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ABSTRACT

The formalism of classical mechanics is extended to

yield an energy function analysis of single degree of freedom,

linear time-varying networks. With the aid of the newly found

modifications of the classical Lagrangian and Hamiltonian, the

behavior of the single loop R(t)-L(t)-C(t) network is discussed

through analogy with familiar classical quantities. A general

energy analysis is used to investigate the stability of n degree

of freedom, time-varying, networks.

The Hamiltonian formulation, through its associated can

nonical equations, leads to a qualitative phase plane specifica

tion of single degree of freedom network behavior. Moreover,

the Hamiltonian formulation leads directly to stability criteria

which are expressed in terms of the network element values

only. Upper and lower bounding functions for the network

stored energy are obtained which lead to separate necessary and

sufficient conditions for network stability.

The energy function analysis is extended to n degree of

freedom, linear, time-varying networks by two different methods,

The modified Lagrangian is obtained for sorrte special classes

of hme-varying networks In particular, a Lagrangian is ob

tained for a Tossy, time-varying, distributed network, and for

an iterated, time-varying network.

An analysis on the basis of general power and energy

considerations yields upper and lower bounding functions.for the

stored energy in n degree of freedom, linear, time-varying

networks. These bounding functions are vised to investigate the

possible stability and instability of such networks. The ground-

state behavior of parametric amplifier circuits commonly in

use is discussed in examples.
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I. INTRODUCTION

The techniques of analysis of linear, time-varying ,elec

trical networks have evolved mainly from two classical standpoints.
til

One method replaces the n order, variable coefficient differential

equation which describes the network with a system function H(s,t),

derived by assuming a drive of exp(st). The alternative analytical

technique involves describing the network by a single first-order

matrix differential equation. Neither of these characterizations

has been overly encouraging regarding the ultimate solution of

time-varying network problems; they both have thoir domains

of applicability but there is certainly room for. yet other techniques.

In classical lumped, stationary network theory, the

system function H(s) has become the standard tool af analysis.

This-function owes its utility to the fact that exp(st) is an

eigenfunctibn^ '̂̂ ^ of the network differential equation for
certain values of s, which can be obtained algebraically. It is

unfortunate, though, that such a simple drive does not yield

the same powerful results for the general time-varying network.

To be sure, the H(s,t) characterization has led to many

interesting .and useful results in the synthesis of special classes

of time-varying networks.^ On the other hand, its tendency
to be identified with time-invariant H(s) of old could lead to

some serious misconceptions regarding network behavior

(e.g. , "moving poles" in the left-half s-plane indicating

stability).

It appears, from reading surveys of the progress of the
28

theory associated with time-varying networks, that the

first-order matrix differential equation characterization is

gaining in esteem. The method for explicitly writing out the

state equations (A-matrix characterization) of a given time- .
4,18

varying network has been advanced in two different treatments; ,
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however, beyond the writing of the equations, their solution

entails mathematical rather than engineering research. There

is little hope of a major breakthrough in this direction uhtil new

mathematical tools are evolved -» while this evolution is a comin.

mendable task, it would hardly seem that engineers are the best

equipped to undertake it.

The tendency to replace as rapidly as possible the physi

cal network, as though it were som^ftiing repugnant, with a neut"

ral set of coupled first-order differential equations seems to

have been overplayed. A network is not merely a set of equa-

tionsj but is a collection of physical elements (albeit they may

be mathematical models for physical elements) with certain

properties which may be used to analytical advantage before

the network elements are relegated to equal status in the com

ponents of differential equations. To utilize fully the element

properties^ it will be desirable to seek a mathematical charac

terization which retains the distinctions among them.

In considering the time-varying network consisting of

time-varying resistances, R(t), time-varying inductances, Li(t),

and time-varying capacitances, C(t), it is natural to retain the

second-order differential equation approach:

•jjp [lj(t)q ] + R(t)q + •^^•^y-q = e(t), (1-1)
#

where e(t) is the driving voltage and q(t) is the unknown current

in the series RLC branch. It matters not how the elements

arise (see Appendix I); any network which can be modeled with

linear, time-variable R's, L's, and Cjs (even a nonreciprocal
network) is a valid candidate for considerations. The job of

writing the network equations is now as easy as that for time-

imiaiiiant networks, but it still remains to evolve a new analy

tical technique.
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The network stored energy is a useful measure of per

formance for any electrical network regardless of whether the

network is stationary or time-varying, or even nonlinear. The

ability of an electrical network to transfer energy from one

form to another is one of its more interesting and useful pro

perties. Thus, a study of the energy behavior of the network

can yield much information on the utility of the network. Equa

tions of the form (1.1) can be used to evolve energy functions
13 19analogous to those of classical mechanics. * These energy

functions must be tailored to fit the usually dissipative time-

varying networks; these modified counterparts of the usual

energy functions yield many useful quantitative and qualitative

results.

The energy funfction analysis is not being advanced as a

panacea --it should only be used in conjunction with the other

methods mentioned above and within its own domain of appli

cability. Among its many advantages are, however, suita

bility to modern computational devices and ability to yield

rapidly qualitative information on the response of a given

network.

In Section 11 the formalism of classical mechanics is

extended to yield an energy function analysis of single degree

of freedom, linear, time-varying networks. With the aid of

the newly found modifications of the classical Lagrangian and

Hamiltonian, the behavior of the single loop R(t)-L(t)-C(t)

network is discussed in the phase plane.

The Hamiltonian formulation, besides providing a set of

canonical equations for the system, leads directly to stability

criteria which are expressed in terms of the network values

only. Upper and lower bounding f-unctions for the network

stored energy are obtained in Section III which lead to separate

necessary and sufficient conditions for network stability.
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The energy function analysis is extended to n degree of

freedom, linear, time-varying networks by two different me

thods in Section IV. The modified Lagrangian is obtained for

some special classes of time-varying networks. In particular,

a Lagrangian is obtained for a lossy, time-varying, distributed

network, and for an iterated time-varying network.

The analysis of Section V on the basis of general power :.

and energy considerations yields upper and lower bounding func

tions for the stored energy in n degree of freedom, linear,

time-varying networks. These bounding functions are used to

discuss the possible stability and instability of such net

works. The ground state behavior^ of parametric amplifier cir

cuits commonly in use is discussed in examples.

-4-



n. ENERGY FUNCTION ANALYSIS OF LINEAR, TIME-VARYING

NETWORKS WITH ONE DEGREE OF FREEDOM

The techniques of analytical mechanics have come to be

recognized as powerful devices for the analysis of any physical

system. In the classical treatment, however, there have been

many assumptions which restrict the utility of these analytical

tools. The linear, time-varying electrical network provides a

convenient basis for the extension and application of some of the

ideas which are embodied in analytical mechanics. A long recog

nized advantage of the analytical mechanics approach has been

the ability to characterize partially a sy stem without seeking a

specific solution to the equations of motion; this advantage will

be exploited in the following two sectian's;

II. 1 Time-De pendent Energy Functions.

13
In the Hamiltonian formulation, .. the absence of explicit

time in the Hamiltonian indicates that a first integral of the

equations of moitimg. can be obtained. More often than not, the

theory is concentrated about just such conservative systems.

Electrical networks, as well as most other practical macro-

scropic systems, usually contain a significant amount of damp

ing (sometimes negative) in the form of resistances. This

damping must be evidenced in a Hamiltonian which is explicitly

time-de pendent, if a Hamiltonian is .to be obtainable at all.

In order to obtain the analogs to the classical energy

functions, the price paid must be large, but the rewards more

than offset it. The words Lagrangian, Hamiltonian, conjugate
13 19momentum, etc. * will be retained, but the mathematical

entities which they denote will not be the same. In particular,

if the Lagrangian or Hamiltonian is to be thought of as an energy

function describing system energy, it only characterizes the

immediate system under scrutiny. Thus, a loss or gain in
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energy in an isolated part of the system can be accounted for in

terms of the time-dependence of its "energy functions. " For

example, if a resistor is to be considered solely as a network

element, the fact that it dissipates electrical energy in the

form of heat must be accounted for in an explicit time-depen

dence of the Lagrangian or Hamiltonian» Similarly, a driven

("pumped") nonlinear energy storage element can be considered

to be a time-variable energy storage element to account approx

imately for energy extracted from or delivered to the pump.

The above described contrivances are necessary to allow

the analysis of systems containing energy converting devices -

where it would be convenient to exclude some of the energy

forms (e.g., heat) from the analysis. It is debatable as to

whether the issue must be thus skirted because of physical or
13 19mathematical dicta. Hamilton's principle * , a very power

ful tool when it is a variational principle, although it is couched

in terms of physics, seems upon closer inspectpx>n to depend

upon quirks of mathematics for this property. Consider, for

example, the simple stationary network of Fig. 2.1. Its gov

erning equation,

[Lq ] + iq = 0, (2.1)

is the Euler-Lagrange equatioi^^P. ,

d / 9c£. _ « 17 7\

associated with the Lagrangian

X(q,q) = ^Lq^ - (2.3)
But there is an equally valid governing equation (in fact the one

more often encountered in electrical engineering) on the cur

rent basis.
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•j^[Li] + /"idt =0; (2.4)'i] +^J^-
it has no associated Lagrangian. Thus, the charge q(t) assumes

a more important role thaitlthe curirent i(t) -- strictly from a

consideration of the mathematical formulation. Similarly, the

flux <j>(t) takes precedence over the voltage v(t) = c))(t) in these

analyses.

In application to time-varying networks, the techniques

of analytical mechanics are certainly not panaceas. They Cein-

not be expected always to provide closed form solutions where

they were previously unobtainali^e from other more conven

tional forms of mathematical analysis. But they can provide

insight into the qualitative ( and even quantitative) behavior of

a network without requiring any knowledge of the form of the

solution. Thus, as one might expect, for time-invariant net

works the energy function analysis does not provide as much

information as the exact solution. However, it provides a

wealth of information for time-varying networks -- vhere the

exact solution is usually not available. Furthermore, all of

the theory of classical mechanics (e. g., the phase plane,

state space, and Hamilton-Jacobi theory) can be carried over

en masse to provide new insights into the behavior of time-

varying networks.

II. 2 Derivation of the Variational Principle.

The single degree of freedom, linear network to be

considered is the single loop network of Fig. 2. 2, in which all

of the elements are time-dependent. Anf. linear, single degree

of freedom network will obey with obvious modification (e. g.,

duality) the same set of equations; and, hence; will be gov

erned by similar results.

The time-varying LC network of Fig. 2. 3 enjoys .the

status of possessing a Lagrangian:

-7-



^(q.q.t) = + e(t)q. (2.5)
10

The Euler-Lagrange equation ,

^ QoC _ Q
dt a « -a q

(2.6)

associated with this Lagrangian is the governing equation of

the network

^ [L(t)q] + q - e(t) = 0. (2.7)

It is well-known that to formulate the Lagrangian for a holo-

nomic, conservative system, one need only take the difference

between kinetic and potential energies.

Fig. 2.1. Time-invariant LC Loop.
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h

if dt =0. (2.9)
h

The network of Fig. 2. 3 has a Lagrangian, and the Euler-

Lagrange equation describes its behavior; yet it is surely not

conservative -- the time-varying inductance and capacitance

indicate an ability to introduce or remove energy from the cir

cuit. The network of Fig. 2. 2 is the same network as that of

Fig. 2.3, only it includes also a time-de pendent resistance.

This "^ssipative" network is certainly no less conservative in

general than the other, yet its governing equation,

-^[L(t)q] + R(t)q + = 0, (2.10)

is not the Euler-Lagrange equation associated with any obvious
27

Lagrangian. In usual practice the governing equation (2.10)

can be obtained by including the Rayleigh dissipation function,

J(^»f) = ' (2.11)

with the Lagrangian (2.5) in a modification of the Euler-Eagrange

equation:

^ A. ^^ —0 (2 12)

This formulation, although it does lead to the governing equa-
1 *2tion from so-called energy functions (•2-^(^)91 rhas the dimen

sions of power), has the decided disadvantage that it divorces

the resistive from the inductive and capacitive parts of the net

work for any analyses not oriented toward obtaining the govern

ing equation.
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e(t)

C(t)

Fig. 2.2. Single-Loop, Linear, Time-variable Network.

C(t)

Fig. 2. 3. Time-varying LC Loop.

T - V (2.8)

while the Euler-Lagrange equation governing the system arises
13 19

from the variational form of Handlton's principle, '

-9-



It seems that the inability to include the resistance in

the compact form of Lagrangian analysis does not stem frotn

conservative or nonconservative aspects of the network element

itself, but rather from its peculiar fate of being the coefficienir

of the term q in the governing equation (2.10). This mathe

matical quirk can be overcome by the formulation of a modi

fied Hamilton's principle for the governing equation multiplied

by an arbitrary (for the present), non-zero time function D(t):

D(t) [L(t)q ] + R(t)q +- |̂̂ q - e(t)l = 0.
(2,13)

The inverse problem of the calculus of variations --

that of formiilating the variational principle from which a

given differential equation arises -- has received little atten

tion. Recently, two different approaches to this problem
20, 24

have been evolved '•••_* the pragmatic approach presented

here relies heavily upon the manipulability associated with the

variational 6-notation. . Firat one must multiply (2.13)

by the function 5q and integrate between fixed instants of time

tj and t^:

^(t) [L(t)q] +R(t)4 + - ®(t)| 6qdt =0,
H

where

6q(t^) = 6q{t2) = 0. (2.15)

Upon integration by parts of the first term in the integrand,

(2.14) becomes*

♦Henceforth, the explicit time-dependence will be omitted ex
cept where it is necessary or desirable; thus, C(t) is simply
written C, etc.
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DLq6q I -DL.46q - DIjq6q + DK.<i6^ +"^Sq

•}- De6qj dt = 0. (2.16)

The first term on the left vanishes by virtue of (2.15); and, if,

'DL. + DR = 0, (2.17)

(2,16) can be rewritten

eqj-dt =0. (2.18)
An acceptable solution to (2.17) is

to

r

D(t) = exp(j dg ) , (2.19)
^o

although this function multiplied by any constant (positive or

hejgative) will'siifiice. Multiplication of (2.18) by -1 yields
the desired modification of Hamilton's principle (2. 9) as

®' rlfj "2^1^ +e(t)q|.dt =0.
1 \ O / ^ (2.20)

The integrand in this equation can be identified as the modified

Lagrangian,

£q.4.t)= exP^ -S||̂ d|̂ |̂ L(t)q '̂- +e(t)qj.
which yields through the Euler-Lagr^ange equation (2. 6) the

modified governing equation (2.13). For a rigorous demonstra'
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tion that the modified Hamilton's principle (2.20) is a vari-

ational principle leading to the governing equation (2.13), see

Appendix II.

Because it provides the dissipative element R(t) with

a place in the energy function formulation, the function D(t)

deserves, certainly as much as (2.11), the name dissipation

function; it will be designated so in the sequel. Although D(t)

coTild be chosen multiplied by an arbitrary constant, the form

(2.19) is desirable because then the condition R(t) = 0 leaves

the modified Lagrangian (2. 21) in the form of the original

Lagrangian (2.5).

11. 3 The Hamiltonian Formulation.

The modified form of Hamilton's principle (2.20) makes

available to the dissipative network with one degree of free -

dom a wealth of concepts and techniques from analytical mech

anics. The I^mlltohian and Hamilton-Jacobi theory can be

evolved from the Lagrangian (2.21) by the usual straightfor

ward manipulative techniques expounded for classical mech-
13 19anics. jfj. : In the past these concepts have been thoroughly

exploited for conservative systems, but little has been done to

link their powerful insights with dissipative systems.

The conjugate momentum associated with the coordi

nate q is

p = 4> t) . (2.22)
aq

therefore.

P== exp^
or

p if D(t)L(t)q . (2.24)
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If D(t) were unity (1. e., R(t) = 0), the conjugate momentum p

would simply be the flux M L(t)q associated with the induc

tance Li(t). Thus, the loss of the simple dual relationship be

tween the charge and the flux is part of the price paid for the

inclusion of the resistance in the energy formulation.

The modified Hamiltonian is obtained by performing a
13 .

Legendre transformation i-» on the Lagrangian;

y^(q,p»t) s pq -^(q,q, t); (2.25)

hence,

= 2ci<t^>L(t) D(t)e(t)q.
(2. 26)

D( t) is no longer the multiplicative factor which it was in the

Langrangian (2. 21) because of its appearance in p ( 2. 24).

Hamilton's canonical equations for this system take the form

Tp^" -D(t)L(t) P' (2. 2'%)

P=- •ff= - ^ <2-27b)
Hence, the modified governing equation (2.13) can be reformu

lated in terms of a first-order matrix differential equation:

1

D(t) L(t)

+ D t

0

(2. 28)

Naturally, the original network could have beeni.idescivibddin

terms of jany number of sets of two first-order differential
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equations the particular utility of the Hamiltonian.

approach will become evident as its exploitation develops.

11'. 4 ; Hcunilton-Jacobi Theory.

A canonical transformation to obtain the solution q(t) of

the governing equation (2.13) can be obtained via Hamilton's
13 19principle function S(q,t). * * S(q, t), the generating func

tion of the canonical transformation to the solution coordinates,

satisfies the Hamilton-Jacobi partial differential equation

^ H* +If = (2. 29)
where

= p. :f2.r30)

5It would suffice to find the solution for the homogeneous case,

where the drive e(t) =; 0 then, the Hamiltonian (2. 26) becomes

% (<l»Pft) = pnj. P (2.31)

In this case the Hamilton-Jacobi equation is

J

t .as .2 . b 2 , as _ ^ ,,
2DL, 2C *1 ^ " (2. 32)

The solution may be taken to be of the form

s = y(t). (2.33)

Inserting (2.33) into (2. 32) yields

in^
2^ DL^ ^ ^ = 0. (2.34)
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which leads to the first-order nonlinear differential equation

for y(t)

g
This equation is recognized to be the Riccati equation,

which can be transformed into a second-order, linear differ

ential equation by the change of variables

y(t) = DL^ : (2. 3^)

This substitution leads ultimately to the equation

^ (DLz) + -gz = 0, (2.37)

which is the original governing equation (2.13) for zero drive.

Hamilton-^Jacobi theory appears in this instance to have led

in a circle, but other choices for Hamilton's principal func

tion thati the form (2. 33) might yield results of greater interest.

It is interesting to note that if the capacitance is omitted

from the original network (t e.» = 0), the resulting

Riccati equation

has the solution

r—t ^

y(t) =

m

(2.40)

•o

From Hamilton-Jacobi theory, q may be solved for in terms o|

time and constunts a and p with the relation

-16-



R - s(q> ^>0.) .
^ ' da

therefore,
r—t

q (t) = de
^ mmn

(2. 41)

+ a (2.42)

Since in this system on|y the current is of importance, a is of

no consequence, and

i(t) =q(t) = ]^t)L(t)
or, from (2.19)»

R(l)
"mi

(2.43)

(2.44)

This result could have been easily obtained, of course, by

direct integration of the first-order, linear differential equa

tion governing the network, but derived in the above manner

it does demonstrate the utility and unity inherent in the energy

approach.

Again, analytical mechanic.s- bsLs-shown itself to be

readily applicable where the answer is also obtainaliie by

straightforward methods, but the hope for the approach is not

in the providing of exact solutions so much as to provide in

sights into those problems where perhaps exact solutions can

not be obtained.

II.Phase Plane Analysis.

The phase plane offers an excellent medium for the in-

vestigatipn of qualitative aspects of the behavior of single

degree of freedom networks. In particular, one can obtain

restrictions on the nature of the system point trajectory in

the phase plane (q-p plane) and upper and lower bounds for

-17-



the time of a revolution of the system point (point with instan

taneous coordinates q(t) and p(^)in the phaser plccne.

For a conservative system, the system point traces a closed

trajectory in the phase plane; [howev^er,, for the general time-

varying network, the more exotic behavior pictured in Fig.

2.4 might be expected.

Fig. 2. 4. Polar Coordinates and the System

Point Trajectory in the Phase Plane,

For unexcited, single loop networks where both Li(t) and C(t)

are nonnegative (a condition of local passivity, see Appendix I),

the system point must always move about the origin in the

clockwise direction. This result relies oni.a.n analysis of the

system cpoint behavior in terms of phase plane polar coordinates:

r = (2.45a)

and

e = tan (-|) (2.45b)

Time differentiation of (2.45b) gives

-18-



e= MJlSP . (2.46)
q + p

Hamilton's canonical equations (2.27) for the undriven network

are

q = ^ p (2. 47^)

ani

p = - Dq (2.47b)

0 ♦

Substitution of these valuer for q and pinto (2.46) yields

® = "~Z

Substitution of the inverse of the transformation (2, 45),

q = r cos 0 (2.49a)

and

p = r sin 0 , (2. 49b)

into (2. 48) gives, finally,

0= cos^ ® sin^ j^ . (2. 50)
Thus, the Hamilton's canonical equations for the undriven sys

tem are separable when transformed into polar coordinates.

But more interesting is the fact that, since D(t) is positive

regardless of the sign of R(t), for nonnegative L.(t) and C(t),

0 is nonpositive and the system point encirples the origin in

the clockwise direction.

Another interesting consequence of (2. 50) is that it can

be used to find bounds on the time required for a revolution of
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the system point in the phase plane. Upon the expansion of
2 2sin 6 and cos 6, (2. 50) becomes

- "Z" IJc ^ DJDL^ ^C DL
) cos 26 (2. 51)

This expression indicates the instantan^us bounds on the

value of "0:

and

+ dL> +
D

C • mj] ®'
One can now define the quantity (t^) such that

1 1 D 111 >

and the quantity T^(t^) such that

t +T (t )
o _u^ o'

t +T«(t )

t +T (t )
o ^u^ o'

(2. 52a)

(2.52b)

(2. 53a)

2it =
edt = e(t^)-e(t^)-

-e (t +T (t ))
^ o u ^ o

(2. 53b)

It is clear from these relations that the period of a single

revolution of the system point in the phase plane beginning at

time t is bounded by Tnit ) and T , (t );
o J(^ o' u ^ o'
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(2. 54)

where actual period. These bounds can be tightened

by redefining (t^) and ^^q)'

Ztt

and

Ztt

t +T (t )
O /->U o

l^CL'

J^.D
c k^dl) -

KjD j
C •" KpSL

C K2DL

dt

(2. 55a)

dt

(2. 55b)

The positive constants and K2 have been introduced here
because D(t) can be taken with any constant multiplier -- recall

equations (2.17) and (2.19) and the accompanying discussionj

the choice of these denormalized D's affects only the shape

of the system point trajectory, not its period _of revolution.

and K2 are to be chosen ultimately so as to minimize the
difference between T (t ) and T . (t ).

u^ o' i o

It is interesting to note that if

^ =k2. (2. 56)
D L

where K is an arbitrary positive constant, then the time of

one revolution from t^ is given exactly by T'(t^), where

t + r(t )
o - o

(2. 57)

Condition (2. 56) is met in a special class of conservative

systems to be discussied in the next section. As an example
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of bounding the period, one can consider the stationary series

RLiC network. There

5(t-t ) (2. 58)
D(t) = °

and one can take

Ki=K2=Vx (2.59)

(this is not the best choice, but merely a convenient one).

Then, from (2. 55),

° m + X 2irVi^) (2. 60|i)

and

" X^V^- (2.60b)

For this choice of to be meaningful (2. 60b) indicates that

1 - ^2TrvC^0 (2.61)
±J

must hold; otherwise, a better K2 must be sought or no finite
upper bound can be obtained.

IJ. 6 State Space and the Instantaneous Energy Ellipse.

More interesting than the foregoing phase plane analysis

is the concept of the instantaneous constant energy surface in

the phase plane, which arises in the state space description

of the system. In the discussion of the system behavior in

state space, ideas drawn from the usual energy fimction analy

sis of conservative systems are exploited.
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The state space 19 is a three dimensional space (for a

single degree of freedom network) consisting of q-, p-, and

t-axes; thus, it is the phase plane with an orthogonal time

axis appended. For the time-invariant conservative system,

the equation

%(q»p) = (2. 62)

(where is usually the constant stored energy) defines an

elliptic cylinder, the surface of which represents the pos

sible area of system point behavior (Fig. 2. 5).

t

Fig. 2. 5. Surface of Possible System Point

Behavior in State Space.

For the dissipative, time-varying network, one may define an

equivalent cylinder by considering the equation
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%(q. P»t) ^ E^(t). (2.63)

At any time t, the locus of all points (q-p) which satisfy

(2. 63) will give an ellipse parallel to the q-p plane in state

space. As time evolves this variable ellipse will describe a

variable cross-section cylinder similar to that in Fig. 2. 6;

and, as time evolves the system point traces a line of this

cylinder. One may think of the surfaces at constant t as

orbits of system point behavior (dqui-energy) which would

occur if explicit time were somehow miraculously stopped and

the system were allowed to behave as a conservative system.

It is after all only in the evolution of time that energy

can be expended; these ellipses could be obtained if time

were stopped and the stored energy were allowed* to evolve

through all of its possible states at that instant.

One criterion for a conservative scleronomous system is

|2f=|^ =0. (2.64)

For the Hamiltonian of the undriven network,

^ (q» P» f) = 2DLt^ ^ 2c^ *

(2. 64) yields

To guarantee this condition would require that

R = 0 (2.67a)

^ +f = 0. (2.67b)
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This dual requirement is much too stringent^ for it is ecpii*

valent to requiring that the cylinder of Fig. 2. 6 resemble

that of Fig. 2. 5.

Fig. 2.6. State Space Cylinder for

Time-varying Networ k.

Another condition which is met in the tirtie-invariant conser

vative system is that the area enclosed by the system point

ellipse be the same for any plane t= constant. Equivalently,

one can ask'that the area enclosed by the instantaneous
f

ellipse defined by

be a constant (the ellipse can change orientation). This

ellipse has axes

2C^/2a
=V-H

-25-
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(2. 69a)



parallel to the q-axis^ and

baV^DLEo (2.69b)

parallel to the p-axis; hence, the area of the ellipse is

= -^ab =ZirVIc E,:_A%h (2. TO)
o

or

r(t) = 2ir-v/LC^(q. p,t). (Z.K)

The time derivative of this" area is

f= ZitVlC i- (2.T2)
or, from (2. 21)

. •

r= - i -|̂ )x;C(q,q.t). (2.K3)

Thus, a condition which guarantees that a hetwork is con

servative in that its phase plane ellipse is of constant area is

C L 2f^ — ..
r-X'TT^®' <2.74)

this fiinction will take on much more significance in the next

section on stability. Moreover, condition (2.74) is equivalent

to contition (2. 56), for which the period of revolution of the

system point in the phase plane is exactly obtainable.

A network which satisfies condition (2. 74) has the

general solution

q(t) = K, sin( j + K, ) , (2.75)
^ U Vl(6 )C(| )

a function which is reminiscent of that obtained for the loss

less, time-invariant network. In slightly damped systems
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thisf.iTaight prpye to be a good first-order approximatioii to

the solution. The period of this function agrees with that

found in (2.57),

The phase plane and state space analyses have yielded

many qualitative aspects of the behavior of the general single

degree of freedom, linear, time-varying network. They

allow the carry over of much of the intuition associated with

conservative systems, but they are far from providing the •

exact answers obtainable for conservative systems.

II. 7 Analysis of Driven, Time-Varying Networks by

the Modified Hamilton* s Principle

A common method of analysis for a parametric amplifier

circuit containing a single time-varying element is to expand

the response into a Fourier series and retain only certain
3 9desired terms. ' The method is justified by assuming, for

example, a circuit configuration which by means of band-pass

filters allows only the signal frequency o) and the idler frequency

(0^ (Wg + =Ztt/T, whereT is the period of variation of the
time-varying element) to circulate (Fig. 2. 7)

band-pass
filter

at CO

sin(c>) t)

C(t)

band-pass
filter

at 0).

Fig. 2. 7. Negative-Resistance-Type

Parametric Amplifier.
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There can be other assumptions on the model corirespending

to other physical assumptions, but this one will suffice for

demonstration purposes. The above assumptions are equiv

alent to the statement that only a flux ^

<)) (t) = Kj sin Wgt + K2 cos + K^sinw^t + K^cosw^t (2.76)

exists across the time-varying capacitor in the equivalent

circuit of Fig. 2. 8.

1+ V.sin(co^t)
6 i G =

R+R
s 7 C(t)

Fig. 2. 8. Single Degree of Freedom Equivalent Circuit for

Negative-Resista,nce Parametric Amplifier.

The Lagrangian for this situation is

J^(<|>, t) = ex-'̂ ^i •eif
yd| (t)4.^- i(t)4. U (2.77)

*On thq-ncLde_basis, dual to that presented previously, flu^»
which is the tirtie~N ji.ntegral of voltage, must serve as the '
fundamental coordinate.
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where

and

G =
R + R.

s

i(t) =
R+R,

V sin w t + V. sin ca.t
S 8 11

Hamilton's principle

I <!>» <!>» t)dt = 0.

may be exploited by the approximation technique of Ritz

to obtain approximate values for the steady-state ^response.

To find the steady-state response, one rtiust take the interval

j. A 217 2itt~-t, =177 = m n — ,
2 1^ 0).

1 s

(2. 78)

(2. 79)

(2.80)

16

(2.81)

where i, m, and n are all integers. Then the assumption that
1 A

the natural boundary conditions hold at the end points

assures the steady-state. The Ritz method dictates that the

variation in (2. 80) is equivalent to the four equatfions

d

81^ i(<l>» t)dt== dkp (i = 1, .. ., 4), (2. 82)

where

<^(<|>» <t>» t) = exp X(R+Rg)C(|)
X

cos - <o.K2 sin «.t + cos sin

V sin <*) t + V. sin w.t x
s s 1 1Tr+r;t
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sin Wgt + cos sin co.t + cos 83)

These equations are ideally suited for solution by digital computer

to obtain an excellent approximation to the actual solution-- with

no approximation as to the nature of C(t). Furthermore, the

terms involving C(t) can always be expanded in Fourier series

to return to previously given computational method s. The

modified Hamilton's principle has shown itself to be a very

powerful tool for the quantitative as well as the qualitative

analysis of time-varying networks.

II. 8 Summary

In this section a consistent mathematical theory has

been developed to place the damped, linear, single degree of

freedom, time-varying network in the clothing cf classical

mechanics. The thorough exploitation of this new approach

has led to many new insights into this type of system through

analogies with classical conservative systems. Moreover,

the stability analysis to be presented in the next section

reveals the full utility of the energy function characterization.
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m. STABILITY OF LINEAR, TIME-VARYING NETWORKS

WITH ONE DEGREE OF FREEDOM

Thus far many analogies between nonconservative and

conservative systems have been made by means of the modified

Hamiltonian analysis. The avowed goal of this analysis was to

include in the ' energy formulation all forms of energy trans

fer, including especially that arising from resistances. An

added advantage, though, has been obtaining the network dif

ferential equations in canonical form. The strange integrating

factor D(t) has brought a complete solution no closer, but has

yielded a Hamiltonian (Eq. 2.26) capable of rendering a great

deal of insight into the qualitative behavior of the network.

The term stability as employed here will mean ground-

state stability--where, if an unexcited network is given an

arbitrary initial stored energy configuration, there is a net

decrease in this energy over a given time interval. Other

conditions should certainly enter into stability considera

tions of time-varying networks; in view of assumptions

(Al. 6) in Appendix I, one would also consider the maximum

values of the coordinates and momenta. Upper and lower

bounding functions on the stored energy will be obtained

which lead directly to sufficient conditions for stability or

instability in terms of element value variations only.

The coordinates on the loop basis are charges, and on the
node basis the coordinates are fluxes.
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III. 1 Energy-Bounding Functions

The Hamiltonian (2.26) need not only be considered

as the generator of the set of canonical equations of the

network (2. 27) since it possesses several other properties

of great utility. It is the canonical nature of the Hamiltonian

and the significance of its explicit time-dependence which

set it apart as a tool of network analysis. The total time

derivative of the Hamiltonian is also its partial time deriv-

*•13
ative,

•g^^(9.»P»t) = (<1» P» t), (3.1)

and it is this property which renders it so useful in stability

analyses.

The Hamiltonian,

of the undriven, single loop network of Fig. 3.1 satisfies

the relation (3.1).
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R(t) L(t)

Fig. 3.1. Undriven, Single-Loop, Linear,

Time-varying Network.

C(t)

Hence, one can introduce an arbitrary nonzero time function

f(t) so that

yields

•——Jo O

or

f(t)^(t) =

From (3. 2) and (2.17),

-33-

Clearly, since is a quadratic form in q and p, must

also be a quadratic form in q and p; this is the bonus of the

Hamiltonian formulation which yields the bomding functions.

Integration of (3, 3) fjrom some arbitrary initial time t

(3.3)

(3.4)

JM
dt

)dt. (3.5)



IT- <-X"l^Z5EP + <"c ••• X >75^ •

and

Consequently* (3. 5) becomes

t

f(t)^(t) = +jT <̂x £̂>1

(3.7)

(3.8)

For nonnegative Li(t) and C(t)» it is obvious that

f - f(^ +f0 (3. 9a)

and
• •

f-f('§--^)^0 (3.9b)

insure that

^ . (3.10)

An f(t) which satisfies (3.9) can be multiplied by an arbitrary

constant* so f(t) can be assumed positive; then f(t) can be

divided through without altering (3. 9) and (3.10):

f /L R\ < n (3-
r " *x + X' -
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f i. 0. (3. lib)

and

(t„)^(y f"Nt). (3.12)

For this upper bound on ^(t), it is desirable to ob
tain the least possible f'̂ (t); consequently, the maximum
possible f(t) is to be sought. Clearly, the best that can be

done is to assume the equality sign in either of the two in

equalities (3.11). Suppose, for example, that one had for

(3.11a) the actual differential equation

• *

r - + x> = -

where e (t) is a nonnegative function. The solution of (3.13) is

hence, for maximum f(t) it is necessary that € (t) = 0.

. Taking one or the other of the inequalities (3.11) with

the equality sign exhausts all possibilities. If (3.11a) is

taken with the equality sign and

f(t) =KL(t)exp( I exp( -/ €(| )dg ] ; (3.14)t

then (3. lib) requires that

• •

C L ^ < 0, , (3.16)
' C L, L

Similarly, if (3. lib) is taken with the equality sign and

r = x'X'
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then (3.11a) requires that
• •

C Li 2R ^ a / 1a\
' Z*T.* T-

The desired Solution of (3.15) is

f(t) =KjL(t) exp^ p
which gives

But, from equations (2. 23) and (2. 26)*

^(t) =exp/^ 1^1j[^L(t)^^ +

= exp(/ 1 E(t). (3.22)

where E(t) is the stored energy in the network energy storage

elements. Thus,

when
• •

- •§ + i + ^ < 0. (3,23b)

The desired solution to (3.17) is

f(t) =KjC (t) exp| -f . f3.24)
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Reasoning similar to that just cited leads to

C(fg)
E(t) < E (t^) . (3.E5a)

when
•* •

- •§ + i + ^ 2 p. . (3.25b)

It is remarkable that the fuhct;ion on the left-hand side of

(2. 74), which in Sectionll determined a conservative network,

has now cropped up in (3. 23b) and (3, 25b).

Conditions (3.23) and (3.25) lead directly to the con

struction of an upper bounding function on the stored energy.

This function u(t) is to be constructed such that

u(t^) = E (t^); (3. 26)

I (3.27a)

on the interval (t^. t^^^)

and

.i+L +^<0 (3.27b)

C(tk)
u(t) = u (t, ) (3.28a)^k' -qty

on the interval (tj^, where

C . L . 2R > 0. (3.28b)
'C "*• L E "
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Thus, u(t) a.% the endpoint of one interval provides its

initial value for the subsequent interval; this is necessarily

so because only the initial value of stored energy can be

assumed, from then on only an upper bound is provided.

The relationship

E(t) K u(t) (3.29)

and the construction of u(t) are illustrated in Fig. 3. 2,

C+L 2R<o

Fig. 3. 2. Illustration of upper energy bounding function.
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Returning to (3. 8), one can evolve a parallel formulation to

the above to obtain a lower bounding function. If

+ 0 (3.30a)
Jj J-i ~

and

(3.30b)

then,

f(t)^(t) > f(t„)^(t ). (3.31)
' O'

Following thrpiigh aa above, one obtains

C(t )
E(t) > E(t^) * (3.32a)

when
• •

- •§ + i +^ < 0: (3.32b)

and

E(t) >E(t ) lexpLzP •r7l4d| 1 (3.33a)o- TTET W7

when

. C L ^ ^ > Q (3.33b)

A lower bounding function £(t), analogous to u(t), for which

E(t)>je(t), (3.34)

can be constructed such that

£(t^) = E(t^); (3.35)

-40-



C(t.)

' (3.36a)

on the interval (tj^, j) where

-Vg + X + X- ° (3.36b)

on the interval (t, , t, .,) where .
k k+1'

• •

-"•g +X+ X > 0 (3. 37b)

The relationship (3. 34) and the construction of f (t) are illus

trated in Fig. 3,3.

Armed with the two energy bounding functions u(t) and

£(t), one can develop simple stability and instability criteria

for periodically variable, single degree of freedom,. linear

time-varying networks. Suppose that all of the network

elements vary in magnitude with the same period T; then,

u(t+T) <u(t) (3.38)

is sufficient for stability,

f(t+T)<f(t) (3.39)

is necessary for stability,

je(t+T) > je(t) (3.40)

is sufficient for instability, and

u(t+T)>u(t) (3.41)
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is necessary for instability. Although these criteria suffice

for most practical networks, there are many situations which

they do not cover. Since it is generally the goal to extract

power from a network, the resistance level would usually be

sufficiently high to overcome any stability difficulties; this

point will be more clearly brought out in the examples of

Sectionlll 3.

III. 2 Comparison of Stability Criteria with Others

obtained by Method of Lyapunov

In treating the same simple example as is shown in
L7

Fig. 3.1, Kalman and Bertram .. arrive via the method of

Lyapunov at the following stability criterion;

Assuming

0 < < L(t) < < cb \

^ i ^2 (3.4^)

0 <^2 < R(t) < <00 J

the system of Fig. 3,1 is asymptotically stable if

for all t > t
— o

• «

, ,L Cv CL L0 <^4 < 1 + (3.43a)
Xv

. . and

0 <6^ < 1 + . (3.43b)
R

Certainly the approach through the Hamiltonian with its re

striction to energy functions is no fit challenge to such a

powerful tool as Lyapunov's seccxid method. But here, just

because of its relation with energy, the stability criterion of

SectionIII«l seems to offer many advantages over other routes
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to Lyapunov stability criteria. From (3.25), it is clear that

if (3. 25b) holds for all t > t , then C(t)E(t) is a Lyapunov

function by ( 3. 25a); but for positive R( t), ( 3. 25b) can be

divided by 2r/L to yield the Lyapunov stability criterion

Here already one sees an advantage in the Hamiltonian formu

lation in terms of application of (3. 44) as compared to ap

plying both of (3. 43). Moreover, when R = 0, (3. 44) offers

the distinct advantage that its variable term, although of

opposite sign,^ is but half the amplitude of that in ( 3. 43a).

Futhermore, if a given network fails the test of ( 3. 44) it

is easy to pick out a value of R which brings it into line --

not so with (3. 43), where attention must be paid to R as well.

Another advantage of the Hamiltonian formulation over

taking an arbitrary pair of first order differential equations

is that no assumptions need be made regarding the sign of Jl(t);

this is particularly useful iii connection with investigations

of stationary, active networks. Moreover* by a simple modi

fication of the procedure in SectionllLl, bounding functions'

can be found even when L(t) and C(t) undergo negative ex

cursions. This is a rare occurrence, it being in violation of

the condition of local passivity (see Appendix I), but it is

reassuring to know that it can still be handled.

In the Hamiltonian approach the energy and the dissi-

pative effects in the network are brought into prominence.

This energy need not decay monotonically, but need only have

an average trend toward zero for stability. Furthermore,

the growing energy is bounded by a known function so that

one may insure that any original assumptions on smallness

of q and q are not violated.

-43-



17
In their paperi l . .. Kalman and Bertram make the

statement

"No procedure . . . is available for the determina

tion of the stability of general linear nonstationary

systems in an algebraic way. There is little hope that

this state of affairs will change soon. "

This attitude is certainly borne out upon referring to the

two zecent Russian articles on the application of Lyapunov sta-
22 -bility methods to nonstationary systems by Razumikhin

-23and Roitenberg, . .

The Hamiltonian approach is not being advocated here

to the exclusion of all others, but only as an easier and more

convenient starting point.

III. 3 Exam pie s

Example 3.1, A guarantee of stability of Mathieu's

equation; Mathieu*s equation (normalized),

q + (6 + e cost)q = 0, (3.45)

is one for which the bounding functions u(t) and £(t) say nothing.

It is the governing equation of the network of Fig. 3.1 when

L(t) = 1 (3. 46a)

I . cost

and

R(t) = 0. (3.46c)

The determining function is

• •

C , L , _ 6 sint ^ 47\
"C L L"" 5+€ cost ' (^-4 )
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hence, for the first cycle the bounding functions are

fE(0), 0 < t < TT

u(t) M

tt < t < 2,r
6 - €

(3,48)

and
0 < t < TT

je(t) =<

.E(0)6 - €
6 + €

TT < t < 2 TT (3.49)

The diaded area in Fig. 3.4 is the possible region of behavior

of the stored energy over a cycle. Thus, except in the isholly

solvable case where c = 0, nothing definite can be s^<l about

the stability of this network by taking the above approach.

5 + €

6 - €

6 -€

6+ 6

E(0)

E(0)

E(0) --

Ztt t

Fig. 3.4. Area of possible energy behavior over one cycle for

Mathieu' s equation.
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There is some fixed resistance R which can be placed in

series with the above network to guarantee stability by the

above analysis. This R can be found as a function of 6 and

€ by ascertaining the minimum R which renders

u(2Tr) < u(0). (3.50)

The determining function becomes
« •

^ j ^ I 2R 6 sint /-s ei\
- C "E T -^^"6 +; cost'

this function is maximum at

co¥t = - € / 6, (3.52a)

sint =
(3. 52b)

Consequently, stability is insured if

R> y . (3. 53)
2-/6 - 6

Example 3.2, the G-C Parametric Amplifier : If one

chooses the dual of the circuit of Fig. 3.1 (see Fig. 3»5), the

upper energy bounding conditions similar to (3.23) and (3.25)

become

when

and

when

C(t^)
o' C(t)

E(t) < E(t ) exp I -2 I ^ d| I . (3.54a)

- i + •§ +^< 0; (3.54b)

L(t„)
E(t)< E(t)-rT^. (3.55a)

-46-



0 . (3.55b)

In considering the parallel G-C network of Fig. 3. 6, one ob

tains from (3. 55) the stability condition

2G - (OjCj S- 0. (3. 56)

The exact solution to the homogeneous equation

^̂1 ^ ^ (3.57)
IS

-<'1 • "X I •
(3.58)

which shows the network to be stable so long as is greater

than Cj, and G is positive. However, under the condition of
optimum power matching (see Appendix III), the matched driven

network of Fig. 3. 7 dissipates

^av = / ;

in the load admittance . Thus, (3. 56) provides a practical
J-i

limit for networks which are to be employed in amplifiers be

yond which the possibility of instability arises. Actually,

the stability of the network of Fig. 3. 6 can be demonstrated

even on the energy basis. One need only .Consider the same net
work only with an arbitrarily small tinie-invariant inductance

introduced in series with G and C in the single loop (physically,

this would usually be the case). Then the network takes the

form of Fig. 3.1 and the condition
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G(t) C(t) ^ L(t)

Fig. 3.5. Dual of Circuit of Fig. 3.1.

G C(t) = C^+ Cj sin ( cojt)

Fig. 3, 6. Time-varying G-C Network.

i(t) 6 v(t) ^ G 7^
L

C^+Cj^ sin (cojt)

Fig. 3,7. Matched, Driven, Time-varying

G-C Network.
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guarantees stability; in this instance JL need only be chosen

s\ifficiently small that

2 n
GL

> 0 (3. 61)

to achieve the result dictated by (3. 58).

Example 3. 3, Two conditions which guarantee the stability

of positive RLC networks; If R(t), L(t) and C(t) are positive

and periodic in the network of Fig. 3.1, and if either condition

(3. 27b) or (3. 28.b) holds always, then the energy decreases on

the average. A condition which guarantees (3. 27b) for positive

R(t). is

4(^) >0. (3.62)

and (3.28b) is guaranteed by

XJ

These two conditions, which are sufficient for stability, were
12

previously obtained by Gadsden. They are, however, but

s pecial applications of the stability criteria obtained in

Section III. 1
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IV. ENERGY FUNCTION ANALYSIS OF LINEAR, TIME-VARYING

NETWORKS WITH n DEGREES OF FREEDOM

The key to the development of the energy functions for

the single degree of freedom network has been in the revision

of the governing equation (2.10) so that it ultimately appeared

in canonical form. For the n degree of freedom network, the

original set of governing equations appears naturally as a

matrix (n x n) differential equation of second order. Often,

the revision jjf this equation entails as much work as its

act-ual solution; however, in mfuiy interesting and useful

cases it does not.

rv. 1 Derivation of the Variational Principle

The development to be presented here closely parallels

that of Section II, except that a matrix treatment is employed

throughout. One can obtain conditions for a modified Lagramgicin

and Hamiltonian, and even formulate a state space picture of

the system behavior. Most of the networks for which energy

functions are simply obtained possess a high degree of sym

metry; fortunately, it is ijust such networks which are of

current interest in connection with time-varying devices.

14
Upon choosing any convenient network tree to

define the dependent variables (link currents) q., * one can
write the governing loop-hasis equations of the network:

Although an arbitrary tree will suffice, it will become clear
later in the development that the best tree, when available^
is one with all of the tree branches consisting of capacitances
and all of the links containing inductances.
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(4» 1)

= (t); is 1, .. ., n.

This set of equations can be replaced by the single matrix

differential equation

where

L(t) 3

R(t) 3

S(t) 3

•g^j~L(t)^ +R(t)^ +̂(t)q -^(t);

^ll(t) ...
Lzift) L22(t) ••• L2„(t)

Ljj2(t) •••

/Rll(t) Rl2(t)

R2i(t) R22<^>

•

^n2<^)

/Sii(t) Sj2(t)

S2i(t) S22<t)
•

•

Sn2<t)

K (t),
nn^ ''

In^ A

nn^ "
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(4. 3a)
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q si

and

e<t) 4

qjCt)

e^d)

.e- (t),
^ n '

(4. 4a)

(4. 4b)

To modify equation (4.2) in a manner similar to that in

which (2^ 10) was revised to the form (2.13)i one can premultiply
*it by an arbitrary (for now) nonzei^o n x n matrix D(t):

where

L, (t)<l •R(t)5 +S(t)£ - e(t)| =0 (4. 5)
The variational principle which, via the Buler-Lagrange equa

tions, leads back to the set (4, 5) may be obtained by premul-

tiplying (4. 5) by the row vector*

65 = (Sq^, eq^,..., 6qJ, (4.6)

6^ (t^) = 6c^ (t^) = 0, (4.7)

and integrating between fixed limits tj^and t^

'i
^Oa +s(t)a -q(t)j dt =̂0.

Upon integration of the first term of the integrand by parts,

one obtains

X indicates the transpose of the matrix X.
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^2
5 q D (t) L (t) 4

L ^ • •

1 "1

+6qD(t) R(t) q+6qD(t) S(t) q-6qD(t) eCt) j dt =0. (4.9)
The first term on the left vanishes by virtue of (4. 7); and,

if

- ^it) L (t) + D (t) R (t) = 0, (4.10)

then (4. 9) becomes

1^2 r /y . ^
6 q D (t) L(t) q + 6qp(3>)g^)q - ^ q D (t) e (t)l dt = 0

(4.11)
Ht

Moreover, under the symmetry conditions

D (t) L (t) = L (t) D (t) (4.12a)

and

D (t) S (t) = S (t) D (t) (4.12b)

(4.11) is equivalent to

SI I•^ 4D(t)L (t)q +i q D(t) S(t) q - q D-(t) e (t) dtU 0.
4:^ (il3)

Equation (4.10) possesses a solution so long as L (t) is

nonsingular, but it is unlikely that conditions (4.12) are

met in general. A more general derivation which places .fewer

restrictions on the matrix D (t) will be found in Appendix IV.

Fortunately, time-varying networks which give rise to matrices

D (t) satisfying (4.12) are attended with a great deal of

interest; examples of such networks are presented in the

sequel.
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If (4.13) is to be identified as the modified idxm of

Hamilton's principle, the modified Lagrangian can be taken to

be the negative of the integrand in ( 4.13):

^(5L» t) =23 2(t) L (t) a - D(t)S(t)q y'^(t)e(t).
(4.14)

If D(t) is taken so that identity matrix) and

D(t) = 1 for R (t) = 0 (the null matrix), then, as before, the

modified Lagrangian reduces to the usuklJI^iagrangian in the

absence of resistances. Since it serves to introduce the dis-

sipatances into the energy function formulation, it is reason

able that D (t) be caJLled the "dissipation matrix. " The

Euler-Lagrange equations.

d -|^= 0, i =1, 2, 3,...,n, (4.ia)"at ' 8q7 8 q.

associated with the modified Lagrangian (4.14) are equivalent

to the modified governing equations (4. 5) of the network.

Yet another route to the Lagrangian exists, and, what

is more, it is never beset with the difficulties encountered

above. The method is equivalent to using Lagrange multipliers

to account for the network constraints (Kirchoff's current or

voltage laws), only now in connection with the inverse pro

blem. To insure the success of the method, one need only as

sume that every resistive branch also contains some series

inductance. For an arbitrary choice of tree for an m branch

network with n independent loop equations, one obtains the
14 th(m-n)xn tie-set matrix p. . If the current in the j

*lt may be necessary to include a small inductance, say L, in
series with each resistance; although aesthetically unpleasing
this is generally the case physically.
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breinch of the network is denoted by q^ , the tie-set matrix
represents the (nr-n) consIrainl xelations

P q = 0 ; (4.16)

where q is an m-vector (column matrix) consisting of all

branch currents. Moreover, the tie-set matrix can give the

relation between the network branch voltages v. and the tree
J

branch voltages \. (these are the actual Lagrange multi-

plierB^jr,

V = p K ; (4.17)

where v is the m-vector of branch voltages and ^ is the

(m-n) - vector of tree-branch voltages. Thus, the set of

governing equations for the network can be written as the

m X m matrix differential equation

rL(t)^ +R(t)^ +S(t)£ - e(t) - fx =0; (4.18)
where L (t), R (t), and S (t) are diagonal matricfl>s with each

entry representing an individual branch. The desired matrix

D (t) to take (4.18) into variational form is the m x m

diagonal matrix

" Rl(l)
D (t) = exp -s diag^

hence.

5 = i •

R te)m '

Then, the modified Hamilton's principle becomes

X'

f - |a5(t)L(t)q +^D(t)S(t)q - qD(t)e(t)

rj

-q D (t) X ^ dt = 0^
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with the auxiliary constraining relations^

q = 0. (4.2Ib)

The m Euler-Lagrange equations for (4.21a) plus the (m-n)

constraining relation^ (4. 21b) provide 2m-n equations for
the 2m-n unknowus -- m q.'s and (m-n) tree-branc^h voltages,

J
X.'s. Equations (4.21) are a perfectly valid formulation of

J
a modified Hamilton's principle; unfortunately, the presence

of the \j's renders this formulation useless for stability
studies. Nonetheless, one can identify the Lagrangian as

the negative of the integrand in (4. 21a); consequently,

i. t) = 2 L(t) q »^ qD(t) S(t) £
^ (4.22)

+? D (t) e (t) + q D (t) £ K.

Hence, the formalism of Hamilton's principle always carries

over; however, its utility is sometimes lessened.

IV. 2 The Hamiltonian and the Canonical Equations

Either of the Lagrangians, (4.14) or (4. 22), is amenable

to the straight-forward manipulation techniques which carry

onward toward the Hamiltonian. First one must define the

momentum conjugate to the coordinate q^:

Pi . (4.23)

13
The Hamiltonian is then defined by the Legendre transformation

5^(a> £• PjSii q. t). (4.24)
i

The Lagrangian (4.14) yidlds the relation
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p = D (t) L (t) q , (4. 25)

and, hence, the Hamiltonian,

'^(q. £. (t) D'V)j +7qD(t)S(t)q- qD(t) e (t);
(4. 26)

this formulation is based on the presumption that D (t) and

L (t) are nonsingular. From (4.10), it is sufficient that L (t|;

be nonsingular; since this coaad^'hanguarantees Ithe existence

of a solution to (4.10), it is again demonstrated that if L (t)

is originally singular it \should be suitably augmented. This
Hamiltonian formulation leads to the set of canonical equat-

tions

q.=|^. i =l, ...,n, (4.27a)
and

Pi=-|^. i=l,....n: (4.27b)
or

q =L "Nt) D"\t) p (4. 28a)

p = - D (t) S (t) q + D (t) ^ (t). (4. 28b)

For networks which lead to dissipation matrices D (t) satisfy

ing conditions (4.12), this formulation leads ultimately

through all of the concepts presented in (Shatianll. It seems

superfluous, however, to pursue them here since a more general

stability criterion is soon to be derived from energy con

siderations.

The Lagrangian (4. 22) also gives

p = D (t) L (t) q , (;4. 29)
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which leads to the Hamiltonian

^(q, p. t) pL"^t) D°^t) p +^q D(t)S (t) q»q D(t) e (t)

q D tt) p \ ,
(4.30a)

with

p L"^ (t) d'^ (t) p= 0. (4. 30b)

Hamilton's "canonical" equations become

q =l'V)d"V)p, (4.31a)

£ = - D(t)S (t)ct+ D(t)e(t) + D(t) J (4.31b)

and

PL'̂ (t) D'^t)? = 0. (4. 31c)

Thus, a Hamiltonian and a set of (2m-n) "canonical" equations

is always obtainable for an m branch, n degree of freedom

time-varying network.

W, 3 Examples

At this point some examples will serve to indicate the

application of the modified Lagrangian. The most obvious net

works are those for which

D(t) = d (t) I; (4.32)

this indicates a uniform resistance to inductance ratioiiin

every loop. One must not rule out more complicated matrices

D(t) than (4. 32), but even it, in its simplicity, occurs frequently.

Example 4.1, An Iterated, Time-Varying Network: The

network of Fig. 4.1 is described by the modified Lagrangian
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i=i '

(4.33)
n ^

y r/ x2 / x2it
2CIt)

n ..

Clearly, this formulation could be extended to hhat network

where the elements, R.(t), L.(t), and C.(t), all have differing
1 .. 11 1

values, and only the fimction

Rid)
d(t)=exp|j ^ d€| (4.34)

is invariant from loop tollccqip:

*^**4 it ^itiC 'c.(tt +C.^iTt) _}
Example 4,2, Nodal Analysis: Throughout the theoretical

developmeiif oi the riAoci^fi'̂ d Lh'grkngian, 'it was kccctopl'isjfied via
loop analysis with the charge''% "playing the role of"jfundamehtal
coordinate. 'Just as a;n' ixamplfe^df the" Lagi'angian "ani^lysiis 'bn the
(dual) node basis, where* th^6 fiux^^<j)'i^^fundamental, 'cbnsidel?'the
iterated,* time-varying network of Fig. 4.2.

For this network, when one has the uniform dissipation

function

:d)
d'(t) = exp 7rT<i€ (4.36)

at each node, the Lagrangian becomes

d.(t) i c.(t)*2. ^I [4:^ + ]}•
(4. 37)
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R(t) L(t) R(t) L,(t)

C(t)^^ C(t^ C{t^

Fig. 4.1. Iterated, time-varying network.

L,(t) ^i+1

tP i + 2
Gi.i(t)

Fig. 4. 2. Iterated, time-varying network.
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Example 4. 3, Continuous Networks: If a varlational

principle embodies two independent variables, say time t and

distance x, then the resulting equation, rather thati the Euler-
10 .

Lagrange, is the Ostrogradski > :

8 ,b£. . a , a£, sjl
et^Ta' Sx^TE^'aq . (4.38)

where

a=|3 (4. 39a)
and

b=|3 . (4. 39b)
13The Lagrangian density i-

:C= 2Mt. X) (||) ^- ^8 (t. X) (||)^, (4. 40)

for example, yields the governing equation

J
d

This equation is capable of describing many continuous net

works through Lagrangian analysis. One simple example of

such a distributed network is the uniform, lossless trans

mission line, with

i (t, x) = f (4. 42a)

and

s(t, x)=i, (4.42b)

which has the wave equation

1 = 0. (4.43)
dt ^ ax
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Lossy transmission linos and lossy distributed networks are

easily described with more esoteric functions, f (t, x) and

s(t, x) .

These examples have served to illustrate the application

of energy functions to time-varying networks. The next section

will illustrate the utility of the concept of energy in stability

studies of such networks.
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V. STABILITY OF LINEAR, TIME-VAp.YING

NETWORKS WITH n DEGREES OF FREEDOM

From the physical viewpoint, the behavior of the network

stored energy makes a good starting poin^^for network stability

investigations. The fact that the 1network energy can be charac

terized on two bases -- magnetic stored energy, for instance#

can be considered to be antilogous to either classical kinetic

or potential energy -- leads to results of a more interesting

nature than those encountered in the traditional Lyapunov

analynis.

V. 1 Energy Bounding Functions

Although the energy functions sometimes fail to be

describable in a simple manner, the stored energy itself can

always boe used to investigate stability. Returning to the net

work equations on the loop basis (4, 2), only now for the un-

driven network,

S ] 5L S " (5.1)

one can write the network stored energy as

E(t) = L(t)q + 7qS(t)q. (5.2)

It is easily verified that the time derivative of this function

is given by

dE(t) _ 1 . 1 e 1 * -t ^ . (5. 3)

^^
The matrices yt) cind C(t) are assumed symmetrical; thus,

any non-reciprocal elements must be introduced via the R(t)
matrix.
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Upon introduction of an arbitrary multiplier f(t), one obtains

^rf(t)E(t)1 -f(Lt R+ R)]-3 +^a|jS+
(5.4)

Integration of thiB~ equation leads to

1 ^ ^ .*f(t)E(t) = f(tjj)E(t^) +U q [% - f(L +R+R)] q dt
o

+ S (5.5)

This formulation leads quickly to simple bounding functions
for E(t). If

and

then

/V

fL -f(L + R + R) is negative semi-definite (5. oa)

fS + fiS is hegative semi-definite, (5.6b)

f(t)E(t) < f(t^)E(t^) (5. 7)

It is a simple matter to find the maximum f(t) which

satisfies both condifioni (S.b). Under the assumption that
L(.t) is a positive semi-definite matrix, a similarity trans

formation represented by A(t) can be found such that

A (t)yt)A(t) = j (5. 8)

and

A(t) I^L(t) +R(t) +R(t)j A(t) = (5. 9)
where K j^(t) is a diagonal matrix which has the n roots of

3J5

If L(t) is not a positive semi-definite matrix, it can be
augmented by additional elements L.^ (later to be reduced
to zero) to make it so. i
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det. |̂ X.j(t)L(t) -L(t) -R(t) -R(t^ =0 (5.10)
13 16

as entries. I . . Thus, (5. 5a) holds if
#

fl - f is negative semi-definite. (5.11)

Similarly, if the pertinent part of S(t) is positive semi-definite,

a similarity transformation represented by B(t) can be found

such that

B(t)S(t)B(t) =_I (5. IE)

cind

B(t)S(t)B(t) = <5.13)

where diagonal rnatrix which has the n roots of

det ^^2 (t) S(t) +S(t)l =0 (5.14)
as entries. Hence, (5. 5b) holds if

f^^ - f negative semi-definite. (5.15)

For positive f(t), the obvious choice for maximum f(t) which

just satisfies (5.11) and (5.15) is given instantaneously by

f/f = X.2i(t)l . (5.16)
where sind roots of (5.10) and (5;14)»-

respectively. Then,

f(t) = exp(\ \^{i)di\, (5.17)

and from (5.7),

*
Obviously, it is inconsequential to con^dder entire rows

and corresponding columns of S (t) which have all zero entries.
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and

then

E(t) <E{tJ exp| -/ (5.18)

Returning to (5.5), one sees that if

fL - f (L + R + R ) is positive semi-definite (5.19a)

fS + S is positive semi-definite,

f(t)E(t) > f (t^)E(t^). (5. 20)

Following reasoning parallel to that used above, one sees

that conditions (5.19) just hold for positive f(t) when

r = ^ f (t) = max * (5.21)

where ^^^^(t) and roots of (5.10) and (5.14)
respectively. Then,

f(t) , exp / \. , (|) d| ,

and, from (5.20),

(5.22)

wE(t) >E(t^) exp -J Xj(e)<i| . (5.23)

The energy of the linear, time-varying network with n

degrees of freedom has been iounded in a manner similar to

that found in Section HI. Some interesting special cases are

immediately recognizable from the above;

(1) For a time-invariant network, if all of the roots of

det j\L -R-rJ= 0 (5.24)
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are positive, the network is stable;

(2r.) Similarly, for a time-invariant network, if all of the

roots of

detj^L - R- rJ= 0 (5.25)
are negative, the .network is unstable;

(3) If only L(t) and R(t) are time-varying, then the roots of

det ["x(t)yt) - yt) - R(t) - R(t)j =0. (5.26)
indicate stability if they are all positive, and instability

if they are all negative.
0

Case (3) does not exhaust all possibilities, and the more

general method given above must j be used when it does not

hold.

Still, one has but half of the picture, for the entire

formulation can be done on a nodal basis as well. Then, in

stead of (5.1), one begins with a set of network equations

^[c(t)3+ =0, (5.2ji)
• 3{C

where <t> (t) is the n-vector of tree-branch voltages. Now the

stored energy can be written as

1 ^ ' 1 'V
E(t) (t)^+ r (t)^; (5.28)

its time deriviative is given by

The dimension of the matrix equations on the node basis need
not equal that obtained on the loop basis --it is, as in tinji^-
invariant networks, strictly a topological consideration.
Neither the loop basis nor the node basis dimensionality need
equal the number of dynamic degrees of freedom,, which has
been given by Bryant. ^
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="ri£±+9.1-5±24- (5.29)

Proceeding as beforei one obtains

k( -f(C +G+aHji dt
o

t

+2J
^O

(5.30)

Consequently, if

f C - f(C + G + G) is negative semi»definite (5. 31a)

and

f r + f r is negative semi-definite (5. 31b)

then

f(t)E(t) < f(t^)E(tJ . (5. 32)

Similarly, if

fC - f(C + G + G) is positive semi-definite (5.33a)

and
• •

fr+ f r is positive semi-definite (5.33b)

then

f(t)E(t) > f(t^)E(t^). (5. 34)

The pertinent quantities here are the roots (t) of

det R3 (t) C(t) -C(t) -G(t) -G(t)j =0 (5.35)
and the roots X.^^(t) of
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det rx.^(t) £(t) +r (t)j =0. (5.36)
For positive f{ t),

j ~ \ (t) = n^in (5.37)

gives / t
E(t) <E(t^) expf -J (I) d4 I (5.38)

and

f= >^jg(t) =max |̂ 3i(t). ^4i(^)| (5.39)
gives / S

E(t)> ^:(t^) expf "J^ \ ^(|)d| ) . (5.40)

Thus, ( 5.16) and (5. 37) give two choices for the energy upper

bounding function at any instant; it is desirable to have the

minimum upper bounding function (d.e., the maximum \^(t)).
The best obtainable upper boundiig function for this formula

tion is given by

/\^(t) =max Fmin (X.j.(t), \2i(^))' min( ^i(t)r X4i(t)n
t L» t t J

( 5. 41)

and / i \

E(t) < E (t^) exp (5.42)

Similarly, the best obtainable lowd^ bounding function for
this formulation is given by

Ajg(t) =minfmax ( X.j^^(t), X.2i(^))* max(X.2^(t),
t t t
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and

E(t) > E(t ) exp I - I Afl (6 1 . (5.44)
o M

It should be recalled that the functions Xj^.(t), X.3i(t),
and X.^j(t) are the respective roots of

det j\j(t)L (t) -L(t) -R(t) -R(t)j =0, (5. 45a)
X.2(t) S(t) +S(t)! •!= 0, (5.45b)
X.2(t)C(t) -C(t) - G(t) -G(t)l = 0, (5.45c)

and

det jl^(t)r(t) +r(t)J =0. (5. 45d)
For networks where all of the elements vary periodically

with the same period T, equations (5. 42) and (5. 44) may be

used to formulate simple stability criteria;

t + T

,(&)dg>0 is sufficient for stability, (5, 46a)

and

det

det

o

and

t + T

X Ajg(^ )d^ > 0 is necessary for stability; (5. 4r£b)
o

similarly,

t + T
o

X
Ad(4)d^ < 0 is sufficient for instability, (5.47a)

£

o
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hence,

and

X - i B1 L ^ L

-G

C

On the node basis the network equations become

d

ati
0M[h
0C/U2/_J

1 - i
L " L

1 1
' L L>

Hence, the equations for ajid are

^3^6 " R
det = 0

\3C-C

lind

det

*•4 + ''4X "p

-K i + ^>^41.+

Solution of these two equations yields

. c
31 C ,

32 "* RC

L

L '^41 = -

+ 00 ,

- ^4X +p

X 1 ^ ,^4X 721

(5. 50a)

(5. 50b)

=

(5. 51)

(5. 52^)

= 0 {5. 52b)

(5. 53a)

(5. 53b)

(5. 53c)

Here C and Fhave been temporarily augmented by C and T
— — € €

to insure that they are positive definite; these quantities will
later be reduced to zero.
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t + T

I 0 is necessary for instability. (5.47b)

V. 2 Examples

Some simple examples will serve to illustrate the theory

and to point up its usefulness in investigations of stability.

(1) Single Loop RLC Time-Varying Network

The network of Fig. 5.1 can be described on the loop basis

by the single equation

W ( 5. 48)

<l>i (f) A

and

Fig. 5.1, Single Loop RLC Time-Varying Network.

The equations for and are, therefore,

XjL - L - 2R = 0

X 1 ^ - 0-^2C ^ *
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and

X42 = 0- (5.53d)

Consequently, for the single loop network, the upper bounding

function is obcamed as in (51141) from

• • • •

/\^(t) =max Imin +̂ ), (^^1 nain j^— ), (+00), C-^, (oj
(5^54)

Similarly, the lower bounding function is obtained as in

(5. 43) from

• • • • ^

A^(t) =min |max|j^)+^), (~)J , max |(^), (+00), (i)j,(0)J |
(5. 55a)

• •

=maxjj-t +̂ ), (£)j, (5.55b)

since infinity dominates the second square bracket. This

example has shown clearly the advantage of the n degree of

freedom formulation with its two bases ( q and <J)) ower the

single degree of freedom formulation of Section III.

(2) Stability of Iterated Time-Varying Network

The iterated time-varying network i|i Fig. 5.2 is a lossy ver-
2 3

sion of those previously described in the literature.

If this .network is to be described by a set of matrix dif

ferential equations of the form

C(t)^ J+ G(t)^ +r (t)^ =0, (5. 56)
the pertinent matrices become

-73-



C(t) =

G (t) =

and

r(t) =

(M.)
^ —I'm

fmf — m

v°
^—Z'm

C(t)

(0)r„— m

(M,)
m

C(t)
(5. 5.7.a)

(5. 57b)

(5. 5 c)

and a^e m x m, time- invariant matrices describing the
arbitrary m degree of freedom lossless networks intervening

between each G-C(t) set. The equation

det rX.3C - C- 2GJ =
has the repeated roots

and

>^3 = 0

X =-5 +^3 C C •

the equation

det

has the repeated roots

r] "

X4 = 0.

0
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(5. 59a)

(5. 59b)

(5. 60)

(5. 61)



I I

L
O

S
S

L
E

S
S

T
IM

E
-I

N
V

A
R

IA
N

T

C
(t

)
L

O
S

S
L

E
S

S
C

(t
)

T
I
M

E
-

IN
V

A
R

IA
N

T

F
ig

.
5.

2.
It

e
ra

te
d

ti
m

e
-v

a
ry

in
g

n
et

w
o

rk
.



Thus, the stability of this iterated time»varying network is

guaranteed, regardless of the nature of the intervening time-

invariant, lossless networks, if

C + 2G > 0. (5.62)

This criterion is useful in a preliminary investigation of

such networks; however, once the lossless networks have been

specified the problem can be reworked to obtain less stringent

requirements.

Example 5.3, Shunt Version of Negative-Resistance

Parametric Amplifier; The network of Fig. 5. 3 has been em

ployed in the analysis of negative-resistance type parametric

amplifiers.

G

Fig. 5,3, Shunt version, negative-resistance parametric amplifier.

For this network, one has the matrices
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^(t)£

G =

and

r =

The equation

det

becomes

f
^1

0

-c,

G,+G
1 s

Co(t)

G, -G
1 s

-Gj Gj+G2 0

Ti -Fj 0

- ^1 r,^r2 0

V

- £- G-GJ =0

6 0

(5. 63a)

(5.63b)

(5. 63c)

(5. 64)

X3(C^C2C)-X,3(CjC2C+2GjC2C+2CjG2C+2CjGgC+2C2GgC+2CjC2Gg)

+X.,2(C,G,C +C,G C+C,G C+G,G„C+G,G„C+2G,G,C+2G,C,G +2C,G,G„)
3^1Z Is Zs Is Zs IZ I ZS lZS

-4(GiGsC+G2GsC+GiG2C+2GiG2Gs) = 0. (5.65)

To insure stability, one must ascertain that all of the roots

X.2^(t) are positive for all time; this can be done by a time-
dependent Hurwitz criteria, Thus, for the polynomial

- a(t)X^ + b(t)X, - c(t) = 0, (5. 66)

the roots X.(t) are always positive if
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a > 0, (5. :67a)

c > 0, (5.67b)

and

ab - c > 0. (5. 67c)

Condition (5.67b) yields, for example, from (5.65), that

2G,G^G-
C + >0 (5.68)

G,G,+G,G +G,G„
1 id Is d s

for stability. Hence, it is the series combination of three

resistances shunting C(t) which forms one single degree of

freedom type of stability condition. The other two condi

tions must also be satisfied, but they are a bit difficult to

study in the absence of specific element values.

V. 3 Conclusions

The use of functions bounding theo&twork stored energy

on both the loop and the node basis has allowed a quite general

formulation of stability criteria. This two-basis approach

possesses the obvious advantage that one may switch from

one to the other as the need arises to obtain an even tighter

bound on the network stored energy than one alone could

give. In many instances where norms other than the stored

energy are to be employed, this approach for more than one

characterization of the same norm might also prove exped

ient. Specifically, the many ba^s characterization should

be an excellent alternative to the Lyapunov search for a
15singly specified decreasing norm.

3jC - *1^—^ ^
For a table of typical values for C(t), C(tJ and G see

Uenohara. ®
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VI. CONCLUSIONS AND FURTHER PROBLEMS

The characterization of single degree of freedjom net

works by modified Lagrangian and Hamiltonian energy functions,

and the usefulness of such an approach as presented in Sections

II and III, indicates that the extension to n degree of freedom

networks as presented in Section IV should be put on a firmer

foundation. The modified forms of Hamilton's principle --

(4.13), when it is available, or the always obtainable (4. 21a)

-- a5pe both valid starting points for approximate analysis

schemes as discussed in 11, 7. It would be worthwhijSpa from

this standpoint alone to attempt to find the simplest Lagrangian

characterization for a given time-varying network.

Although it was not mentioned, the Lagrangian formulation

is readily extendable to cover networks for which only one kind

of energy storage element is nonlinear. An energy function

analysis capable of far-reaching consequences would emerge if

all kinds of nonlinear elements -- particularly resistances --

could be included. The phase plane analyses of Section 11 in

conjunction with the true Lagrangian and Hamiltonian would

seem to be the ideal starting point for the study of autonomous

oscillations and energy converting properties of nonlinear

networks.

In the stability analysis the stored energy is but one

of the infinite number of functions which may be used io inves

tigate the network. Because of its characterization on two

bases (loop-charge and node-flux), the energy approach has

yielded some manipulative advantages o:&^er the Lyapunov

search for a method of single basis characterization. Cer

tainly, the search should be continued for other multi-basis

descriptions of network quantities as an alternative to the

viewpoint often propounded. In terms of Lyapunov stability,
13 19 27canonic transformations * * on the network Hamiltonian
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might present a good route to Lyapunov functions".

The results presented here only represent a beginning.

Energy analysis of networks is a.n alternative to ma^y excel

lent methods -- sometimes better, sometimes worse. But if the

Lagrangian analysis is strengthened and better understood,

vast bodies of theory from analytical mechanics can be brought

to bear on electrical! networks. The employment of 300 years

of theory could be of theoretical value to the understanding

as well as of practical value to the utilization of electrical

networks.
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APPENDIX I. ORIGINS OF TIME-VARYING NETWORKS

Time-varying network elements can, of course, be obtained

by mechanically varying the element values in time. Examples of

this type of time-varying element might be a driven rheostat [R(t) ],

a parallel plate capacitor with a moving slab of dielectric [C(t)],

or an inductor with a moving iron core [L(t)]. Although these are

plausible devices, they could hardly be expected to be practically

operated at hi'gh frequencies

The time-varying network elements usually considered

are but small signal approximations to electrically driven non

linear elements. Consider, for example, the single degree of

freedom, nonlinear, time-invariant network of Fig. Al. 1.

e.(t)

e (t)
P '

Rn<l) L (q)
n

•A/y(/v—

S (q)
n^ '

Fig. Al. 1. Driven, Nonlinear, Single Degree

of Freedom Network.

R(t) L(t)

7~ S(t)

Fig. Al. 2. Driven, Linear, Time-varying, Single Degree of Freedom

Network,
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The differential equation governing the network behavior is

[L„(q)q ] + Rn(<i) q + sjq)q = eg.(t) + e (t). (ai.i)

Suppose that the signal source is idle, i. e.,

e (t) = 0. (Al. 2)
o

then equation (Al. 1) becomes

The solution to this equation, whether it is obtained experi

mentally or analytically, can be considered to be the known

function q^; then the solution to (Al. 1) can be denoted by

q = qp + qg- («tt- 4)

Under the assumption that the elements are well-behaved

functions of q and q, equation (Al.^ can be expanded about

the fundamental solution q^ to obtain the equation

W * ' *1

(qp+qg) +[s„(qp) +s|̂ (qp) +... ](qp+qgi= e^(t)+ e^{t) (Ai. 5)
(where prime (') denotes the derivative of a function with

respect to its argument. ) Under the assumptions

jq^l max « jq^lmax (A1.6a)
and

q I max «
s

q Imax (A1.6b)
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one^o.n subtract equation (Al. 3) from (Al. 1) and retain only

first-order terms to obtain

d [L^(qp) +L;i(qp)qp]qs| * +R;,(qp)qp3<3s
(Al. 7)

+ [S„{qp) +S;^(qp)qp]q3= e^(t).

Since q is a known function of time, one can make the identi-
P

fications

L(t) =L„(qp) +L;,(qp)qp, (Al. 8a)

R(t) =R„(qp) +R;,(qp)qp, (ai. Sb)
and

S(t) = S (q ) + S'(qJq„ (Al. 8c)
^ ' n ^ n p p

to obtain the linear, second-order, time-varying differential

equation which approximately describes the relation between

the marginal response qg(t) and the signal eg(t):

[L( tjqg ] + R(t)qs + S(t)q3 = 6^(1). (Al. 9)

Thus, if there were some way of filtering out the goound-

state (i. e., e (,t) s 0) response q (t), equation (Al. 9) could
s p

be considered to be the governing equation for the linear,

time-varying network of Fig Al. 2. It is required at many

points in the development of the bounding functions that Li(t)

and C(t) be positive-definite time-f-unctions (or in the more

general case that L(t)and C(t) be positive-definite matrices),
this condition is called local passivity by Duinker. ^ From
equations (Al. 8), it is clear that local passivity of L(t) and
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C(t) is guaranteed if [qL(q)] and qS(q) ] are both monotonically
inereasing functions of their arguments (see Fig, Al* 3), since

(Al. 8a) yields

•4- [qL„(q) ] > 0
8q

n'

and (Al. 8c) yields

^[qS„(q)]> 0.

(Al. 10a)

(Al.lOb)

qS(q)

qL(q)

Fig, Al. 3, Dependences which produce locally passive S(t)

and L(t).
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APPENDIX n. DEMONSTRATION THAT THE MODIFIED

HAMILTON'S PRINCIPLE IS A VARIATIONAL PRINCIPLE

It is the purpose here to demonstrate rigorously that

the modified Hamilton's principle derived in Section II is a

variational principle which leads back to the original equa

tion of motion. The modified Hamilton's principle is

U

6J D(t)j^^ L(t)q^ - +e(t)<^ dt =0; (A2.1)
^1

to take this variation one can consider the integral

t.

\ (A2.2)

•_ =r D(t)r^ L(t)(q+€ti)^ jr^^q-K>i)?.#,e(t)(q+eri)]dt

where T|(t) is an arbitrary function which vanishes at tj^ and
DWE

a J

It must be shown that

6J
= P

leads to the equation

[L(t)q] +R(t)q+ S(t)q -e(t)| =0. (A2. 4)

c

de =*1 D(t)[L(t)(q+€TTiy-r| - (q+€Ti)Ti +e(t)q ]dt; (A2. 5)

86 ye=0 D(t)[L(t)qT| - ] (A2.6-)
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Integrating the first term by parts and setting the right hand

side equal to~zero, from (A2,3), yields

[D(t)L(t)qti ] ^ [D(t)L(t)q] - +D(t)elt)|q dt =0.
(A2. 7)

The bracketed term vanishes because q(t) is zero at the end

points, and by virtue of the arbitrariness of t| (the funda

mental theorem of the calculus of variations) the term in

braces in the integrand must be zero; hence,

-^ [D(t)L(t)q ]-^q +D(t)e(t) =0, (A2. 8)

or

D(t)^ [L(t)q ]+D(t)L(t)q + - D(t)e(t) =0. (A2. 9)

But,since

D(t)L(t) = D(t)R(t), (A2.10)

equation (A2, 9) becomes

D(t)[L(t)q ]+R(t)q +-^q -e(tj. =0, ttiE. D. (A2.11)
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APPENDIX III. OPTIMUM POWER FRQM A TIME-VARYING

PARALLEL G-C COMBINATION

i(t)

G(t)

6 v(t)

Fig. A3.1, Time-varying G-C Matching

Network.

~C{t)

Given the network of Fig. A3.1; its impulse response

h(t»7^) is to be determined so that maximum power is dissi

pated in the unknown network Y. The equation describing the

network behavior is

h(t,'lDva)dT +G(t)v(t) +^ [ C(t)v(t)] = i(t).
-co

-fA3.1)

The instantaneous power into the unknown network load is

v(t) I h(t,TTjvCr) dr = v(t)i(t) - [C(t)v(t)] - G(t)v (t);

(A3.2)
-GO

hence, the average power into the load is

av
V-^(Cv) - Gv^ ] dt (A3. 3)
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(where the arguments of v(t) and i(t) have been omitted for

convenience). To find a condition for . maximum power, one may

employ the variational formulation^^*

and

But

6P =0 (A3.4a)
av

6^P <0. (A3.4b)
av

^2 ^1 ^t.
^(f Ji- ) I [vi - v^(Cv) - Gv^] dtav

t

thus, conditions (A3. 4) become

6 I [vi --^(^Cv^) - jCv^- Gv^ ]dt =0 (A3. 5a)

and

r^2
6^ I [vi - ^Cv^) - Gv^ ]dt <0. (A3. 5b)

d 1 2
The perfect differential(»-r. Cv ) is inconsequential (the

2
stored energy does not participate in the exchange of power),

and (A3. 5a) indicates that the Euler-Lagrange equation

i(t) - C(t)v(t) - |G(t)v(t) = 0 (A3.6 )

must be satisfied. Moreover, from (A3. 5b), the sufficient

condition for a maximum beciomes

-C - 2G < 0 ; (A3. 7)
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but his is the .condition which also guarantees stability (see

Example 3. 42).

and

Combination of (A3. &) with (A3.1) yields

h(t,r) V (T) dT = G(t)v(t) - C(t)v(t); (A3. 8)Ioo

this is the condition of adjoint match, where the equation of

the loading network is the adjoint of that of the loaded net

work. Combination of (A3. 6) with (A3. 2) yields the expression

for the instantanhous: power

P(t) =,Jrr -4 (A3. 9)
2G+C L'' 2G+C J 2G+C 2G+C

Again, in computing the average power, the Second term on the

right can be dropped as it does not contribute; therefore.

• t' A..
^2"^1 ^t, 2r2G(t)+CPa„=r-V-/ <A3.io)av t,-t, 2[2G(t)+C(t) ]

Now, if, for example,

i(t) = cosw^t, (A3,11a)

G(t)=G^, (^.llb)

C(t) = C^ + C^ cos (Djt, (A3.11c)

(A3, lid)

then an approximate vexpreSvSion for avecrage power extracted un

der optimum loading is given by

P, =i-I^ / ,, • (A3.12)
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If condition (A3. 7) is not met, the integral in (A3.10) diverges.

It has been shown here that the stability condition found in

Section III and optimum power matching are intimately related.



APPENDIX IV. GENERALIZED ENERGY FUNCTIONS FOR

NETWORKS WITH n DEGREES OF FREEDOM

If a given network is described on the loop basis by an

n-dimensional matrix differential equation

[L(t)q ] + R 5 " £(^)»

it is desirable to seek a variational principle for which this*

equation represents the set of associated Euler-Lagrange equa

tions. The original matrix can, of course, be modified by

premultiplication by an arbitrary nonsingular matrix D(t):

[L(t)q ] + R(t)q+S(t)q - e(t)l = 0 (A4.2)

The most general Lagrangian which could be employed has the

form *
g ' 'V.'V rv/*/v rJ

t) = qMj^q +qM2q + qM^q^ q M^+ qM^e . (A4. 3)

Emplgyment of the variational principle

h
sj <iC(2.q. t) dt = 0 (A4.4)

yields the vector Euler-Lagrange equation

- [OM ^+ Mj) q] + ["M2 + ^2 ^3 " ^3 ''' ^"^2 " ^3

+ + M^] q + MgC =: 0. (A4. 5)

sjeo-'

M denotes the transpose of M; and the arguments of Mj^(t), ...,
M^(t) are omitted for convenie^nce, although they are all
time - de pendent.
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Comparison of this equation with (A4. 2) yields immediately the

following relations:

and

Mg =- D. (A4. 6b)

One must still somehow solve the set of equations

"Mz + M2''"-3"-3 °2S"2il (A4. 7a)

and

"^2 - =2 S. (A4. 7b)

Combining these two equations ( and recalling that ^ is sym=

metrical), one obtains the second-order differential equation

for D(t)

^{D R- DL )=2 S- SD. (A4. 8)

A solution to (A4„ 8) such that (D L) is symmetrical will

yield all of the desired matrices and the Lagrangian. Quali

tatively, (A4. 7a) indicates that (2 5:" 2 2^ must have zeros

on the diagonal. Beyond this, however, little else can be

said about these matrices in general. Except in special cases,

the solution to (A4. 8) is per haps more difficult than that of

the original equation (A4.1). Special cases for which an

acceptable D(t) is easily found abound; some of these are dis

cussed in the body of the manuscript.
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