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ON AN AXIS-CROSSING PROPERTY OF GAUSSIAN NOISE ,

by

**
E. Wong

L INTRODUCTION

This note reports a result concerning the distribution

of intervals between successive zeros of Gaussian noise. Let

x(t) be a zero-mean stationary Gaussian process, with covariance

function of the form

2 3.

Ex(t) x(t+ t) =P(t) =1-^j +%- +0(f ) (1)

Let £ be a random variable denoting an interval between two

successive zeros of x(t). The problem of finding the probability

distribution of | is of considerable interest and remains unsolved.

(For further references and detailed discussions, see Refs. 5 and 6.)

Let F(t) = Prob £ <t be the distribution function of £,

and q(-r) = dF^ be the density function. It has been shown

that q(0+)= 0 if a= 0, but q(0 ) is different from zero if a is
non-zero. The exact value of q(0 ) is hitherto not known,

2
although very good bounds have been given by Longuet-Higgins.

In this note we propose a value for q(0 ). While it is not proved

that the proposed value is exact, the fact that it lies within the

close bounds given by Longuet-Higgins and the way that it is

derived lend credibility to its being so.
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II. TWO-DIMENSIONAL GAUSS-MARKOFF PROCESS

We consider a zero-mean Gaussian process x(t) with

covariance function

P
-iat 2

a(t) =e" 1™ (cos pt +̂ sin pt), \^p =\|l -^- ,

t2 at3 4 (2)

It is clear that p (t) has the form given by (1). In addition, (2)

also implies that x(t) and its derivative x(t) are the components
7

of a two-dimensional Gauss-Markoff process. This Markoffian

property is used below in deriving a set of integral equations.

We define \0(x , x , t) to be the conditional probability

that x(t) has no zero-crossing in 0<T<t given x(0) = x and

x(0) = x , (x >0). Let p(x, x | x ,x t) be the conditional pro-

bability density function, i. e.,

p(x, x I x , x ,t) dx dx =
(3)

Prob [x(t)€ (x, x + dx), x (t) € (x, x + dx) | x(0) =x , x(0)= x ]

By considering x(t) at its last zero-crossing in the interval (0, t)

and using the Markoffian property of x(t) and x(t), we find

that for x <0
o

j» oo

/ dx / dx p(x, X| xq, xq, t) =
00

(4)

If.. a a t o

J dTJ dx |x| p(0,x|xo,xo, t) Cf>(0 ,X,t-T)
o o

similarly for x >0

For an exact expression of p(x, x | x ,x , t), see Ref. 7«
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<|>(x
'-co

JJX) 00

,xQ, t) =J dxJ dx p(x, x | xq, xq, t)

(5)
Xt SJO

dr I dx |x | p(0, X| X , X ,T) (0+, X*T- T)
^ O O : ;

These integral equations (4) and (5) are closely related to those
4 1given by Siegert and Helstrom. The quantity

• • • .

p(0, x | x , x , t ) | x | dt dx in (4) and (5) is the probability that
• • • • ' ^

x(t) has a zero for re (t,t + dt ) with x(t ) = x given x(G) = x

3
andx(0) = x . The probability P(t) that x(t) >0, t € (0, t) is

clearly given by

p(t> "J dXo J d*o ffV'o'^o'V*'
o -oo

(6)

With the use of (4) and (5) in (6), we find

Jt ^oo

P(t) =j-J J x p(0,x)cp(0+,x,T)dx dr
A r^° l *2

=1. "hi IJ xe"2X f(0+,x,t) dx dx

The functions F(t) and 4(t) are easily related to P(t) ^ee, for
example, Ref. 5, Section 1. 7). We have

1 -F(t) = - 2u.iL p(t) (8)

and q(t) = 2ir A- P(t) (9)
dtZ
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If the integral equations (4) and (5) can be solved for <p (0 , x, t),

then F(t), P(t) and q(t) for this case are completely determined.

in. LIMITING BEHAVIOR OF q(t)

j_ •

Although ^(0 ,x, t) has not been found, its behavior for t
+ •

near zero can be estimated. First of all, <P(0 , z , t) has the fol

lowing properties:

<p(0+,x,t)=0 , x<0, t>0

ip(0+,x,0)=l

and for small t

Lim<J>(0+,x,t) =1
x—>oo

Now, by setting x =0 in (5), we find

U° p00
(f(0+,xQ,t) = I dxj dx p(x, x| 0+, xq, t)

^ "°° (10)

-I dTJ dxx p(0,x| 0+,x ,t) <p(0+,x,t-T)
Jo uo

For small t, the first term on the right-hand side of (10) is

approximately

2

rdx / dx p(x, x|0 , x , t) = ==; A—T% . e dz
»oo \J2tt

Zat o

(11)

+ *While as t—*0 cp(0 ,x , t) does not behave exactly as
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r
oo

dx / dx p(x, x | 0 , x , t), its behavior is not likely to be
-oo

drastically different. Considerations of this and the properties

of 9(0 »x »t) suggest the approximation
' o •

a x

tp(0+,xo,t) *j|T\/^ e 2 dz, xq>0 (12)
o

a being a parameter to be determined.

To proceed, we multiply both sides of (4) by

• . - -=• (x + x )
p(x , x )=•»- e ° ° and integrate over -oo <xq <0

and -oo < x < oo. This results in
o

11 . -1 ,.*
1 ' -^ Sm p(t) =

r(r)x

-zzlJ *e T""P(0+'i't-T,\.T^ -°° e 2 dz ,dxdT) f• \J e

'o *"o \\|2ir
where

at

r(t) sie 2 sin |3t I(3 =̂ 1--J- I (14)

ir( ) - 1- p2(t) - r2(t) (15)

and p(t) is given by (2).

Using the expression (12) for ip(0 ,x,t) in (13) and expanding
both sides in powers of t, we find after some tedious but routine

integration,
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i-s(*-+T^)+o<*3>

a+l
*+2a

1

2~Tn\IT
4(a+

Thus,amustsatisfytheequation:

a1

7=Tl
(<•«£)

Theonlypositiverealrootof(17)is

1

1
a=—3.\&t,Z1(T

^+V3>-2h

(16)

-jr\>+0(t3).

(17)

(18)

Using(12)in(7),wefindthatforsmalltP(t)isgivenby

pw4-^t+^i2^+0(t3)(19)
Hence,from(9)and(18),wefind

q(0+)=-\2a

^siF n

=*198a—

theboundsgivenbyLonquet-Higginsbeing

.1911a<q(0)<.203a

(20)

(21)



Since powers of t in p(t) higher than the third do not enter into

the calculation for q(0 ), the result applies not only to the

two-dimensional Markoff case but applies in general to any Gaussian

process with covariance function of the form of (1).
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