • y= "oj^i <4-i3>
o ^*

This equation, depending on a parameter a=-p—•, is
C2

(€(#) -m
5 3

Y Y (1 + a)
Y

a
+ -T- = 0

10 3 2 4
(4.14)

Solutions of this equation for various values of the parameter

a are plotted in Figure 6 along with the constraints represented by

4.11 and 4.12.

Limitations on the Transfer Functions of Coupling Networks with

Fixed Input and Output Circuits

In this section we consider limitations imposed on the transfer

function of a passive network by fixed lossless input and output circuits.

The problem is illustrated in Figure 7 (a) where N and N are
a d

fixed lossless two-port networks and N is an arbitrary passive coup

ling network. It is assumed that N and N, have the same trans-
to a b

mission zeros and private poles so that equivalent sets of real part

integrals can be written for Z and Z . Limitations on the transfer
11 £t£t

impedance Z__ are to be considered. The solution to this problem for
1

the case of shunt capacitance at input and output has been given by Bode.

This development is intended to show that Bode's technique may be ex

tended to problems involving more complex fixed lossless networks.

Since the three networks are connected in cascade, any trans

mission zeros of N or N, are zeros of Z_, as shown in section
a b 21

II. Thus,because of the assumed equivalence of N and N , the first

m coefficients of the Taylor series expansions of Z , Z_7 and Z
11 Ct £* £t±.
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are fixed at a transmission zero of order m of N or N . These
a b

corresponding Taylor series coefficients can be expressed as corres

ponding integrals of the real parts of the three functions as discussed

in section in.

fI W(co)Rn(co) dco = Au (4.15)

rJ W(co )R22(co) dco =A22 (4.16)

00

) R21(w) dco =0 (4.17)

00

I W(co

Now the overall network is passive and this condition can be

expressed as

Rn(co)>0, R22(co)>0, yRu(co)R22(co) £ |R21(«)| (4.18)

This can be multiplied by a weighting function and integrated to give

oo oo

|W(co) R21 (co)| dco << / 7w2(co)Rn(co)R22(co) dco (4.19)
o 'O

The Schwarz inequality can be applied to the integral on the right to

give
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co ____________ I co co"--™-
/ JwZ(co)Ru(<o)R22(W)dW ^// |W(W)Ru(co)|dco -/ |W(u)R22(a$lda>

<N,° ° (4.20)
Combining this with the inequality (4.19) we have

oo I co OCT

/ |W(u))R21((o)|6V 4C|/ IWfayR^cOldw -/ |W(co)R22(W)|do) (4.21)
o />Jo o

If W(co) R,,(co) and W(co) R-.(co) are non-negative then the two inte-
11 bfa

grals on the right can be evaluated explicitly as A., and A2 to give

co

/ |W(U)R21(W)| do, * J^A_" (4.22)

The integral on the left can be evaluated for the desired form of

transfer function in terms of the pertinent parameters. The result is

the desired limitations. The technique outlined here is illustrated by

the following example.

Referring to Figure 7 (hi), N and N, are specified as simple
a o

L networks. This configuration corresponds to the problem considered

by Bode with, the added constraint of a series inductance. Because of

the fixed transmission zeros at infinity a. lowpass transfer function, con

stant in the passband, is considered. The given networks N and N,
a d

lead to six integral equations,

do

/ *„«->*•> =fc- T-^vii^z-c, <4-23>
o 1 v l
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CO

/ oA^dw = • * 2 - -y l\n<*vl Z—"
2LICI 2L1C1

CO

/

co

/

oo

R22(w)da) IT

2C. t5>- <v22 N 2C.

u)2R22(co)do, =—=-j - y£kv22 o>v22^ __T
22 V 2L2C22

J R (to)deo =0

co

J co R (co)dco =0

(4. 24)

(4. 25)

(4. 26)

(4. 27)

(4. 28)

The ideal form of lowpass transfer function which is constant in

the passband and which satisfies (4. 27).and (4. 28) is given by

K

Z21<8> "

im * *j
(4. 29)

where n is an odd integer greater than three and K is a real constant.

Then it is easily found that for this transfer function
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oo
co Kn

/ |R21(co)|dco =—^ cot ^ (4^3°)
n - 1

oo 3
co K/ o>2|R21«o)| d» =-^- f-f- "t f- __»_** __| (4.31,

^ o [ n -1 n -9 J

From these expressions the limitations on bandwidth and imped

ance level K are found to be

Kco < n -1 tan %— . - (4. 32)
• — 2" j——

2-

T, 3 ^ (V n \ it / n \ 3ir
Kco ^

o ifr)cot=-1A~)cot £-) cic2 J1- (4-33)

These limitations for the normalized bandwidth and imped

ance level with L = L- = L and C = C_ = C are plotted in

Figure 8. These equations depend on the parameter n but the

variation with n is so slight that it may be ignored for purposes

of calculating the curves of Figure 8.

Lossless Two-port Networks With Input and Output Terminated

in Resistance

In this section the problem of transmission through a fixed

lossless two-port network with arbitrary passive terminations is

considered. The problem is illustrated in Figure 9 (a). Here N
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is the fixed lossless two-port and N and N are arbitrary loss

less two-ports terminated in resistance. It is required to find the

limitations on the transducer power gain of the filter. A solution

to this problem for the case of a simple capacitive coupler has been
7

given by Baerwald. In this development a different approach to

the problem is used and the technique developed can be applied to

problems involving any lossless two-port network.

It is clear that since neither N^ nor N is required to be
be

finite it will be possible to obtain perfect power transmission, that

is, the transducer power gain is unity, over some band(s) of fre

quencies. This is accomplished by constructing, an image matched

filter which uses N as the basic section. However the band-
a

width of perfect power transmission and the location of the pass-

band may be changed to some extent by adding additional elements

to the basic section. Of course, the transmission zeros of N
a

must always appear as transmission zeros of the overall network.

Thus the pertinent problem to consider is that of limitations on

the bandwidth of perfect power transmission.

The general procedure to be used is to first bisect N

thus obtaining two networks with fixed input circuits. Since

the transducer power gain is unity in the passband, the driving

point immittances K. and K_ (both impedances or both ad

mittances) of the two networks must be conjugates of one another

in the passband. A necessary condition for the conjugateness of

K. and K- over the passband is the equality of corresponding

integrals over the passband of the real parts of the two functions.

A second necessary condition is that corresponding integrals over

the imaginary parts of the two functions must be negatives of one

another. The solution of the set of equations obtained from the

application of these necessary conditions leads to limitations on

the bandwidth.
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The location of the bisection of N is only important in that a

judicious choice may simplify the manipulations involved in obtaining

the result. If N is represented in the Darlington form the bisec

tion should be made so that equal numbers of sections representing a

particular transmission zero remain on each side of the cut. In case

there is an odd number of such sections then the middle section can be

bisected or the cut can be made on one side of the middle section. An

example which follows will illustrate the technique outlined here.

Referring to Figure 9(b), N is given as an LC pi network,
a

This network has three transmission zeros at infinity. In view of

the location of the fixed transmission zeros a lowpass transfer func

tion is considered. The center section of the three is bisected by

cutting the inductance as indicated in Figure 9(c). Then each half of

N has one transmission zero and a private pole at infinity so that

two integrals of the real and two integrals of the imaginary part may

be written for Y. and the same for Y-. The simplest solution

which utilizes the available real and imaginary part areas most ef

ficiently is obtained by letting Y and Y? be band-limited mini

mum susceptive"functions, that is, the real parts of the two admit

tances are identically zero outside the passband. Then for Y

the following integral equations can be written, where the irrational

factors are used as described by Bode to obtain integrals of the

imaginary part of the admittance over the passband

<*>b

G. (co) dco = £- (4. 34)
1 L

o

/

r wo
2 2ttI co G (co) dco * —5 (4. 35)

' o L (C + C )
1 x
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CO.

2 2
-co/ _

B (co) dco 4> T [4 ' uoGoi] (4. 36)
CO

CO,

/ l 2 Tb, (co) dco> co Jco -co 1 l '

and similarly for Y_:

TT

T

CO

L <C1 +Cx>

2

L J (4. 37)

to,

/ TTG2(co)dco = — (4. 38)

C0O

/ a,2G2(u)d" = .2 2* (4. 39)
L (C2 +Cy)

COo

/ £ 2 2
-co

B-(co) dco t[-2 I L - woG02. (4. 40)

co

/ n 2 _,., -/ co J10 - co B-(co) dco = -— LL2(c2 +cy)
co .],

Here C and C represent any additional capacitance that

may be added to C. and C_ as the first elements of N, and N
12 be

and Gn_ and G n- represent the values of the real parts of Y and
01 02

41)

Y_ at zero frequency. The solution of the four equations obtained by

application of the above mentioned necessary conditions leads to the

result
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2
co <

o ^ LC

where C is the larger of C. and C_.

V. SUMMARY AND CONCLUSIONS

It has been shown that the driving point immittance of a

passive network is subject to certain definite limitations when some

part of the input circuit of the network is fixed. These limitations

take the form of bounds on the real and imaginary parts of the func

tion at points in the right half of the complex frequency plane. At

right half plane frequencies where the input terminals of the network

are "isolated" from the variable part of the circuit, the value of

the input immittances and the values of some of its derivatives are

invariant. These frequencies are the "transmission zeros" of the

fixed part of the network. These limitations apply to driving point

and transfer immittances and to analytic functions of immittance

such as reflection coefficients.

The limitations on the values of the functions and its deriva

tives at points in the right half plane can be related to limitations

on the bahavior of the function along the imaginary axis by means

of Cauchy1 s integral formula. A number of specific formulas have

been given which correspond to the various types of transmission

zeros which may arise. It is shown that Bode's resistance and

reactance integral theorems are special cases of such integral for

mulas.

Upper and lower bounds are derived for integrals of passive

driving point immittance over paths of finite length in the right

half plane.
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The limitations on immittance functions are applied to derive

formulas for restrictions on the magnitude and bandwidth of the

transfer functions of passive networks when the fixed part of the

network is lossless.

This study has shown that requiring part of a network to be

in a particular form places definite restrictions on response func

tions of the network. These restrictions manifest themselves as

limitations on characteristics of the network functions such as

magnitude of real or imaginary parts of the function, magnitude

of the function, and bandwidth of constant magnitude.
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