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1. Introduction

In the discussion of problems connected with radar detection and

ranging it is often useful to characterize a continuous, real valued

1 2
gaussian process through expressions of the form '

p(s(t)) =Cexp [--i JJxftJR-^B.tMtJdsdt] (1.1)
T T

where x(t) is a time function on some closed interval T of the real

line and R (s, t) is. some positive semi-definite function on the square

TXT. Such expressions are usually referred to as "probability func

tional. "

Unfortunately, as is well known, such expressions are not well-

defined, except in the case in which the covariance function of the pro

cess has a finite set of eigenfunctions.

We will show in what follows that we may write, expressions similar

to (1,1) which are well-defined in the general case and such that they

contain all the information we need.
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Since there is no difficulty in extending the results presented

here to the complex-valued, multidimensional case, we will limit our

selves to the consideration of the real-valued, one-dimensional case.

2. Formulation of the Problem

Let {x(t),t€T} be a gaussian random process with expectation

m(t) and covariance function R(s, t). We will assume that R(s, t) is

positive definite and continuous over the square TXT.

Consider any complete countable set of square integrable func

tions on T,J4ik(t), teT I°°. Let l+k(t)' *€ Tl°° be the reciprocal
1 1 1

basis, i. e.

^ j(t) 4>k(tH>t =6jk k=1, 2,... (2.1)

by

where

/<
T

Every sample function x(t) of the process X(t) may be represented

oo

x(t) =Z ^4> (t) -(2. 2)
k=l * K

xk= H|;k(t)x(t)dt
T

The random variables X , k=l, 2,..., defined by

Xk =, J+k(t)X(t)dt (2.4)
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form a set of jointly normal random variables such that for any finite

n

p(xT, . ..., xj = N (m , S ) (2. 5)
x n n —n — n

where N (m , S ) indicates the n-variate normal density with mean
n —n •—n

m and covariance matrix S . We have
— n —n

(2.6)

(2.7)

M:

m
—n

= (m., . . . ,m )
n

mk -J+k(t)m(t)dt
T

S =
—n • il^ll
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i,j = l,...,n (2.8)

°i- =R1^*) R(b> t)^j(t) dsdt =(Tji (2,9)
T

We will have
co

R(s,t) =̂ cry ♦i(«M>j(t) (2.10)

The Karhunen-Loeve expansion theorem says that there is a

n;
pansion is diagonal and consequently the r. v. X, are independent. Let

be the corresponding elements of . the diagonal of the (infinite

dimensional) covariance matrix*

Whatever basis we use we would like to define

pWtH^plXj.Xy..,) (Ml)
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countable set of orthonormal functions J cb, I such that the above ex-



and we would like to write something of the form

p(x(t)) = N (m S ) (2.12)
00 —— 00—00

Unfortunately we are unable to associate a well-defined meaning

to the symbols in the right-hand side of Eqs. (2.11) and (2.12). In the

following section we present a way of avoiding this difficulty.

3. Reappraisal of the Problem

The problems in which we are interested are decision problems;

that is, we have a set (often finite) of possible alternatives and we want

to choose the "best, " in some sense. The techniques involved in the case

of a finite number n > 2 of alternatives, do not differ appreciably from

those used for n = 2. For simplicity of notation we will therefore consider

only the last case. In particular we will analyze the case of simple detec

tion; i.e.

H '.no signal present

H.i a specific signal present

In this case we have that under H and H, the covariance func-
o 1

tion of the process remains the same and

m(o)(t)= E[x(t)|Ho]S0
m(1)(t) 4 E[ xWlHj =s(t)

where s(t) is the given signal which may have been transmitted (assumed

to be of integrable square).
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For any given basis l4>w consider the sequence of gaussian

random processes /x (t), te TJ having expectation m (t) and co-

variance function R (s,t) given by

n

mn(t) = J ^(t) (3.1)
k=l

R (s

n

,t)= Z o- <j> (s)4) (t) (3.2)
i,j=l J J

If for any finite n we indicate by x (t) a sample function of X (t),
n n

we may define (i=0,1)

p(x (t)|H.)= p(x,....,x |H.) =N (m(l) , S ) (3.3)
F n ' l r 1 n' l n n —n

In the problem we are considering (simple hypothesis vs. simple

alternative) we know that for each n the only admissible decision pro

cedures are those for which we accept H whenever
r o

p(x (t)|H )
° > X. (3.4)p(xn(t)|H.)

for some appropriately chosen X, 0 < X. < oo. We can always write (i-0,1)

p(xn(t) | Hi) =p(x1|x2,...,xn,Hi)p(x2,...xn|Hi) (3.5)

If the random process is such that p(x_, . .., x |H.) is independent of

i, then the ratio in Eq. (3*4) will depend only on the conditional probability

densities p(s, |x_,. . . ,x ,H'). Therefore, insofar as our decision is con-
* i» 2 n i •

cerned we may restrict our attention to the conditional densities.

r*v 1 ooSince the set of orthonormal functions sty-.} (introduced in Section 2)
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is complete, there is at least one k such that

J +k(t) s(t) dt * 0 (3. 6)

Without any loss of generality assume k=l. Define

^(t) = s(t) (3. 7)

4>k(t) =?k(t) k*l (3.8).

where

Expand <|>,(t) with respect to the "natural" basis ^^, I . We get

co

N
<Mt)= I Pk?k(t) (3.9)

1 k=l K K

BJ*iWPk= Ujt^^dt (3.10)
T

with p ^ 0. The reciprocal basis \^\ is given by

We have

W
1

1

*i«Bp7'*i (t) (3.11)

\(t)= ~ ^(t)+^k(t) k>l (3.12)

(1)_, „(D_
ll -1

Therefore for all n we have

m1' =1 mJ^sO kjtl (3.13)
1 k

p(x "... x |H.) = p(x "... x |H ) (3.14)
F 2 n1 l 2 n' o

and according to our previous remarks we may restrict our attention to

p(x |x9, . . ., x , H.). The advantage of this approach is that while the
1 Ct, n 1

probability densities p(x , . . . ,x |H.)f p(x2> . . . , x |H) continue increasing
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in dimensionality as n increases, the dimensionality of the conditional

densities remains constant. This implies that as n—^co the conditional

densities remain meaningful.

We remark also that the above procedure is equivalent to repre

senting the sample space of the process as the direct sum of two sub-

spaces, one of which is spanned by the signal while the projection of

any sample function on the other is independent of the signal.

With our choice of basis we obtain the following relations

*n= ^A (3.15)

"uT ^k +pk^A2 k. * 1 (3.16)

'ika -pk»Vpi k *i (3.17)

*«,= PA.m/Pi j *k. j i 1, k i 1 (3.18)

It is simple to prove that

p^K v hi> =N^r1 - ?, \ irx k- <> (3-19)£2 n "k
where

ft2 -121 Pi} S\ i]
n 4=i .v

(3.20)

Define n

R'l{Stt)A Jr 0((n)4,.(s)i^.(t) (3.21)n i,j=l y "V \J
/_\

where the OK., are determined by the equation
n

[r'1 (s,t) R (T,t)dT =Z +.(s><Mt) (3. 22)
kJ Ti n ,.ii
_ i=l
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It is easy to show that

11 1/(rn <3'23>

<^) =l/^k Ml (3.24)

^ Ik".« -?k (vk k*l (3.25)

^(n) - 0^jk " j *k, jjfcl, k *1 (3.26)

We draw attention to the fact that except foroU?' ^e°(- 8 do not

depend on n, so that the superscript may be dropped.

Using the definition of R^s, t) in Eq. (3.19) we may write

where

p(xilxz vHi) =;=;— exp\-Tz
n n

•i *i n^w Rnx (*. t> xmdtdT -m{i> i j ^z?)
TT

As n->oo we obtain (recalling the definition of <j>.(t))

p(x1|x2, ...,H.) = exp|^ —^ .
V^tt <r ^ 2o-

.[(T2Jj«(t)R"1(t, t) x(r)dtdr «m^jH (3. 28)
TT

^Ji-lT1 (3.39)
co

R'̂ s, t) =2 <tf +.(8)i|i(t) (3. 30)
i» j—i ij i j

-8-



P<u =1/cr2 (3.31)
We also have

Jl °°R (s, t) R(t, t)dT = £ f(^.(t) =6(s-t)
i=l

It is apparent that since

(3.32)

oo

I + .(s)$.(t) = 6(s-t) (3.33)

i=l

r ico
for any basis X<|>. f , the expression in Eq. (3. 28) is independent of the

particular choice of the basis (except for the first coordinate). The parti

cular choice we used was helpful only in determining explicitly all the

quantities involved. Furthermore, since |3 =£ 0, we have cr < oo. It is

possible for cr to vanish (at least in principle); in this case the normal dis

tribution is degenerate and the value of x. under H. is equal to m. with

probability one. This agrees exactly with the "singular" case discussed by

4 5
Grenahder and also by Reed et al.

It is clear that the quantity

d=a2 J j s(t) R'̂ t, T)x(T)dtdT (3. 34)
TT

represents, a minimal sufficient statistic for the problem.

4. White Noise

The "white noise" gaussian process (wtt^tsTj may be defined

the limit of a sequence of gaussian random processes \W (t), t€ T; having

as
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covariance function

N.

Qn(s,t) =
n

1 %Js)%Jt)
k=l

where l^kj is —any orthonormal basis on T. If we pick

s(t)

where

we will have

while

tyt) =
Ve""1

•/•E = / s (t) dt

px =V^

P. = o

mf* =1

mi1) =0
1

N

^..i"

Equation (3.,19) becomes

i*l

i it 1

i=l, 2,...

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

2
where <r = N /2E. The right-hand side is independent of n and therefore

as n-»co the same expression will hold. The standard deviation is exactly

the signal-to-noise (voltage) ratio R =-0J /2E, as expected.
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5. Conclusions

The main interest of the approach presented above lies not in

its conclusions, which are well known, but in the fact that, in a reason

ably simple and straightforward way, it puts in evidence the quantities

which are really significant to the problem.

The author wishes to thank Prof. G. L. Turin for originally

suggesting the problem.
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