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ABSTRACT

The enumeration of finite automata is carried out under a

variety of definitions of equivalence. In order to carry out the

enumeration, it is necessary to count the number of equivalence

classes of functions under the symmetric group defined on a subset

of the domain of the functions. New results in this direction are

obtained and some numerical results are given along with a con

venient lower bound.
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I. BACKGROUND AND NOTATION

\ 6 4
Both Harary and Ginsburg have focused attention on the

previously unsolved problem of counting the number of equivalence

classes of finite automata. In the present paper, this problem is

completely solved by proving a variety of theorems about the enu

meration of functions.

Let 2—^ =\ o- q, ..., o"]^ Lbe the input alphabet and / / =JirQ, ..., it A

be the output alphabet.

Definition 1.1. A finite automaton is defined as a system S= <S, f,g>

where S=<s ,..., s J is a nonvoid set of internal states, f is

the direct transition function which maps SX^V^S, while g is output

function which maps SxZ-,~^/ / .
jc P

It is convenient to represent a finite automaton by a directed

graph whose nodes represent internal states and whose labeled branches

denote transitions. An example is indicated in Fig. 1 along with the

matrix representative of f and g which is an equivalent definition

of the automaton.

Definition 1. 2. Two automata S=<S, f., g.> and T=<T, f2, g2> are

said to be isomorphic if there exists a one-to-one mapping a from S

onto T such that

a (f^s.cr)) = f2(a(s), cr)

and

g^s.cr) = g2(a(s), or)
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Clearly, isomorphism of automata is an equivalence relation

and hence decomposes the family of all machines into equivalence

classes.

There are further refinements which can be made on the

concept of equivalence. For instance, the machines in Fig. 2 are

not isomorphic, but differ only by a permutation of the inputs. This

suggests widening our definition by allowing arbitrary permutations

of the letters of £--.• For similar reasons, one might allow any

arbitrary permutation of the elements of / / .

More formally, we have the following definitions.

Definition 1. 3. Two automata S=<S, f., g,> and T=<T,f2, g2>

are said to be equivalent with respect to an input permutation if

there exists ae(3>-, pe €£ such that

af1(s,«r) = f2(a(s), |3(<r))

g^s, <r)= g2(a(s), p(o-))

Definition 1.4. Two automata S=<S, L, g-> and T=<T, f-, g2>

are said to be equivalent with respect to input and output permuta

tions if there exist ae gf, pe @>, and "ye (£) such that

af1(s,o-) = f2(a(s), p(o-))

g^s, or) =^Y(g2(a(s), p(o-))).

Before proceeding to the enumeration, the background

material from the literature is assembled.

As usual, denote the symmetric group of degree n by(JT.
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H. COMBINATORIAL BACKGROUND

In this section, the pertinent combinatorial background will

be presented. Let$\be a permutation group defined on a set S.

Let the order of 0] be g and the degree of 01 be n. Two elements

s. and s. in S are called equivalent if there exists a permutation

a in^W such that a(s.)= s.. The number of transitivity classes is

given by a theorem of Burnside.

Theorem 2»1. Let (Hbea permutation group of order g acting

a set S. The number of equivalence classes induced by 0\. is

g c

where the sum is over all conjugate classes c, n is the cardinality

of c and 1(c) is the number of fixed points of s under any per

mutation in c.

For the purposes of the present paper, the only group to

be considered will be the symmetric group, but the generalization to

arbitrary groups is immediate.

Let ae (§£ have cycle structure (j.»«**»j ); that is, j. cycles

of length i for i = 1, . .., n. Clearly

n

2ij, =n (1)
i=l

on

Conjugate elements of (£* have the same cycle structure and conversely.
n

Corollary 2. 2. Let (C act on a set S. The number of equivalence

classes induced by (^ is
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njJ_I
nT (j) ji_ jj

i773r
i=l

iu) (2)

where the sum is over all nonnegative integral solutions of Eq. (1)

and I(j) denotes'the number of elements of S fixed by any per

mutation of (S31 with cycle structure (j,,..., j ).

The coefficient in Eq. (2) which is the number of permuta

tions having cycle structure (j.,..., j ) will henceforth be denoted

by c...; that is, let

n»
c,.. =

(j) TT-..Ji
ixl

There will be an occasion to use a new and powerful theorem

3
of De Bruijn. For this theorem it is convenient to develop the

concept of the cycle index polynomial.

Let 01be a permutation group of order g acting on a set

D of cardinality s while.A is a: permutationgroup of order h

acting on a set R of cardinality r. Consider the class of functions

from D into R and call two functions f and f2 equivalent if

there exists an a €Oj and a permutation p€ K such that for every

d€ D, f.(a(d)) = (3f?(d). The number of equivalence classes of
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functions-is- desired. In order to state the theorem of De Bruijn which

solves this problem, the following definition must be introduced.

Definition 2. 3. If 0\ is a permutation group of order g acting on

a set S of cardinality s and if f1f...,f are s indeterminates,
i s

then the cycle index polynomial of (A is defined as

gU)*!"•••x,8
(J)

where the equation is summed over all partitions of s and g...

is the number of elements having cycle structure (j., ...»jg).

Theorem 2.4. (De Bruijn) The number of classes of functipns

f: D—»R with a permutation group Q\ of degree s and order g

acting on D and a groupA, of degree r and order h acting on

R is given by

evaluated at z, =• • • = z. =0 where h. =exp ( 2- i z ) foris i k=1 Kl

i — l, » . ., r.

Theorem 4 is generally applied in actual problems through

the use of the following lemma.

jl jr
Lemma 2. 5. A term h, ...h in Z. gives rise to1 r j*

vfi v-h* «»%-<:

6\t\lX tls;*;

There is a convenient product of permutation groups which

5
was defined and used by Harary in his study of bi-colored graphs.
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Let ft and £<be permutation groups of order m and n operating
on disjoint object sets X and Y of cardinality a and b respec
tively. The Cartesian product of^ and £, denoted by Olxfr , is
defined on X X Y as

(a,p) (x,y) =(a(x),p(y)|

It is important to be able to compute the cycle index of OlX&
from the cycle indices of ftand of £. This is accomplished by
defining a cross operation on cycle index polynomials. The per
tinent result of Harary is the following

Theorem 2.6. (Harary)

—. __ a b . .

then Z = Z x Z =111 Z a b TT TT t^8<*tx& ~0l % ™* (i) (j) a(i) °(j) JTix ^ f<r, ,

where <r, s> is the least common multiple of r and s, while
(r, s) is the greatest common divisor of r and s.

It is often convenient to use these theorems for terms of the

cycle index polynomials rather than the entire polynomial. Such a
procedure often results in elegant symbolic proofs and is easily
verified to be a valid method of proof (Cf. 8).

-7-
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III. PRINCIPLE FOR COUNTING AUTOMATA

The following restatement of Theorem 2.1 enables the enu

meration of automata to be carried out by enumerating classes of

functions.

Theorem 3.1. The number of classes of non-isomorphic finite

automata with n internal states defined over input alphabet Z^.

and output alphabet J I is

77ViJ
i=l

where the sum is over all partitions of n and F(j) denotes the

number of functions f: S.X -Z.—*S left invariant by a permutation a

having cycle structure (j-, • •., j ) applied to both domain and range.

Similarly, G(j) is the number of functions from SxZ,-—•/ /

invariant under a.

The result of Theorem 3.1 becomes slightly more compli

cated when one allows arbitrary permutations in {£, over ^.,

or in (S over / / •^p p

Theorem 3. 2. The number of equivalence classes of finite automata

with n internal states and allowing arbitrary permutations of (gp, is

7Thli 77V1
i=l i=l

-8-
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where F(j, I) is the number of transition functions which are fixed

by a permutation of the states with cycle structure (j) = (jj, • ••»Jn)

and a permutation of the inputs with cycle structure (I) = U^» • • •» *k) •

Theorem 3.3. The number of equivalence classes of finite automata

with n internal states allowing (g^ on Zk while & permutes JI
is given by

1 1 1; £ 5! J n!t ki pi F(j,i)G(j,£,m)
HT ET pi" (j) (T) (m)T; L "* TT p m

77V1 TT'ili TTmili
i=l i=l i=l

where G(j, £, m) is the number of output functions invariant under

permutations ae g>, p€ £[, -ye fe such that a has cycle structure

(Ji»««»»j )» P has cycle structure (£.,...,*,) and *y has cycle

structure (m., • • •, m )•
* 1* p'

Proofs. The above theorems are restatements of Theorem 2.1. the

only additional observation that must be made is that the number of

automata left invariant by a is the product of the number of tran

sition functions and the number of output functions left invariant by a
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IV. THE NUMBER QF OUTPUT FUNCTIONS

First, we determine G(j) =Gfj^ ••-»Jn) in.the case of no

permutations on Z or on / / .

Theorem 4L1. The number of functions g: Sx^:—ifl left invariant
by a perjrintation of <§^_ with cycle structure (j^ •••» Jn) is

n

iklj4
G(j) = p i=1

Proof. There are p choices for each element of the range,, and

there are kj. choices for elements of S in cycles of length 1,..., kjQ

choicesior elements of S in cycles of length n. Thus there are
n

? = E
i=41

n

k'
n v

TT KJi i=i
J /p = p

such functions •

The immediate generalization to arbitrary permutations of

Z_ is now indicated,
k

Theorem 4. 2. The number of output functions g: SX2.j—*// which

are fixed by a permutation a € <g> having cycle structure (j., •••» Jn)

and pe (§^, with cycle structure (I.,..., I, ) is
n k .. „ . .

G(j,i) * p

where (r, s) denotes the greatest common divisor of r and s.

. n *rProof. The cycle structure of a€<&n is denoted by TJ gr and the
r=l

-10-



k I
cycle structure of p€(^, by // h S. Therefore the cycle structure

8=1

induced on S X 2- is given as:

There are p choices in the range for each and every one of domain

elements, so the total number of invariant functions is

r=l s=l

The last generalization to be allowed is the case when arbi

trary permutations of 21 and of J I are allowed.

Theorem 4. 3. The number of output functions g: S x <£..--•/ / left

invariant by ae (§l» pc (Su* a*1"* "Y€ <Su naving cycle structure (j-,. . ., j )

(£,,...,£.), and (m^ .. . , m ) respectively is

G(j,£,m)=77 77fr2mt)
r=l s=l \t <r, s>/

where <r, s> and (r, s) denote the least common multiple and greatest

common divisor of r and s respectively.

Proof. The desired number is given by the De Bruijn result specialized
9

to the case where . - . „.
n k Vs<r'S>

Z^ = 77 77f<r, s>
fy r=l s=l

and

p m.

z. . 7T«f*
-^ t=l

One application of lemma 2. 5 gives the result.
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V. THE NUMBER OF TRANSITION FUNCTIONS

The enumeration of finite automata will be completed by

enumerating the number of non-isomorphic functions f: SxZj^-^S.

The present problem of determining the F(j) is more complicated

than the corresponding problem for output functions. The reason

for the added complication is that the permutation a with cycle

structure (j., • • • , j ) acts on the range of the transition function as

well as on part of the domain of the function.

Theorem 5.1. The number of transition functions f: SxZ^—^S

fixed under a permutation of S with cycle structure (jj, • • •»Jn) is

<£r ^ kjiF(j) =77 (Z <U )
i=l d|i a

. , .2
Proof. When tel, this theorem reduces to theorem 6 of Davis.

To prove the result, let a be a permutation with cycle structure
j J ^~f * ..f n. Since permutations of Zk are not allowed, the cycle

index of the group on 2- is fT. The entire group on the domain is

fl 0-afnn*fl =fl f2 a-*fnn
M r ^n and

Using De. Bruijn' s theorem with Z *, = f* • • • f

jl jn *
Z. =f. .. .f we get

A 1

nil. dj
i=i Vdii •

i^i

It is also easy to give a direct proof.
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Now the generalization to arbitrary permutations in Q^

is given.

Theorem 5. 2. The number of transition functions f: Sx^-k—*S

fixed under ac g> and 0e @^ where a has cycle structure

(Jx» •••»Jn) and P has cycle structure (£^ . . . , £fc) is

n k , v Jr*s(r's}
F(j,£)= 77 77fZZtjt)

r=l s=l \t|<r,s> /

Proof. We use the De BTuijn theorem with

n. k ' n k • * / „%

z„. 7TgJ;x77H^=77 77^(r'8)
0\ r=l r s=l 8 r=l spl <r, s>

and ~v--/

2I •2*
An application of lemma 2. 5 yields

ru.D- 77 77 2_dJ<0
r=l 8=1 Yd[<r,s> /

13



'VI. THE MAIN THEOREMS

Collecting the results of the previous sections gives the

formulas for the number of finite automata.

Theorem 6.1. The number of classes of non-isomorphic finite

automata S=<S,f, g> with S=| 80„.,.,., s^lover input alphabet
k and outPut alphabet 77 is

n

r <c~ ki

(j) -rV; ,Ji i=l dli

1 S ni TT 5 kJ

mi1*
i±l

Proof. Cf. Theorems 3.1, 4.1, and 5.1.

Theorem 6. 2. The number of classes of finite automata S=<s,(f, g>
with S=|s0,..., a Aover input alphabet J^ with g^ acting on
Zfc and with output alphabet 77" is given by

{iUl)TThli TT'ili r=18=1\ *!<**> /
i=l i=l

Proof. Cf. Theorems 3.2, 4.2, and 5.2.

Theorem 6. 3. The number of classes of finite automata S=<S, f, g>
with S=|y..., snlj and £k operating on Ifc with ^ operating
on JT~ is given by

-14-
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n k

11 i 2 1 X n: ki ps •'-... 77 77
nl-'Er.pr (j)(£)(m) n J. E F. p m r=l s=l

77V 77<iu TTV
i=l i=l i=l

\j £ (r, s)

id |<r, s>

Proof. Cf. Theorems 3. 3, 4. 3, and 5. 2.

One : can obtain a lower bound on the number of automata

from the theorems of this section.

Corollary 6. 4. The number of classes of non-isomorphic automata

with n internal states over input alphabet 2.^ and output alphabet
J I is not smaller than

P

1 , xkn
-r (Pn)
n.

Corollary 6. 5. The number of equivalence classes of n state

automata with (*v on 2. is not smaller than

1 1 . xkn
^TW (Pn)

Corollary 6.6. The number of equivalence classes of n state

automata and Q. on 2, and (2_ on || is not less than

1 1 1 /rmJ*n
STTET "pi (pn)

Proofs. In every case, replace the sum by the first term.
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VII. CONNECTED MACHINES

For many purposes, it iff convenient to consider machines

which are connected. We enumerate the connected machines in

this section.

Definition 7. U An automaton is connected if and only if its graph

is connected.

Let a , .be the number of equivalence classes of auto-
n, k, p ^ • 7

mata with n internal states defined over 2- and I /. Let
k p

A(Xj y, z) be the generating function for a , that is

CO CO CO

A(x,y,z) =£ X 2- an k oxIly z?
m=l k=l p=l n» k» P

Let C(x, y, z) be the corresponding series for the number of

connected automata.

Theorem 7. 2. The generating function C(x, y, z) for the number

of classes of connected automata is obtained from the generating

function A(x, y9z) of the total number of classes of automata by

the relation

oo

log (1+ A(x, y, z)) = II C(x\ y\ z1)
i=l

Proof. This theorem is a restatement of Polya*s result on the

number of connected graphs. The result is derived in Harary's

7
paper.
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VIH. NUMERICAL RESULTS

Numerical calculations are presented for modest values

of n, k, and p. Since it is easy to prove that binary inputs are

completely general, the enumeration is restricted to the case k=2.

In table 1, the number of non-isomorphic binary machines

without outputs is given, along with the number of connected non-

isomorphic machines.

n a O 1n, 2, 1 n, 2,1

1

2.

3

1

10

129

1

9
119

Table 1

The Number of Non-isomorphic
Binary Automata

In table 2, input permutations are permitted.

n. 2. 1 n, 2, 1

1

2

3

1

7

74

1

6
67

Table 2

The Number of Non-isomorphic Binary Automata
Under Input Permutations

In Fig. 3, the 10 classes of automata are shown. It is clear

that there is only one disconnected machine. Furthermore, input

permutation causes i and ii, vi and vii, viii and ix, to become

equivalent.

The remaining calculations are presented in Tables 3 through 5,

-17-



n n, 2, 2 n, 2, 2

1

2

3

4

136
7360

4

133

7336

Table 3

The Number of Non-isomorphic Automata
with Binary Input and Output.

n n, 2, 2 n, 2, 2

1

2

3

3

76
4003

3

70

3783

Table 4

The Number of Equivalence Classes of
Automata with ($>. on ^. and Binary Output.

2 2

n n, 2, 2 n2, 2

1

2

3

2

54

2011

2

51

1905

Table 5

The Number of Equivalence Classes of
Automata .with £-> on 'S and g" on jy.

"2
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IX. COMMENTS AND UNSOLVED PROBLEMS

Loosely speaking, an automaton S=<S, f, g> is said to be

strongly connected if for every pair of states s, te S, there exists

a sequence of inputs which causes S to leave state s and go into

state t. Thus strongly connected machines correspond to strongly

connected digraphs. The general enumeration problem for strongly

connected digraphs (automata) is still unsolved.

In the present context, the automata did not have a desig

nated initial state. The enumeration problem in this case has been

studied by Vyssotsky in unpublished work. The rooted case

follows from our results by employing the same device used in

enumerating rooted graphs, namely the number of classes of

rooted n state machines is given by the expression for the n-1

state machines with j- replaced by jj + 1. The details are in
7

the paper by Harary.
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Fig. 2. Two Non-isomorphic Automata which are Equivalent Under
an Input Permutation.

-23-



cr,., <r
0' "1

V °"i

ii

•V ""I

V °"i

111

IV

"V °"l

o
V *i

o

0 or0, o^

o

cr0, o-L

o

0

vi

Vll

Vlll

IX

•"1

•o

o

cr0, o-1

o

Fig. 3. The Non-Isomorphic Binary Automata Without Output for n= 2.
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