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A LINEAR SEARCH PROBLEM*

by

Eugene Wong

SUMMARY

A class of one-dimensional search problems is considered .

In general, the formulation results in a functional-minimization

equation of the dynamic programming type. In a special case the

optimal solution for both the objective and policy have been found.

L INTRODUCTION

We consider a storage unit consisting of N cells, with

information stored in tabular form. That is, the record r(i)

stored in cell i is in the form of argument-function [x., f(xi)],

the file being arranged in ascending order of the argument x.. An

example of such an arrangement is a dictionary.

Given a particular argument x, we find f(x) by searching

for the cell containing [x, f(x) ]. The search proceeds by com

paring x against the arguments in a sequence of cells L, i~, etc...

This sequence is to be chosen so as to minimize the average num

ber of comparisons required for locating the correct cell. Problems

of this kind occur in addressing computer storage.
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IL EQUATION OF OPTIMIZATION

We begin with the following assumptions.

(1) In a comparison of x against x., only three possible

outcomes exist, namely,

X > X. , X < X. 9 X = X. -
i i i

(2) Let £ be an integer-valued random variable denoting

the location of x. We assume that the a priori probabilities

Pk = Prob [£ = k] are given, with
N

I Pk=l (1)
k=l k

(3) Let S be the set of integers 1 through N, and let

ir be a non-empty subset of S. We assume that the a posteriori

probability distribution of £ is unchanged except for renormali-

zation; i. e. ,

Prob [g -k gc it] =^j , k6 <r (2)

= 0 , W <r

where P (cr) = 2. Pj
l€ <r

Let T [(pk)» N] formally denote the minimum average
number of comparisons per successful search, given N cells and

a priori distribution (Pk). It is clear that the search procedure
starts with the selection of a cell for the first comparison. Suppose

cell n is selected and x is compared with x . The following

situation then results:

(1) With probability p , x = x and the search terminates.
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n-1

(2) With probability P . = Z. p., x<x and x must be
i=l

contained in the first n-1 cells. If we lenumber. fche first n-1

cells beckwards starting with cell n-1 , the new distribution becomes

• Pn-kPk =-p > k =U. . . , n-1. (3)
n-1

n

(3) With probability 1-Pn =jj^ p.,, x>xn. Upon renum--

bering the last N-n cells, we find the new distribution to be

Pk = "TIT- • b =1,..., N-n. (4)
n

It is clear that whichever cell is optimal for the first choice,

succeeding choices must remain optimal for the overall sequence to be

optimal. Therefore, T[., N] must satisfy the following functional

equation:

T[(Pk,N]= min (l+P T[(p^), n-1]
k l<n<N I n l \ n-1 /

^Pn-l)T[(l^)-N-n]} •
(5)

2 . .,.
Equation (5) is in the formalism of dynamic programming, yielding

as solutions the objective T[(pk), N] and the optimal policy
n*[(p, ), N]. As initial conditions we set P =0, T(., 0)= 0, and

ale

T(., 1)=0.

Note that this last condition implies that if there is only one cell
no comparison is necessary. This is a consequence of (1).
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HI. OPTIMAL SOLUTIONS FOR UNIFORM DISTRIBUTION

If Pk=cf > k= 1, 2,..., N, explicit solution q (5) can be
*

found. In this case, it is clear that T(.,.) and n (.,. ) are functions

of N only. With a slight change in notation we can rewrite (5) as

T<N> =l+i"4n{^~ T^+ <u Tr> T<N-n>} • <6>
The solution T(N) of (6) is given by

lc+i Tc+1 Tc+i 1 k =0,1, 2,...
(2 +1+2m-l) T(2 +1+2m-l) =2K+1(k- ^) +2mk+ 3m+ 1, m= 0, x> ###, 2k

(2k+1+2m) T(2k+1+2m) =2k+1(k -^) +(2m+l) k+3(m+l), m=0,1, ... 2k-l

The policy n (N) which yields the minimum is not unique. In fact,

the multiplicity of solutions can be quite large. The complete set

of solutions is

* "fc-4.1 1r k-1 *n (2 + + 2m) = 2*+j , j = 0,1,..., 2m+l, m<2

j = 2m- 2 +1, •.., 2 , rri>2

* k+1 k . . ~ . ->k-ln (2 +i + 2m-l) = 2 + 2j,j = 0,1, ..., m, m < 2

,k-l 9k-l Jk-1
j = m-2 ,...,Z , m > c. J

4
For example, consider N = 2 + 9 = 25

n* (N) =10, 12, 14, 16

The policy solution is interesting and somewhat surprising. Intui-
tively, one would expect that the optimal solution n (N) should be
such as to divide the remaining N-1 cells into nearly equal subsets,

i. e., N-n = n -1. Thus, the large multiplicity of solution is not
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expected. Furthermore, in some cases the midpoint is in fact

not a solution. For example, for N = 25, the point n = 13 divides

the remaining 22 cells equally, but is not among the solutions.

IV. PROOF OF OPTIMALITY

In this section we shall prove that the solutions cf (6) are

indeed given by (7) and ( 8). The proof proceeds in three stages.

First, it is shown that the right-hand side of (6) is minimized by

a specific choice of policy n (N). Next, T(N) will be derived.

Finally, the multiplicity of the policy solution is found.

A. If we let f(N) = NT(N), (6) is simplified and can be rewritten as

min C "1f(N) =N+ l4fn<N |f(i-l) +f(N-n) ^ (9)

We begin by proving the following theorem:

Theorem 1: Under the conditions f(0) = f(l) = 0, the mini-

mization in (9) is achieved with n = n (N), Where for all positive

integers m,

n*(4m-2) =n*(4m-l) =n*(4m) =n*(4m+l) =2m (10)

Proof: It is.seen thatlheorem 1 is equivalent to the

following set of equations with m ranging over all positive integers:

f(4m-2) = 4m-2 + f(2m-2) + f(2m-l) (Ha)

f(4m-l) = 4m-l + f(2m-l) + f(2m-l) (lib)

f(4m) = 4m + f(2m-l) + f(2m) (He)

f(4m+l) = 4m+l + f(2m-l) + f(2m+l) (Hd)

We proceed by induction. First, by enumerating all possibilities,

we find that (11) is true for m=l. Next, we assume (11) to be true for
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m = 1,..., k, and prove the following lemma:

Lemma: Equation (11) being valid for m=l, 2,.. •, k, implies

f(n+l) - f(n) &f(n-l)- f(n-2), n=2,..., 4K (12)

f(n+l) > f(n) , n=l, 2,..., 4K (13)

f(2n) - f(2n-l) > f(2n+l) -f(2n)j,n=l, 2,..., 2K (14)

Proof: If (11) is true for m=l,..., K, then

[f(4m+l) - f(4m)] - [ f(4m-l) - f(4m-2)]

= [f(2m+l) + f(2m-2)] = [f(2m) + f(2m-l)], (15)

m=l, 2, • • •, K.

Now under the same assumption, [compare (lie) and (9)]»

f(2m) +f(2m-l) = min jf(n-l) +f(4m-n) j l<m<K (16)

Therefore, it follows that

f(2m+l) + f(2m-2) £. f(2m)+ f(2m-l), l^m^K (17)

and

f(4m+l) - f(4m) ^ f(4m-l) - f(4m-2), l^m<K (18)

Similarly, we find that

f(4m-l) - f(4m-2) = f(4m-3) - f(4m-4) (19)

f(4m) - f(4m-l) >.f(4m-2) - f(4m-3) (20)

f(4m-2) - f(4m-3) = f(4m-4) - f(4m-5), m^K (21)

-6-



Relationships (18)-(21) imply (12), and together with the fact

thatf(2)~f(l)>0 and f(3)-f(2)>0 imply (13).

Now, if (11) is valid for m=l,..., K, then

f(2m) - f(2m-l) > f(2m+l) - f(2m)

implies

f(4m-2) - f(4m-3) > f(4m-l) - f(4m-2)

and

f(4m) - f(4m-l) > f(4m+l) - f(4m),

for m=l, 2,. o., K. Therefore, (14) is implied by f(2) - f(l) > f(3) - f(2).

This latter is easily verified.

NoW, we proceed with the main part of the proof for Theorem 1.

First we write f(4K+2) as

min f

f(4K+2) =4K+2 + 2<n<4K+l |£{n'l) +f<4K+2"n>

=4K+2 +min«| [f(2n-l) + f(4K+2-2n) ],
K

( min
in<

|l^n^

min [,f(2n)f f(4K+l-2n)] V (22)
l<n<K J

By (12) of lemma, (22) is reduced to

f(4K+2)=4K+2 +minJ[f(2K+2)+ f(2K-l)], [f(2K)+f(2K+l)]+ min< [

= 4K+2+ f(2K)+ f(2K+l),

where the last step follows from (12). We note that we have extended

(11a) to m=K+l, and (12) to n=4K+l.
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Similarly, by the use of (12) and (13), f(4K+3) can be written

f(4K+3) =4K+3 +min J2f(2K+l), f(2K) +f(2K+2)i (23)
It follows from (14) that

f(2K+2) - f(2K+l) £.f(2K+3) - f(2K+2)

and it follows from (12) that

f(2K+3) - f(2K+2) >f(2K+l) - f(2K).

Therefore,

f(2K+2) + f(2K) > 2f(2K+l)

and from (23)

f(4K+3) = 4K+3 + 2f(2K+l). (24)

Following a procedure nearly identical to the above, we

can show that

f(4K+4) = 4K+4 + f(2K+l) + f(2K+2) (25)

and

f(4K+5) = 4K+5 + f(2K+l) + f(2K+3) (26r)

By induction, Theorem 1 follows.

B. The functional form of f(N) is given by the following theorem:

Theorem 2. Equation (9) is satisfied if and only if

f(2k+1+ 2m-l) =2k+1(k - ^) +2mk +3m +1, k= 0,1,... (27a)
m =0,1, ..., 2T»
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f(2k+1+2m) =2k+1 (k-I) +(2m+l) k+ 3m+3, k= 0,1, ... (27b)

m=0,1, ...,2

Proof: The "only if" part follows simply from the fact that no two

functions can both be the minimum without being equal. To prove

(27), we again use induction. That is, we verify (27) for k= 0

and assume it to be valid for k= 0,1,..., K-l. If it follows thereby

that (27) is valid for k= K, then (27) must be true for all k. The

detailed proof involves substitution of (27) in (11) and elementary

manipulation, and will be omitted here.

C. Theorem 1 is strengthened by the following result:

f[n*(N) - 1]+ f[N-n*(N)]

min f
^f(n)+ f(N-n)^ (28)

l^n^N I

if and only if

* 1t4-T lc k-ln (2K+i+2m) =2 +j, j=0,1,..., 2m+l, 0^m< 2 (29a)

j=2m-2k+l,...,2k, 2k"1^m<2k-l
j

n* (2k+1+2m-l) =2k+2j, j= 0,1,..., m, 0^m^2kn (29b)
_k-l ,k-l ->k-l k

j = m-2 ,...,2 , 2 ,$m^Z

Proof: The "if" part is proved by substituting (29) and (27) in (28)
• "k&l jc+2

and verify. In the process it is also shown that for 2 ^N^2T" «»1,
k * k+1the only solution in the range 2 ^n ^2 are those given by (29).

Thus, it remains only to show that no value of n greater than

k+1 k
2 or less than 2 is a solution.
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k+1 k-1Consider N= 2 +2m, 0^-m<2 . Since we know that

* k
n = 2 is a solution, we need only to show that (similar results

* k+1
follow for n >2 by symmetry)

f(2k-l) +f(2k+2m) <f(2k-2) +f(2k+2m+l)

k k (30)< f(2 -3) + f(2K+2m+2) ^ ...

First of the inequalitites in (30) is easily verified using (27). The
k-1 kremaining inequalities follow from (12). For 2 ^m^2 , we

* k+1
use n = 2 , and from (27) and (12) show that

f(2k+1-l) +f(2m) <f(2k+1) +f(2m-l) ^ f(2k+1+l) +f(2m-2)

^... (31)

k+1
For N= 2 +2m-l, the proof follows nearly identical

lines and will not be reproduced here.
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