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ABSTRACT

The enumeration of finite automata is carried out under a
variety of definitions of equivalence. In order to carry out the
enumeration, it is _necessary to count the number of equivalence
clagses of functions under the symmetric group defined on a subset
of the domain of the functions. New results in this direction are
obtained and some numerical results are given along with a con-

venient lower bound.
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I. BACKGROUND AND NOTATION

' Both Ha,ra,ry6 and Ginsburg4 have focused attention on the
previously unsolved problem of counting the number of equivalence
classes of finife automata, In the present paper, this problem is
completely solved by proving a variety of theorems about the enu-

meration of functions.

Let Zk = {o- NEEEE Uk-l} be the input alphabet and 77;: {“0’ cesns "p-l}
be the output alphabet.

Definition 1. 1. A finite automaton is defined as a system S= <8, f,g>

1
the direct transition function which maps SkaﬁS, while g is output

where S={so, ceey sn } is a nonvoid set of internal states, f is

function which maps szk—ﬂ?[;’

It is convenient to represent a finite automaton by a directed
graph whose nodes represent internal states and whose labeled branches
denote transitions. An example is indicated in Fig. 1 along with the
matrix representative of f and g which is an equivalent definition

of the automaton.

said to be isomorphic if there exists a one-to-one mapping a from S

Definition 1. 2. Two automata S=<S, fl’ g > are

onto T such that
u(fl(s, 0")) = fz(u,(S), 0")
and

g (8, 0) = gyl (s), 0)



Clearly, isomorphism of automata is an equivalence relation
and hence decomposes the family of all machines into equivalence
classes.

There are further refinementa which can be made on the
concept of equivalence. For instance, the machines in Fig. 2 are
not isomorphic, but differ only by a permutation of the inputs. This
suggests widening our definition by allowing arbitrary permutations
of the letters of zk. For similar reasons, one might allow any

arbitrary permutation of the elements of 77{;.

More formally, we have the following definitions.

Definition 1. 3, Two automata S=<S, fl' g1> ;nd T=<T,. fz, g2>

are said to be equivalent with respect to an input permutation if

%
there exists ae@‘ﬁ, Be q( such that

afy(s, ¢) = f,(a(s) Blo))

g]_‘(s’ o)= gz(ﬂ- (8)s.B(c))

Definition 1. 4. Two automata S=<S, fl’ g;> and T=<T, fZ’ g,>

are said to be equivalent with respect to input and output permuta-

tions if there eéxist ae ql, Be gk and vye GP such that

afy(s, o) = £,(a(s) B(o))

g (s, o) = v(g,la(s), B(s)))-

Before proceeding to the enumeration, the background

material from the literature is assembled.

£
As usual, denote the symmetric group of degree n byq.
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II. COMBINATORIAL BACKGROUND

In this section, the pertinent combinatorial background will
be presented. Let O}be a permutation group defined on a set S.
Let the order ofOJ be g and the degree of 01be n. Two elements
s, and sj in S are called equivalent if there exists a permutation

a inal such that a (s'i)= sj. The number of transitivity classes is

given by a theorem of Burnside. 1

Theorem 2.1. Let 01be a permutation group of order g acting on

a set S. The number of equivalence classes induced byOJ_ is

1 z n_ I(c)

g ¢
where the sum is over all conjugate classes ¢, n_ is the cardinality
of ¢ and I(c) is the number of fixed points of s under any per-

mutation in c.

For the purposes of the present paper, the only group to
be considered will be the symmetric group, but the generalization to
arbitrary groups is immediate.

Let ae @‘.n have cycle structure (jl, ooe ,jn); that is, ji cycles

of length i for i=l,...,n. Clearly
n
2 ij;=n (1)
i=1 !
Conjugate elements of @'n have the same cycle structure and conversely.

Corollary 2. 2. Let 611 act on a set S The number of equivalence

classes induced by @n is
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1 : -
;,—% = 1) (2)

n .
77ji! il
i=1

‘where the sum is over all nonnegative integral solutions of Eq. (1)

-

and ‘i(j) denotés the number of elements of S fixed by any per-

mutation of @Sn with cycle structure (jjs...sj )

The coefficient in Eq. (2) which is the number of permuta-
tions having cycle structure (j‘l. cees jn) will henceforth be denoted

by c(j); that is, let

n!

e —————ay——

n J.
TTii?

i=1

Gy~

There will be an occasion to use a new and powerful theorem
of De Bruijn, 3 For this theorem it i8 convenient to develop the

concept of the cycle index polynomial.

Let @be a permutation group of order g acting on a set
D of cardinality s ‘While}} is a.permutation group of order h
acting on a . set R of cardina.lity" f. 'Consider the class of functions
from D into :R and call two functions fl and _fz equivalent if

there exists an a ¢ OJ and a permutation e 6 such that for every

de D, {,(a(d)) = pf,(d). The number of equivalence classes of
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functions-is-desired. In order to state the theorem of De Bruijn which

solves this problem, the following definition must be introduced.

- Definition 2, 3. If dlis a permutation group of order g acting on

a set S of cardinality s and if f,.. .,fs are s indeterminates,

then the cycle index polynomial of 01 is defined as

1 LA )
3 2 e £f
@)

where the equation is summed over all partitions of s and g(j)

Zo}(f ,ooo,fs)*=

is the number of elements having cycle structure f(jl, ces ,js).

Theorem 2.4. (De Br-ui'l;in) The number of classes of functipns

f: D—R with a permutation group 04015 degree s and order g
actingon D and a,group»e} of degrée r and order h acting on

R is given by

9 9

Zoj-(-a—ﬁ"".'?.ooo '8T.s) Zﬁ(hlpooo,hr)
| %

1

evaluated at zvl = eee = z.s= 0 . where hi= exp ( z=1 iz ki') for

i=1,ooo,ro

s

Theorem 4 is generally applied in actual problems th}jbugh

the use of the following lemma.
jl jr
Lemma 2.5. A term h1 "'hr in Z’% gives rise to

Z (ztjt,oco, ztj ")
OJ’ tll,'-- tls““t:
There is a convenient product of permutation groups which

was defined and used by Hara.ry5 in his study of bi-colored graphs.



Let f{ and grbe permutation groups of order m and n operating
on disjoint object sets X and Y of cardinality a and b respec-

tively. The Cartesian product of §f{ and S}, denoted by OLx [, is
defined on XX Y as

() B) (xy) = (a (x), B(y))

It is important to be able to compute the cycle index of JixJS»
from the cycle indices of O0land of fy. This is accomplished by
defining a cross operation on cycle index polynomials. . The per-

tinent result of Harary is the following

Theorem 2, 6. -(Harary)

a
: 1 ! 1 z s
= e . d Z = o= h
P TR & Egr PENTR be)ZI 5
a b
_ 11 z 1sz(r, s)
then zm_xg; 7 Z "ma g) & ) B(i) Zzl' Z=71-f<r’s>

where <r, 8> is the least common multiple of r and s, while

(r, 5) is the greatest common di visor of r and s.

It is often convenient to use these theorems for terms of the
cycle index polynomials rather than the entire polynomial. Such a
1}

pProcedure often results in elegant symbolic proofs and is easily

verified to be a valid method of proof (Cf. 8).



IIl. PRINCIPLE FOR COUNTING AUTOMATA

The following restatement of Theorem 2.1 enables the enu-
meration of automata to be carried out by enumerating classes of

functions.

Theorem 3.1. The number of classes of non-isomorphic finite

automata with n internal states defined over input alphabet zk

and output alphabet 77; is

1 nl
nr () n 7.
Tl it
1

i=1

F(3)G(j)

where the sum is over all partitions of n and F(j) denotes the
number of functions f: Sx zk—;s left invariant by a permutation a
having cycle structure (jl’ .o .,jn) applied to both domain and range.
Similarly, G(j) is the number of functions from szk—bm

invariant under a.

The result of Theorem 3.1 becomes slightly more compli-

cated when one allows arbitrary permutations in 61( over Ek

or in @p over 7Tp'

Theorem 3. 2. The number of equivalence classes of finite automata

with n internal states and allowing arbitrary permutations of @k is

1 1 n! k! . .

Ne n
Thgi " Thgei?

i=]1 i=1
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where F(j, £) is the number of transition functions which are fixed
by a permutation of the states with cycle structure (j) = (jl’ ceey jn)

and a permutation of the inputs with cycle steucture (£) = (£ P lk) .

Theorem 3.3. The number of equivalence classes of finite automata

with n internal states allowing @k on zk while % permutes 77;

is given by

1 11 S K p! F(j, £) Glj» £, m)
al kI pY (j m)ya— 3 k 1I.p m,

mi} i 77'2 RE 7Tmi!1

j=1 i=1 i=1

where G(j, £, m) is the number 5f output functions invariant under
pe:mutétions. a€ (%1, Be Gk’ Ye @B such that o has cycle structure
(jl’ coes jn), B has cycle structure (4 Peeee lk) "and y has cycle

structure (ml, ce ey mp).

Proofs. The above theorems are restatements of Theorem 2.1. the
only additional observation that must be made is that the number of
automata left invariant by a is the product of the number of tran-

sition functions and the number of output functions left invariant by a.



-

IV. THE NUMBER OF OUTPUT FUNCTIONS

First, we determine G(j) = G(jl’ .o .,jn~) in the case of no

permutations on zk or on 77;.

Theorem 4.1. The number of fupctions g: szk;-—)T]; left invariant

by a permniutation of q_l with cycle structure (jl’ eoeyj. ) is
n n

k

j.
. Ci=1 *
G(j) = p

i=

Proof. There are p choices for each element of the range,. and

there are kjl choices for elements of S in cycles of length l,..., kjn

choicesfor elements of S in cycles of length n. Thus there are

ﬁ 3
n .. kz. 3
Ky =
P =p

i=f .
such functions.

The immediate generalization to arbitrary permutations of

Zk is now indicated.

. Theorem 4. 2. The number of output functions g: SXZR_’TZ; which

are fixed by a permutation a ¢ @n having cycle structure (jl. cens jn)
and Be @k with cycle structure (21 secey lk)‘ is

§§ ize (s 8)

GG 2) = p™ 5

where (r, 8) denotes the greatest common divisor of r and s.

n J:
Proof. The cycle structure of ae ®n is denoted by 77' grr and the

r=1
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: S £ 8
cycle structure of Pe @k by ? / h’3 « Therefore the cycle structure
-g=1 =

induced on S X zk is given as:
k

. k
n j £
T8 x| TTng?) = TTTT s
r=i- -

js‘ts(r’ 8)

n
r=l s=1 <r, 8>

There are p choices in the range for each and every one of domain

elemeits, so the total number of invariant functions is

n k
) z Zj 2 (r,s)
77— 77'PJ1.£S(1':.5) - pl‘=1 s=1 r s .

The last generalization to be allowed is the case when arbi-

trary permutations of zk.a,nd of 77; are allowed,

Theorem 4, 3. The number of output functions g: S x Zk—ﬂz left

invariant by ae 61’ Be @;k’ and ye @;p having cycle structure (jj,...,J}

(11. caed lk), and (ml, ...,m_) respectively is

P
n k jr £ 8(1'9 8)
. t
aGotmy = TT TT (2t
r=1l s=1 \t|{<r,s8>
where <r, 8> and (r, s) denote the least common multiple and greatest

common divigsor of r and s respectively.

Proof. The desired number is given by the De Bruijn result specialized

to the case where . :
n x It s(r’ 8)

Z = TT 77-£<r, s>
0} r=1 s=1
P m
z, = JT &
4& t=1

One application of lemma 2. 5 gives the result.

and
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.V. THE NUMBER OF TRANSITION FUNCTIONS

The enumeration of finite automata will be completed by
enumerating the number of non-isomo’rphic functions f:- szk—PS.
The present problem of determining tl'ie F(j) is more complicated
than the corresponding problem for output functions. The reason
for the added complication is that the permutation a with cycle
.structure (jl’ ceey jn) acts on the range of the transition function as-.

well as on part of the domain of the function.

Theorem 5.1, The number of Atransitién functions f: szk—;s

fixed under a permutation of S with cycle structure (jl' esey jn) is

kj;

n
FG) =TT (2, diy
i=1 dji

Proof. AWhen k=1, this theorem reduces to theorem 6 of Davis. 2

To prove the result, let o be a permutation with cycle structure

j J
fll. . .fnn. Since permutations of Zk are not allowed, the cycle

index of the group on z is fr » The entire group on the domain is

k
J J kj, Kj kj
1 n _ 1 2 n
AR ST AL A RN
Kj. . kj
Using De. Bruijn' s theorem with Z =f1 "...fn n and
i, g %

Zﬁ =f1 oo.fn we get

ff (Z djd)kji

i=1 \d|i

It is also easy to give a direct proof.
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Now the generalization to arbitrary permutations in Gk
is given,

Theorem 5. 2. The number of transition functions f: Sx qus

fixed under ae @ and Pe @) Where a has cycle structure

(§gp...sdy) and p has cycle structure (£;,..., £,) is

n k

FG.0)= 11 TT (%:tj
=1 s=1 \t|<ns>

Proof. We use the De Bruijn theorem with

jr 2 s(r’ s)
)

LI A T T N C )
z, = JTeXxTn® =T Tt
0} r=1 =1 5,‘-1 -87l <r, 8>

n s

= 77-1"?1

z i
‘g i=1

An application of lemma 2. 5 yields

n k ) jrzs(r, s)
ro.0= T TT (Zd’d)

r=l s=1 d[<r, o

13



VI. 'THE MAIN THEOREMS

Collecting the results of the previous sections gives the

formulas for the number of finite automata.

Theorem 6.1 The number of classes of non-isomorphic finite

automata .S = <S, f, g> with S ={\ Bgreereses Sn-l} over input alphabet

Ek and output alphabet 779- is

n k'.
a2 w2 T 2 a5y
* ) TTj"iJi =1 dfi
e

i=1
Proof. Cf. Theorems 3.1, 4. 1, and 5.1,

Theorem 6. 2. The number of classes of finite automata S = <s, f, g>

with S ={so, ceo, Sn-l} over input alphabet Zk with C‘;k acting on
Zk and with output alphabet 77p- is given by

n J. k 2
(j) (”773'”' i 77-2 y i or=l s=l t|<p s>
1= i=1

Proof. Cf. Theorems 3. 2, 4, 2, and 5. 2.

Theorem 6.3. The number of classes of finite automata S =<S,f, g>

with S = {50’ ces, Bn-l} and gk operating on Zk ‘with €b lgper'ating

on ”p is given by

-]14-



r, 8
> tj, > dm rs
t|<5.8> d|<r,8>

Proof..Cf. Theorems 3.3, 4.3, and 5. 2.

One : can obtain a lower bound on the number of automata

from the theorems of this section.

Corollary 6. 4. The number of classes of non-isomorphic automata

‘'with n internal states over input alphabet zk and output alphabet

77; is not smaller than.

1 kn
ar (pn)

Corollary 6.5. The number of equivalence classes of n state

automata with q( on zk is not smaller than

1 1 kn
ar i (en)

“Corollary 6.6. The number of equivalence classes of n state

automata and Q( on Zk and Gp on 'ﬂ; is not less than

1 1 1 kn
Hrﬂ'_ﬂ(pn)

Proofs. In every case, replace the sum by the first term.
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VII. CONNECTED MACHINES

For many purposes, it is convenient to consider machines
which are connected. . We enumerate the connected machines in

this section.

Definition 7.1 An automaton is connected if and only if its graph

is connected.

Let a x P be the number of equivalence classes of auto-
¢ B | , '

s

mata with n internal states defined over zk and 77;. Let

A(x,y,z) be the generating function for a that is
N ? 2]

W o
k
A(x,y,2) = z 2 z a x pxny Azp
n=1 k=1 p=) » o

Let C(x,y,2z) be the corresponding series for the number of

connected automata.

Theorem 7.2. The generating function C(x,y,z) for the number

of classes of connected automata is obtained from the generating
function A(x,y,;z) of the total number of classes of automata by

the relation
‘ o
log (+ A(x,y,2)) = 2 .= Clx'y vy, 2)

i=

- Proof, This theorem is a restatement of Po'lya.'s result on the
number of connected graphs; The result is derived in Harary's

paper.

-16-



VII. NUMERICAL RESULTS

Numerical calculations are presented for modest values
of n,k, and p. Since it is easy to prove that binary inputs are

completely general, the enumeration is restricted to the case k=2.

In table 1, the number of non-isomorphic binary machines
without outputs is given, along with the number of connected non-

isomorphic machines.

n a [o4

n, 2, 1 n, 2,1
1 1 1
2] 10 9
3 129 119
Table 1

The Number of Non-isomorphic
Binary Automata

In table 2, input permutations are permitted.

a (o4

n,2,1 n, 2,1
1 1 1
2 T 6
3 74 67
Table 2

The Number of Non-isomorphic Binary Automata
Under Input Permutations

In Fig. 3, the 10 classes of automata are shown. It is clear
that there is only one disconnected machine. Furthermore, input
permutation causes i and ii, vi and vii, viii and ix, to become
equivalent,

The remaining calculations are presented in Tables 3 through 5.

-17-



n 2, 2, 2 €n, 2,2

1 4 4

2 136 133

3 | 7860 7336
Table 3

The Number of Non-isomorphic Automata
-with Binary Input and Output.

n a‘n, 2, 2 'cnl 2, 2

1 3 3

2 76 70

3 4003 3783
Table 4

The Number of Equivalence Classes of

Automata with 3. on > . and Binary Output.
2 2

C

n °n, 2,2 n2,2

1 2 2

2 54 51

3 2011 1905
Table 5

The Number of Equivalence Classes of .
Automata with on and on .
6)2 z2 GZ 77;

-18-



IX. COMMENTS AND UNSOLVED PROBLEMS

Loosely speaking, an automaton S=<S,f, g> is said to be

strongly connected if for every pair of states s,teS, there exists

a sequence of inputs which causes S to leave state s and go into
state t. Thus strongly connected machines correspond to strongly
connected digraphs. The general enumeration problem for strongly
connected digraphs (automata) is still unsolved. 6

In the present context, the automata did not have a desig-
nated initial state. The enumeration problem in this case has been
studied by Vys-sotskym in unpublished work. The rooted case
follows from our results by employing the same device used in
enumerating rooted graphs, namely the number of cldsses of
rooted n state machines is given by the expression for the n-1
state machines with j1 replaced by j1 4+ 1. The details are in

the paper by Harary. 7

-|.19-
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Fig. 2.

Two Non-Isomorphic Automata which are Equivalent Under

an Input Permutation.
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%0 7y
iii viii
g 0-1 (12 )
o~ : €
)
iv ix
0'03 0'1 0"0, 0'1 0'0’ 0'1
%0 %1
»- ® » «
v X

Fig. 3. The Non-Isomorphic Binary Automata Without Output for n= 2,
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