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ABSTRACT

This report presents both theoretical and experimental

investigations into the problem of the reflection of electromag

netic radiation obliquely incident on a surface of random profile.

The theory indicates that the signal received in the spec

ular direction can be considered to consist of a constant signal,

together with a non-Rayleigh random signal. The constant sig

nal has the same phase as that received if the surface were

smooth, but is reduced in magnitude by the roughness. The

random signal consists of two independent components in phase

quadrature; the variance of the component in phase with the

constant signal is in general smaller than that in phase quadra

ture with it, and the magnitudes of these variances are found to

depend on the area of rough surface illuminated as well as on

the roughness itself.

Experimental confirmation of these theoretical results

has been obtained, using a rippled-water surface whose rough

ness could be accurately controlled and measured.
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I. INTRODUCTION

The general behavior of scatter from a rough-water surface

has been known for some time. Recent measurements, however,

have left a good deal to be explained about some aspects of this
2

problem. In particular, it has been noted that actual measure

ments of scattered field depart from theory when the surface is

very rough.

This report presents a theory that appears to predict the

behavior of specular scatter from a rough surface. This theory

is tested by actual scattering measurements from experimental

rough-water surfaces whose roughness could be accurately con

trolled and measured. Good agreement with theory is obtained.

The theoretical development is carried out in Section II.

The experimental apparatus and surface measurements are dis

cussed in Sections III and IV. The microwave scattering meas

urements are presented in Section V.
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II. A THEORY OF SCATTERING FROM A ROUGH SURFACE

The problem of scattering from a rough surface is compli

cated by the fact that the exact surface detail is not usually known.

As a result of this difficulty, several approximate solutions have
3

been proposed. Ament followed the direct approach of applying

Maxwell's equations to the statistical boundary but was unable
4

to evaluate the resulting integrals. Another approach has been

to consider the rough reflecting surface as a phase-changing

diffracting screen and so obtain the angular power spectrum of

the scattered radiation. The approach to the problem presented

in this section is based on Huygens' principle. A Huygens

source is associated with each element on the surface, and the

scattered field is considered to be the summation of contribu

tions from these sources. The advantage of this approach is

that the field rather than the energy is found, and, hence the

detailed phase information is not lost.

The analysis will first be developed in terms of a static

rough scatterer and expressions for the field scattered in the

specular direction derived. These expressions cannot be eval

uated unless the exact detail of the rough scatterer is known.

They may, however, be closely approximated if the scatterer is

composed of many surface variations. If the surface detail of the

scatterer is allowed to become time-variant, the scattered sig

nal varies in a statistical manner. The relationship between the

statistical behavior of this time-variant signal and the statisti

cal description of the surface will be derived.

The approach developed in this section will be limited

to the specular direction and will assume a gently sloping surface

with radius of curvature very much greater than the electromag-

The specular direction is the direction of a ray optically re
flected from the scatterer if the scatter were a smooth plane surface,
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netic wave length \. The results of this analysis are useful not

only in explaining subsequent experimental results but also seem

to apply to scattering measurements made over the ocean.

II. 1 Electromagnetic Basis

Consider a plane wave incident at an angle 8 on the static

perfectly-conducting rectangular rough scatterer lying in the x-y

plane illustrated in Fig. 1. The electric field e is perpendicular

to the plane of incidence. The plane wave passes through an imagi

nary flat grid of infinitesimal rectangular elements which lie just

above the rough scatterer. The dimensions of each of the grid

elements is dx by dy. Since the radius of curvature of the surface

is very much greater than the electromagnetic wave length \, the

element of plane wave passing through grid element x,y is opti

cally reflected by the surface at point x, y, z. Since the surface

has also been assumed to be perfectly conducting, the energy

passing through element x, y of the grid is all reflected into a

new plane wave whose direction is given by Snell's law and the

slope of the surface at point x, y. This scattering process is

illustrated in Fig. 2.

Considering now the combined effect of all the elemental

plane waves incident on the surface, it is possible to specify the

field just above the surface in terms of the elemental reflected
5

plane waves. The equivalence principle states that if this field

is replaced by equivalent electric and magnetic currents, the

scattered field may be found in terms of the equivalent currents

in the absence of the conducting boundary. This is particularly

useful for the case at hand because of the complicated boundary

conditions. The simplification lies in the fact that the boundary

need be considered only in the determination of the fields just

above the boundary. The effect of the boundary on the radiation

produced by these fields is eliminated.

-3-



Plane of Incidence

r, 6, <j>

Scatterer

Fig. 1 Plane Wave Incident on Rough Scatterer

Fig. 2 Surface Element Illuminated by Plane
Wave Passing Through Grid Element x, y.
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The problem now is to find the equivalent currents just

above the surface and the radiation field produced by these currents.

Consider again the elemental plane wave which passes through the

grid element x, y and is scattered from the surface at point x, y, z.

Since the elemental reflected wave is plane in the vicinity of x, y, z

it may be replaced by an elemental plane-wave source consisting

of the equivalent electric and magnetic currents discussed above."

This plane-wave source is just a Huygens source of the type that

contains both electric and magnetic current. The electric :field

pattern of a rectangular plane wave source is given by

=JV exp(-jkr-) cos2 fA cog dx, dyl
e

e .=If!?' exP <-Jkr'> cos2 L*\ sin (+•) dx» dy'

where the primed co-ordinates refer to the plane of the Huygens

source which is the plane normal to the direction of travel of the

reflected plane wave and which includes the point x, y, z on the

surface of the scatterer. The above equations refer to a rec?

tangular plane-wave source as illustrated in Fig. 3. Due to the

sloping surface the actual plane-wave sources are not, in general,

rectangular, and their dimensions vary. This can be taken into

account by considering that the power passing through the rec

tangular grid element at point x, y must be conserved. Thus

by representing e ' dx' dy1 in the above expressions by

e v/cos 9' dx dy, we insure the conservation of power without

influencing the directional properties of the Huygens source.

The Huygens source located at point x, y, z on the surface thus has

an electric field given by

jex exp (-jkr») 2 / 0
6 T r

e„' = —; -j—— cos [rj-j COS ( <j>-1) "\/COS 6 **x ^y
(1-a)
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-je exp (-jkr1)
e* =—? ; cos -*- sin(d>') cos 0 dx dy (1-b)

<j> \ r' 2 *T ' o '

The plane wave incident on the rough scatterer has its elec

tric field polarized in the x direction. The perfectly-conducting

boundary requires that e on the boundary be 0, regardless of the

slope of the surface; this in turn requires that e ', the total elec

tric field in the scattered plane wave, have no y component. This

requirement, along with the requirement that z1 lies along the

direction of travel of the reflected plane wave and the requirement

that the origin of the primed system lie at point x, y, z, is sufficient

to establish the relationship between x, y, z and x',y'z\

The field scattered from the static rough scatterer may now

be found by Huygens principle by summing the field contributions

from the Huygens sources on the surface. In order to obtain a

solution to this problem let us restrict ourselves to the case of

far-zone specular scatter. Since the angle of incidence of the

plane wave is 0 at <J> = - ir/2, the specular direction will be

0 at<j)= + ir/2. The fact that the specular point of observation

is in the far zone of the scatterer implies that if the scatterer

were smooth the field contributions from the sources on the scat

terer would all be in phase. Since the scatterer is not smooth,

the phase M>of the contribution from the source at point x, y, z

on the surface of the scatterer is advanced by 2k C z, where,
o

C = cos 0 and
o o

is the propagation constant of free space. If the surface is gently

sloping it is possible to assume that 0' - 0 * 0. Thus by Eqs. (1)

the amplitude and polarization of the contributions from the sources

The effect of this approximation is discussed in Section III.
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Plane Wave

Source

r'.ew

r

/
/

Fig. 3 Plane Wave Source with Direction
of Electric Field Indicated ( —• )

on the scatterer are approximately constant. The contribution of

a single elemental Huygens source located at point x, y, z on the

rough scatterer to the far-zone specular field is then approximately

e •

de ^T"?1" 6Xp ( +J2kc0z (x» y)) Vc^cte dy

where now only the phase of the contribution, 2kC z (x, y), is a

function of position on the scatterer., The total field is just the

integral over the imaginary grid of these elemental contributions.

The total normalized far-zone specular field from a gently sloping

rectangular rough scatterer whose dimensions are a by b is thus

approximately

72 Hb/2

E s ,. , , exP (J2kC z (x,y)) dx dy
'-b/2 °
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where E is normalized with respect to the smooth surface field.

Substituting *(x, y) for 2kC z(x, y), obtain

a/2 b/2

="ab / / exp(j* (x,y))dxdy =Er+jE. (2-a)
J-a/2 ^-b/2

E =

^a/2 ^-b/2
r ab

f*/2 f 1/ cos ( *(x, y)) dx dy = AvJ cos (^(x, y))>

/2 J?/2

cos ( *(x,y)) dx dy = AvJ cos (^(x, y)) J
ab

(2-b)

a/2 b/2

^^lE / J sin(*(x, y)) dxdy =Avisin(*(x,y))l
J-a/2 J-b/2 l Ja

(2-c)

(1where Av \ > denotes the average over the scatterer.
lab

Equations (2) predict the far-zone specular scatter from a

gently-sloping rough scatterer whose surface detail is static. If

the surface detail of the scatterer is time-variant, Eqs. (2) predict

the scattered field at one instant, of time.

To evaluate Eqs. (2) the exact surface detail must be known.

Rough surfaces, however, are generally described statistically.

Thus, while it is not possible to evaluate E and E. exactly, it is

possible to predict their statistical behavior. The remainder of

this section will be devoted to evaluating Eqs. (2) in terms of the

statistical description of the surface.

Time-variant rough surfaces also produce a Dopier frequency
shift on the scattered signal. This effect is small, however, if
the frequency of the surface variations is very much less than the
electromagnetic frequency
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II. 2; Scatterers Composed of Many Surface Variations

In order to. evaluate Eqs. (2) it is necessary to know the

exact detail of the rough scattering surface. Rough surfaces,

however, are seldom specified exactly but are usually described

in statistical terms. In this section an approximate relationship

between the probability density of surface height and the scattered

field will be considered.

If the surface has many variations about its mean value,

the portion of the surface lying in the range dz about z is given

very nearly but not exactly by

ab p(z) dz

where ab is the area of the x-y plane containing the scatterer and

p(z) is the probability density of surface height of a population of

surface variations of which the scatterer is a large sample. Since

the experimental surfaces to be studied (Section iv);have approxi
mately Gaussian distributions of surface height, p(z) will be

assumed Gaussian

2

p(z) = ___ exp

-\/2ff o"

z

2o-'

where cr is the standard deviation of surface height. Since the

phase of a contribution to the far-zone specular field is linearly

related (N&(x, y) = 2kC z,(x, y)) to the height of the element making

the contribution, the distribution of phase of the far-zone specular

field contributions will also be Gaussian. Defining p(\&) as the

probability density of the phase of,the far-zone specular field

contributions, obtain

1

-JZt?S> ' ] 2tf
P<«) = •=—• exp^--^—> (3-a)

o

* = 2kC cr (3-b)
o o * '

-9-



where * is the standard deviation of phase.

The portion of surface making field contributions whose

phases lie in the range d^fcabout ^is given very nearly but not

exactly by

ab p(^) d^

It is thus possible to approximate the integrals of Eqs. (2) by

averaging over phase instead of over the surface.

=Avycos ('W(x,:y)) I «—-r I ab p(^) cos (*) d*
I Jab sJ-co ,

= exp -f-X. y (4-a)

b).=Avi sin (*(x, y)) V *Jjj J ab p(*) sin (¥) d*= 0 (4-
-co

This result was derived by Pekeris and independently by McFarlane
3 ''during World Wat II. .

The approximation lies in the fact that the Gaussian dis

tribution of surface height assumed is true only for an infinite

sample of surface variations. Since a finite scatterer represents

at best a large sample of this population, the distribution of height

of such a scatterer is not exactly Gaussian. As the scatterer

represents an increasingly large sample of the roughness popu

lation, the approximations represented by Eqs. (4) are improved.

A quantitative relationship between the sample size and the error

in these approximations is developed in the next section.

II. 3 Scatterers Composed of Few Surface Variations

If the scatterer is composed of on|y a few variations about

its mean value, the assumption that the height distribution of the

•10-



scatterer is Gaussian is not valid. This is true because the scat

terer now only represents a small sample of the.roughness popu

lation. EJqs. (4), therefore, are not a good approximation to the

scattered field. The error in Eqs. (4) is a statistical function of

the size of the scatterer, the surface height distribution, and the
*

surface autocorrelation function.

So far the surface detail of the scatterer has been consid

ered time-invariant. Let us now consider time-variant rough

surfaces and concentrate first on the average of E and E. with
e r i

respect to time. Averaging E over time is equivalent to averaging

E over many different samples of the population of surface vari

ations. The time average of E is thus determined by a large sample

of the roughness population. Eq. (4-a) then applies, and the time

average of E must approach f jo_l as the averaging time

is increased. A similar argument shows that the time average of

E. must approach 0.

Eqs. (3) still apply. t6 the instantaneous field of the time-

variant rough scatterer. Defining E • as E - exp-l- %§— > and
applying Eqs. (2), obtain

The surface autocorrelation function which is discussed more
fully in Section IV is defined

z(r)z(r+£) drJ!p(£) =lim "R
R 2

z(r) drSJ-R

The autocorrelation function of a surface rough in two dimensions
has two components px(£ ) and py(g ) which refer to the surface cor
relation in the x and y directions, respectively. These functions are
expressed in terms of | ox and £oy , where £ox and goy may be thought
of qualitatively as the average roughness width in the x and y direc
tions, respectively. Xommon forms assumed for the autocorrelation

function are exp •!- -2-«- Vand exp -I- -J- > . It is evident that if £ =§ ,

the correlation given by either of these forms is l/e.

•11-



E sexpJ-'-^-'U Er» +jEt (5-a)

|cos(*(xy)) -expj-^ll (5-b)E '= Av
r

;. =Av Jsin (¥<xy))| (5-c)

E ' is a statistical function of time with a time-average value of
r e2

zero and a variance (standard deviation squared) of s about zero.

E. is also a statistical function of time haying a time-average
i 2 2 2

value of zero and a variance of s. about zero. . s and s. may

also be thought of as the standard deviations of the error to be
2 2

expected in Eqs. (4). The problem is now to relate s. and s

to the size and the statistical description of the scatterer.

Consider an instantaneous profile of a random quantity z

which is a function of a single variable x. This is illustrated in
4Fig. 4. It may be shown that the instantaneous average of z

over a sample of length a, Av J z(x)l , has a variance s about
the time average of z given by

s2 =VA (6-a)
rNco 2

V = f z p(z)dz (6-b)

.
GO

As 2 (1 - u ) px (ua)du (6-c)
4>

where V is the variance of z about its time average, p(z) is the

probability density of z, and p (£ ) is the autocorrelation function

of z. A is called the "sampling parameter. "

-12-



^
z(x)

Fig. 4 A sample of Length, a of a Random Quantity z

Av £<x)y}
yja

Fig. 5 A Sample of Length b of the Random Quantity

'ylaAv {z(x) }

-13-



The significance of A may be inferred from Fig. 6, which

shows the dependence of A on the sample length a divided by the

correlation distance £, a/£ small implies that the average is

being taken over only a small part of one variation of z. This cor

responds to an Aof unity which implies that Av|z(x)V has a variance
equal to the variance of z. a/£ large implies that the average is

being taken over many variations of z. For this case A becomes
2

small and hence s becomes small. Thus A is seen to relate the

variance of Av jz(x)l to the sample size a/£ .

Examination of Fig. 6 indicates that A is not very depen

dent on the form of the autocorrelation function p(|) as long as

p(£) is monotonically decreasing. This fact is useful when it is

necessary to approximate the A resulting from a complicated

autocorrelation function. Thus if one can find £ for the compli

cated autocorrelation function, p(£ ) may be approximated by

exp i- -I— Land an approximate value of A obtained.

In the case of the random scatterer, z is a random function

of two variables and therefore Eq. (5) cannot be applied directly.

The case previously considered will thus be extended to the case

of two variables. The scatterer may be thought of as a rectangular

sample of the surface variation population having a length a in the

x-direction and a length b in the y direction. Divide this sample

into strips of length a and width dy. The instantaneous average

of z over the strip at y is defined as Av-jz(x) > (the average of
z(x)at y over a). Fig. 5 shows this strip average as a function

of y. Clearly the instantaneous average of z over the whole sample,

Av-Jz (x, y) >,, is the average of Av|z(x) I

over a sample of length b in the y direction.

Av (,(x.y,}ab=Av{Av{z(x)^}i

-14-
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z(x) is a function of only one variable x. Eqs. (6) therefore
y f 1 2apply and Av <J z(x) I has a variance s of

s = VA
x x

n+- CO
\' 2

V = \ z p(z) dz

-oo

-r (1-u) px (ua) du

where p (£ ) denotes the autocorrelation function.of z with respect
to x. The autocorrelation function of Av ) z(x) > with respect
to y is the same as the autocorrelation function oi z with respect

to y, p ( £ ). Av Jz( x) > is therefore a function of a single
y I yJa

10

p (£) Exponential

p (£) Gaussian

2

2^2

^^oH^lAJ

A=2-^ja-exp {-a/lj) --£ (l-exP {-a/£o}[a/£o +l] )J

20 30

Fig. 6 A vs. a/£

-15-
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variable y having a variance VA and an autocorrelation function

p (£.). Eqs. (6) may now be applied to determine the variance s

of Av<z( x, y){z<x'y>}ab- The result is:

s = VA A
x y

+00

= I z p(z)d:
-00

A = 2
x

A

-r

(1-u) px (ua) du

(1 - u) p (ub)du

(7-a)

<7-b)

(7-c)

(7-d)

s defined by Eqs. (7) gives the variance of the instanta

neous average of a random function of two variables about the time

average of the function. While this may be thought of physically

as the variance of the instantaneous average of surface height,

the result applies to any random function of two variables. Con

sider the application of Eqs. (7) to Eq. (5-b). cos(S&(x, y))

<—*P- I now replaces z and E ' given by AvJcos (^(x, y))

lr Vii f r \ A< ^- ^K replaces Av^z(x, y)^K. Defining Vv as

-exp

- exp \ -?- W, replaces Av-

the variance of cos (^(x, y)) - exp< - -32- I and p and p as the

{?yk
!Xpi--r-r

autocorrelation functions of cos (*(x, y)) - exp

variance s of E ' is given by:
r r e '

s = V A A
r r rx ry

-16-
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V •£ t
2 2

cos (^) - exp|--^-1"| p(*)d* (8"b)

A =2
rx

A =2
ry

A

1

(! " u) Pw <ua> du (8-c)

(1 - u) p y (ub) du (8-d)

Prx(e ) =lim
x—*co

J |cos («(x»y)) - exp{--^-}JLos (#(x+£ ,y))-exp{= ^}Jdx

£[«
¥^

Pry(6->

cos (^(x, y.)) - exp

2

{<"TTJ}] dx

(8-e)

fTcos (*(x,y» -exp {--£-}! Ros (*(x,y+£)) -exp{--^}Jdy
= lim "*—2- i ; —;—I. ,.

cos (*(x,y)) - exp ( --S-) dyy—»co

(8-f)

A similar argument shows that E. has a variance s. about

its time average of zero given by

s. = V.A. A.
i i ix ly

^ico

A. = 2
ix

A

V, = I sin (V) p (<&) d*

•co

(i - u) p ix (ua) du

-17-
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,y=2J (1 -u) P.yA.„ = 2 (1 - u) p.„ (ub) du (9-d)

'o

|^ sin (*(x, y)) sin(¥(x+£,y) dx

Pix =lim ^
x-kx> ^ sin2 (*(x,y))dx (9-e)ix8'

j sin (*(x,y)) sin (^(x,y+£) dy
p. =lim^ * , (9-f)
Kiy r& < 7*-*» f sin* (*(x.y)) dy

By assuming the Gaussian form of p(¥) Eq. (3), V and Vi become

i2Vr4^exP|.*2}J

V.4[l.exp{.2^}]

Evaluating p , p » p. » and p. is not as straightforward. They

can be evaluated, however, by noting that the proportion in which

*(x) and ¥(x+| ) occur is given by the joint probability distribution

of surface height. The derivation is carried out in Appendices VII. 1

and VII. 2 The results are

2exp {- ^}|«o«h{^P,(t)} -Q

I- «2}cOSh l?p (|)l -1Prv<i) = V'^i'T't J (1o-b)
| l-expj - *q;|

2 exp
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2 exp {- *2} sinh {*2 p (1)1p <|) = Li_°I 1°P* I (10.c)
[l -exp {-2 *2 }]

2 exp (- « J sinhf* p (|)1
p. ($) = l oJ l ° y ' (10-d)
iy [l -exP {-2 *of|

^ is the standard deviation of phase; p is the surface autocor-
o rx

relation function in the x direction, and p is the surface autocor-

relation function in the y direction.

Several observations concerning these functions are in

order. In the first place, they all decrease monotonically from 1

and approach but do not reach zero. The rate at which they fall

off depends on both ^ and p(£ ). This behavior may be qualita

tively explained by Fig. 7, which illustrates the relationship

between z(x), ^(x), cos (^(x))and sin (*(x)). Since z(x) and

^(x) are linearly related, they have the same autocorrelation

function p(£ ). Sin (SEr(x)) and cos (S&(x)), however, always lie

in^the range +1 to -1 and therefore tend to assume additional

"wrinkles" as \& increases. This qualitatively explains why their

autocorrelation functions fall off faster than p (£ ). For ^ small,

sin \& » ^ therefore p.(£ ) must approach p(£ ), which is indeed

the case in Eqs. (10 -c and -d). Since the mean value of cos (*)

is close to 1 when * is small, it tends to have twice as many

"wrinkles" as *(x). p (£ ) should thus fall off faster than p.(£ ).

As V approaches zero Eqs. (10-a and -b) show that p (£ ) ap

proaches p (£ ) which indeed falls off faster than p.(£ ).

Now that prx(£ ), pry(£), P^iih p.- (£ ), V. and Vr are known,
it is possible to evaluate s. and s using Eqs. (8) and (9). Figure

2 2
8 represents the dependence of s. and s on £ and St for a

-19-
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Fig. 7 Dependence on x of z, ¥, sin ¥,and cos *
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rectangular rough scatterer whose dimensions"are a by b . These

plots are constructed for the case of a/£ = b/£ and for auto-
f iOX i i ycorrelation functions of the form exp|- |£ /£ | J. The effect of

increasing the sample size (a/£ by b/£ ) is evident from these

plots; as the sample size is increased both s and s. are reduced.
2 2 r 1 2

The behavior of s. and s with increasing ^ is of interest, s.

2
and s are observed to assume their-maximum values for-\t in .

r o

2
the neighborhood of: 1 radian. This effect, was. observed by Be£rd

in microwave scattering measurementsirnade^over the ocean.

II. 4 Time-Average Power

The time-average power in the specular direction is now
2 2

easily related to ^ , s . and s # The modulus of the total instan-
7 o n r

taneous electric field E Eq. (5-a) is

,2

E = (exp {-t} +V.2 ^2,) + Ei

The normalized time average power P is defined as
xa

T

P(t) dtp =JL lim
ta P T—kx>

o

T

Where P(t) is the instantaneous power and P is the power that would

be received if the scatterer were smooth. PA is, of course, 1 if the
ta

surface is smooth.

P. =

{=44*+
r?

E

r"rT

exp

vo

•2 dt + E2
vJ 1
wo

-23-
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The second term on the right-hand side of this expression integrates

to zero because E * is evenly distributed about zero. The third and
r 2 2fourth terms are just definitions of s and s. , respectively. Thus,

Pta= expl -*2j+ sr2 +Si2 (U)
Evidently, the time average power scattered from a rough scat-

2 2
terer does not depend on ^ alone but also on s and s. . For scat-

° 2 r 2 -1
terers containing few surface variations s and s. will in fact

dominate for Sb large. This seems to be the case in measurements
° 2

made of microwave scatter from the ocean.

II. 5 Summary of Theory

Let us now consider the overall picture of far-zone specular

scatter from a time-variant rough scatterer. It has been shown that

the specular far-zone field has two-phase quadrature components

E andE.. E has a time-average or coherent component of

exp(- -^°-) with respect to the smooth surface scattered field; E
2 r

also has a statistical component E ' which has a variance of s .
r 2 rE. has a time average of zero and a variance of s. . Thus the

normalized instantaneous field E is

*2E=exp ( - -j^-) +Er* +jEi (5-a)

This is illustrated in Fig. 9.
2 2

s and s. were found to depend on the size and on the statis-
r l r

tical description of the scatterer. Increasing the number of surface
2 2

variations of which the scatterer is composed reduces both s and s. ;

thus, the field scattered from scatterers composed of many surface
"ib 7 7

variations is very nearly exp ( - -ir-)- The dependence of s and s.

on the standard deviation of phase, * , produced by the rough surface,
2 2°

is of particular interest, s and s. increase from zero with increas-
r l

ing surface roughness and reach a peak in the neighborhood of \t
2 2 °

equal to 1 radian. Further increase in * causes s and s. to decrease.
2 2 o r l

s is less than s. for ^ less than three radians; thus the random
r i o

vector E ' + jE. is non-Rayleigh for * less than 3 radians.
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Imaginary

Axis

Fig. 9 Relationship between E, E , E% and E..

The time-average power in the specular direction was found

to be

Fta*exp<-*2)+ s2 +s2 (11)

Agreement between the theory developed above and measure

ments of microwave scatter from the ocean was observed.
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IU. APPARATUS AND APPROXIMATIONS

In order to measure the rough surface scatter predicted

in Section II, the experimental apparatus shown in Fig. 10 was

constructed. This arrangement consists of a water surface which

is roughened by a blower system. Twelve different surface rough

ness states were produced by controling the air intake to the

blowers and the roughness parameters of each of these states

measured. The rough surface is illuminated by 8-millimeter

microwaves reflected from a parabolic reflector. The feed of

this reflector is adjusted to produce an optical focus at the re

ceiver when the surface is smooth. The receiver is merely an

open end of wave-guide connected to a crystal detector. This ap^

paratus is an approximation to the model analyzed in Section II.

The validity of this approximation is the subject of this section.

III. 1 The Spherical Wave Approximation

Ideally, the surface would be illuminated by a plane wave

and the scatter observed in the far zone of the surface. This sit

uation is not practical in the laboratory because the surface would

have to be very close to or far from the radiating structure in

order to receive plane-wave illumination. Moreover, the receiver

would have to be far from the surface. Yet an arrangement which

causes every element of a smooth surface to produce a field

contribution at the receiver which is in phase with the field contri

butions from all the other surface elements is an approximation

to the model of Section I.

Consider a spherical wave S (Fig. 11) which is converging

to point P. The field at P is just the sum of the contributions from

a Huygens source distribution on S. Because of the spherical

geometry the contributions at P are all of equal amplitude and

phase. If a perfectly conducting infinite surface S1 is now inserted

between P and S, the scattered field may be determined from a

Huygens source distribution on S1.

-26-
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The fields scattered by any element x on. S' is simply a

summation of plane waves. Each of these plane waves corresponds

to a Huygens source on S. If the radius of curvature of S' is

always sufficiently greater than X,, the surface element x reflects

each of the plane waves incident upon it in accordance with Snell's

law. Thus a smooth surface S' would cause the sperical wave

S to converge to P' in exactly the same way that it converged to

P in the absence of S'. It now remains to be shown that when S'

is smooth the contributions to the field at P' from the Huygens

source distribution on S1 are equal in phase.

From the geometry of the problem of Fig. 11 it is evident

that the shortest path between S and P1 via the scattering element

x is that followed by the specular plane wave a-x-P1. Other plane

waves scattered via x follow paths such as b-x-P' which are longer

that a-x-P' by a varying amount 6. Analytically, the field at P1

due to the arbitrary scattering element x is

EP'x =f g( V g( Go " Q2) 6XP (jk 6) d8

where g( 0) Eq. (1) is simply the field pattern of a plane wave

source. 0 , 0 , and 0, are defined by Fig 11. In the limit of zero
o 1 «

wave length the stationary phase argument applies.to the above

equation and the phase of the field contribution at P' produced by

element x is just the phase of the specular plane wave which

follows path a-x-P'. As a varies over S, x varies over S1 in such

a way that the path a-x-P1 remains constant. Thus each element

of the smooth surface S' produces a field contribution of equal ;

phase at P'. Therefore, in the limit of zero wave length, P1

is in a certain sense in the far zone of S'. For the experimental

arrangement used, 0. and 0 - 6l never exceed 50 while 6 takes

on values up to 12X. The zero wavelength assumption would

therefore seem valid to a first order approximation.

-28.-



The spherical wave S' is approximated by adjusting the feed

of the parabolic reflector. While only an elliptical reflector can

produce a truly spherical wave, the approximation obtained using

a parabola is quite good. Adjusting the parabola feed produced

a very sharp focus at the receiver, thus indicating that the field

contributions from the various parts of the surface are very nearly

of equal phase«

The amplitude of the surface illumination is, of course,

not uniform because the surface is close to the parabolic reflector.

The nonuniform surface illumination will not, however, materially

affect the argument leading to the approximate field equations

(Eqs. 4) for scatterers composed of many surface variations. The

reason for this is that Eqs. (4) depend only on the assumption that

the phase of the field contributions at the receiver be normally

distributed. This will be true regardless of the uniformity of the

surface illumination, provided a sufficient number of surface

variations are illuminated.

The predictions of Section II regarding the magnitude of
2 2 '

the variances s and s. (Eqs. 8 and 9) require definite knowledge

of the surface illumination. In obtaining analytical expressions for

these quantities, the simplest form of illumination was assumed,

namely, that of uniform illumination of a rectangular rough scat

terer. The complexity of the resulting expressions discourages

analysis of the case at hand. The form of the & dependence of
2 2 °

the variances s and s. (Figs. 8) is, however, fairly indepen

dent of the sample size. This form does not depend on uniform

surface illumination arid can therefore be checked with the experi

mental apparatus discussed above.

III. 2 The Gently Sloping Surface Approximation

In Section I the surface was assumed to be gently sloping,

which made it possible to assume that the radiation patterns of the

individual plane-wave sources were all aligned in the specular
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direction. If the surface is not gently sloping, the radiation patterns

will be substantially misaligned with a subsequent reduction of field .

It is therefore necessary to determine the effect of surface slope

on the radiation pattern alignment..

Consider a surface rough only in the x-direction (uniform

in the y-direction), and define the angle that any element cf this

surface makes with the x-y plane as 6 . Since a plane wave inci

dent on an element is reflected in accordance with Snell's law,

its direction varies from the specular direction by 2 6 (Fig 12).

Since the radiation pattern of the elemental plane-wave source has

its axis z' in the direction of the reflected plane wave, the axis

of the radiation pattern is also shifted by 2 6 .

If the scattering surface represents a large sample of the

surface-variation population, the portion of surface having angles

in the range d6 about 6 is given by dS, where

Element Angle^6

Fig. 12 .Relationship between the Plane
Wave Source Axis , z'., and the
Specular Direction
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dS = ab p(6) #6

ab represents the portion of x-y plane containing the scatterer,

and p(8) is the probability density of 6. The probability density
4

of surface slope a has been shown to be

p(a) = -= exp
V2Tra

a =^/T(r/£
ox

where a is the standard deviation of surface slope, cr is the stan-
o

dard deviation of surface height, and £ is the surface correlation
6 'ox

distance in the x-direction. For the surfaces under study (Section

IV), a does not exceed. .141, vh ich corresponds to a surface angle

5 of about 8 . Since for 6 small, 6« a and p(6) » p(a), we may write

P(6)«=— exp

Recall that the field pattern of a plane-wave source (Eq. 1)
2 0'is proportional to cos (-7-) and that the angle between 0' = 0, and

the specular direction is 25. Then the field reduction K in the
s

specular direction due to surface slope is given very nearly by

2
ab p(8) cos (8) d5

•jtjl -{•$ "•2<«"'-^.-2*°i]
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for a = . 141 K = . 98. This corresponds to the roughest surface,
o s

Although the case analyzed above considers the surface rough

in only one direction, it should serve to show that the surfaces

under study may be considered "gently sloping. "

III. 3. The Infinitely-Conducting-Scatterer Approximation

The development of Section II assumed the scatterer to be

perfectly-conducting. Water, however, is not a perfect conductor

at electromagnetic wave lengths of 8 millimeters. The complex

permittivity of 25 C water at 8. 6 millimeters is

€' - j » = 21 - j29

The reflection coefficient R for a horizontally-polarized wave
Jrl

(electric field normal to the plane of incidence), incident at angle 0

on a plane boundary between free space and an imperfect dielec-
. . . 8
trie is

sin

R„ =

(ir/2 - 0) -^/' - j|" - cosV72 "6)'
sin (tt/2 - 0) +^4 ' - j »- cosV/22"9)

Figure 13 is a plot of R as a function of 0 for the values

of e ' and € " given above. Reference to this figure indicates that

the amplitude and phase of the field scattered by a surface element

are functions of the element slope. The maximum standard devia

tion of slope of the surfaces under study has been shown to be .141,

and the fact that the slope distribution is Gaussian means that few

elements have slopes that exceed .141. The variation of amplitude

and phase of the reflection coefficient as an element takes on slopes

of - . 141 (8 ) is also indicated in Fig. 13. Thus the variation of

the magnitude of R with slope seldom exceeds . 05, while the

variation of phase with slope seldom exceeds 2°. These figures
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apply to the roughest surface state and are considerably reduced

with decreasing surface roughness.

The effect of the variation of the reflection coefficient on

the scatter from the surfaces under study is, therefore, small.

Thus while the reflection coefficient plays an important role in

determining the absolute value of the scattered field, it has only

a minoT effect on measurements made relative to the smooth-

surface-scattered field.

The effect of an imperfectly conducting surface must also

be considered in regard to skin depth. If, for example, the inci

dent radiation were to reach the bottom of the ripple tank and be

re scattered through the surface, the experimental results would

be considerably complicated. The skin depth 6 of a material

illuminated by a wave of frequency f, and having a permeability

u and a conductivity cr, is

6 = 1/ -yv: f \x <r

For the surface under study, f = 35 K. M. C. , u = jx = 4ir ::

xl0"77^£~ <r = 6»co =.045 i^£!lr and 6=.37 mm. There-
meter o ohm

fore the radiation reaching the bottom of the tank is negligibly

small, since the water is 5 cm. deep.

III. 4 Summary of Approximations

In conclusion, it is observed that the only serious limita

tion of the experimental apparatus is that of the nonuniform illumi

nation of the surface. Because of this limitation it is difficult to

use the theory of Section II to predict exactly the absolute value
2 2of the variances s and s. . The general form of the dependence

of these variances on the standard deviation of phase SI> can.
r o

however, be checked. The apparatus discussed above is thus a

useful approximation to the model analyzed in Section II.
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IV. SURFACE MEASUREMENTS

The theory developed in Section II predicts the behavior

of specular scatter in terms of p(z), .the probability density of surface

height, and p(£), the surface autocorrelation function. The measure

ment of p(z) and p(£) is the subject of this .section. The results of

these measurements are summarized in Table I.

The instantaneous height z of a time-variant rough surface

varies in space in a random manner. This variation is described

statistically by p(z) and p(£). These quantities are, in general, a func

tion of position; for the purposes of this discussion, however, the

surface will be assumed uniform. That is, p(z) and p(£) will be

assumed independent of position.

To describe completely a time-variant rough surface, the

statistical behavior of the time variation must also be considered,

This variation is important when it comes to choosing averaging

times for time-variant statistical quantities. Suitable averaging

times may, however, be estimated by observing the variation in

the quantities being averaged. Therefore the statistical behavior

of the surface's time variation will not be determined explicitly.

IV. 1 The Probability Density of Surface Height

The probability density of surface height, p(z), is given by

pw-S51 (12)

where z is the surface height and P(e) is the probability that the

surface height exceeds €. If the surface is uniform and time-

variant, P(e) may be defined as

*/-P(c)= lim if, / u(t) dt (13)
T—too

-36-



where t is time and

0 z < €

u(t) = "
1 .z > e

P(e) may also be defined as

P(e) = lim — u(r) dr
R-»co K Mo

where r is a distance along the surface in any direction and

6CO z <

u(r) =J
[l z >

Once P(e) is known for all e, p(z) may be determined using Eq. (12).
6

p(z) for a rough-water surface has been measured by Manton, who

used photographic techniques to obtain instantaneous surface pro

files. The approach here is different. An electronic analog is

constructed to perform the operations indicated in Eq. (13). From

the plot of P(z) thus obtained, the form of the density function, p(z),

and the standard deviation of surface height, cr, are deduced.

The analog used is shown in Fig. 14. This arrangement is

seen to consist of a probe which controls an electronic pulsing

device whose output is integrated with respect to time. The height

of the probe above the mean surface level corresponds to e • When

the probe is submerged the grid of the pulsing section tube is at

0 potential. When the probe is out of the water the tube is cut off.

The resulting output of the pulsing section is a pulse which corres

ponds to u(t). That is, when the surface height exceeds € the pulse

is on, and when the surface height falls below € the pulse is off.

The analog is calibrated by means of S. and R . S- closed corres

ponds to e equal to -co, or P(e) = 1. Therefore with S. closed, R.

is adjusted to make the integrator output, V , unity. Then with

S. open, V equals P(e ).
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The surface height seen by the probe is influenced by the

meniscus between the probe and the surface. If the probe is set

at height € it will make contact with the surface when the surface

reaches height € • Due to the meniscus the probe will not break

contact until the surface height is e - p, where p is the maximum

value of the meniscus. The actual surface height sampled, there

fore, liesr somewhere between e and € - p.

Suppose for the sake of argument that the surface made and

broke contact with the probe at height € - p. The actual surface

height sampled would then be e - p . If it is assumed that the sur

face rises in the same manner that it falls, it follows that the

"make contact meniscus" and the "break contact meniscus" con

tribute equally to the reduction in the surface height sampled.

Actually, only the "break contact meniscus" exists; therefore

the actual height sampled is very nearly € - p/2. This relation

ship is not exact because surface maxima lying in the range e to

€ -p/2 are not sampled. This, however, is a small effect

since p /2 is in practice about • 05 millimeters and the standard

deviation of surface height of the least rought surface is about

• 22 millimeters.

In the experimental procedure, p is not determined expli

citly; rather, use is made of the fact that

P(0) = 1/2

where 0 is the co-ordinate of mean surface height as seen by the

probe. The probe height is adjusted until V is observed to be

1/2 and P(e ) is then measured relative to this height.

Figure 15 shows a typical set of experimental points of P(e )

determined using the methods described above. The solid curve

with which these points are compared is a plot of the function

/co

p(z) dz
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-n. o

Experimental Points

-2.0 -1.5 -1.0 -.5 0 +.5 +1.0+1.5 +2.0

e (Departure from Mean Surface in Millimeters)

Fig. 15 Comparison Between p(€) Experimental and
oo

p(e) =
a/2?1. 45 / exp {

-z*

2(1.45)2 }
dz for Roughness V

where

p(z) =
\/£7l. 45

exp -

2(1,45)

is a Gaussian density function having standard deviation 1. 45 mm.

Close agreement between the experimental points and the curve

based on the Gaussian density function indicates that the probability

density of surface height of the surface is very nearly Gaussian.

The fact that the experimental points fall slightly below the curve

for z greater than 0 is due to the fact that surface maxima lying

in the range € to € -p/2 are not sampled. The effect of not

sampling these maxima is to slightly reduce the experimental

observations.

The standard deviation of surface height cr can easily be

extracted from P(z). Since p(z) is Gaussian and P(0) is 1/2,

P(-cr) = .84 and P(+cr) = . 16 . Thus the surface represented
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by Fig. 15 has a standard deviation of surface height of 1. 45 mil
limeters. Similar comparisons for the other roughness states

studied show that they all had approximately Gaussian distributions

of surface height. The results of these comparisons are summar

ized in Table I at the end of this section. The accuracy with which

cr was measured is estimated at - . 05mm.

IV. 2 The Surface Autocorrelation Function

The autocorrelation function p(£ ) is tfie correlation of sur

face height between two points separated by a distance %. If the

surface is time-variant in a uniform manner, p(£ ) is given by

/ zP(t> ve(t) dt
p(& )=lim ^= (14)

T-,OD ' z 2 (t) dt
p•r

where p is a fixed point on the surface and p + § is a second fixed

point on the surface separated from p by a distance £ . p(£ ) is

also given by
+ R

z(r) z(r + |) drX
I

p(l) =lim ^tr (15)
R-»co / 2

z(r) dr
'-R

where the integral is performed at one instant of time. (i. e., the

surface is frozen) Either Eq. (14) or (15) may be used to measure
o

p(§ ). Manton, using photographic techniques and hand computation,

determined p(|) through use of Eq. (15). The approach here will be to

measure p(£ ) using analog techniques to perform the operations of

Eq. (14).

A diagram of the analog used is shown in Fig. 16a. This

arrangement has two separate channels, 1 and 2, which develop

signals proportional to z (t) and z- * (t), respectively. These
P P+5
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channels are combined in a function multiplier and the result

integrated in a Miller integrator. The probe carriage, Fig. l>b,

provides adjustment of the height € and the probe separation £.

The probes themselves are excited with alternating current in

order to prevent polarization. The impedance between each probe

and the bottom of the tank is used as a bridge element. These

Probe Bridge High Pass Detector
Carriage Amplifier

Switch Function

Multiplier

Fig. 16-a Analog for Measuring p (£)

-42-
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•

Fig. 16-b. Probe Carriage

impedances can be made a fairly linear function of surface height

by proper adjustment of the bridge parameters. A circuit diagram

of the two bridges is shown in Fig. 16c. The output of each bridge

is of the form

eB = e (1 + kz(t)} cos (2tt f t)

which is a carrier of frequency f whose amplitude is modulated by

the height of the water, z(t), on the probe associated with the bridge

in question. The signals thus obtained are amplified in high-pass
**

amplifiers which provide the necessary gain but limit excessive

* +Actual measurements show the detector output to be linear - .1
millimeter over a range of 5 millimeters.
** Narrow-band amplifiers, if available, -would have been even
better in this application.
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noise. The amplified signals are then fed to the detectors whose

outputs are

\ tl6)

e2=k2zP+6 « J

The circuit diagram of the detector current used is shown in

Fig. l6d. The switching section has three functions. Function 1
2

produces a signal proportional to e. at the output of the function
2

multiplier; Function 2 produces a signal proportional to e_ at the

output of the function multiplier; and Function 3 produces a signal

proportional to e.e- at the output of the function multiplier. The

Miller integrator, which is controlled by a motor driven micro-

switch, provides a 20-second time integral of the output of the

function multiplier.

Calibration is necessary only to insure that k. and k_ of

Eqs. (16) are equal. This is accomplished by first switching to

Function 1, roughening the surface, and measuring the integra

tor output V .; then switching to Function 2 and adjusting the gain

of channel 2 so that the integrator output V - associated with

Function 2 is equal to V ..

p(£ ) is measured directly by switching to Function 3 and

measuring the integrator output V ,. p(£ ) is then

Vc3
P<$) =

Vcl

V .» V _, and V - used in determining p(£ ) are each the result of

ten 20-second time integrals and are therefore 200-flecond averages,

p(£ ) has two components p (£ ) and p (| ), where x is .the

direction along the length of the ripple tank (also the direction of
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the exciting air flow) and y is the direction along the width of the

tank. By changing the orientation of the probe carriage it was

possible to measure both p (£) and p (£). The results of these

measurements made at Roughness V are presented in Figs. 17.

The form of the autocorrelation functions is of interest,

p (£), the autocorrelation measured in the x-direction, is seen

to be very nearly of the form exp (- |-tt— I)»while p (£),the auto

correlation function in the y-direction, is closer to the fojrm
/ |- t% |\

exp (- -73-I ) . p (£) and p (£) were found to maintain these forms

over the ^h ole range of surface variations measured. The difference

in these forms is probably due to the method by which the surface

was excited, the miethod of excitation being air-blown over the sur

face in the x-direction. The form of autocorrelation functions

in general is discussed by Chernov, who Shows that a bounded

function may not have an autocorrelation function of the form

exp [- I•%-I I. Chernov points out, however, that autocorrela-(• M
tion functions of this form are commonly measured. A summary

of the autocorrelation functions measured for the experimental

surfaces in question is presented in Table I. The accuracy of

these measurements is estimated at - .25 cm.
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TABLE I

SUMMARY OF SURFACE MEASUREMENTS

Roughness

I

II

III

III 1/2

IV

IV 1/2

V

V 1/2

VI

VI1/2

VII

VIII

o* mm

.22

.30

.56

.72

.96-

1 .14

1 .45

1 .66

2 .00

2 .35

2 .70

3 .00

+ not measured

++ all measurements of or - .05 mm

+++ all measurements of p - .25 cm
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V. MEASUREMENT OF SPECULAR SCATTER

The theory developed in Section II predicts the behavior of

specular scatter from a rough surface. The purpose of this section

is to compare actual scattering measurements with this theory. The

scattering measurements are made on the rough-water surface des

cribed in Section IV; the experimental apparatus was discussed in

Section III.

The scattered field predicted in Section II depends on the

surface roughness and on the number of surface variations illumi

nated. The surface roughness is controlled and measured as

described in Section IV. The number of surface variations illumi

nated is varied by using two parabolic reflectors, one 30 inches in

diameter, the other 10 inches in diameter. Since the surface is

close to the parabolic reflectors, the 30-inch parabola was found to

illuminate more surface area than the 10-inch parabola. It is

thus possible to vary the number of surface variations illuminated.

The measurements themselves are presented in two sections.

The first section presents measurements of time-average power

made with both the 10-inch and the 30-inch reflectors. These are

then compared with Eq. (11) which is the theoretical expression for

time-average power. The second section presents measurements

of the time-average power associated with the phase quadrature
i

random field components E and E.. These measurements are

compared with the theoretical predictions of Figs 8. This second

set of measurements is made only with the 10-inch reflector.

The electric field is horizontally polarized (parallel to the surface)

in all of the above measurements.

V. 1 Measurement of Time-Average Power

The measurement of time-average power was made with the

apparatus discussed in Section III and with the circuit shown in

Fig. 18. The microwave energy which illuminates the surface is
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Crystal
Detector

Fig. 18 Circuit Used for Measuring Time Average
Power

100 % modulated by a 1-kilocycle-square wave. The portion of this

energy which is scattered to the receiving point is received by an

open end of waveguide. This waveguide is connected to a preci

sion attenuator whi ch adjusts the received signal level to be within

the square law range of the crystal. (This range was about 25

decibels for the crystal used. ) The output of the crystal is a 1-

kilocycle carrier whose amplitude is proportional to the instan

taneous power received from the surface. This signal is ampli

fied and the 1-kilocycle carrier removed by the detector. The

detector output, which is directly proportional to the instantaneous

power, is then integrated with respect to time in order to obtain

an output proportional to the time-average power. The integrator

is controlled by a motor-driven microswitch which provides twenty-

second integration times.

The system linearity was checked by adding known amounts

of attenuation by means of the precision attenuator which preceeds
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the crystal detector. The system was found to be linear to within

+ 0% to -2% for integrator outputs of 100 volts to 1 volt. The system

gain was then adjusted so that the integrator output corresponding

to a smooth surface was 100 volts and the normalized time-average

power was measured by roughening the surface and noting the re

duction in the integrator output. The actual power reduction was

determined by averaging the results of 10 twenty-second integra

tions; therefore the experimental points represent 200-second

averages.

The normalized time-average power associated with each

of the roughness states summarized in Table I was measured for

both the 30-inch reflector and the 10-inch reflector. The results

of these measurements plotted as functions of the standard devia

tion of phase ^ are presented in Figs 19 and 20. Figure 21a is a

plot of the difference between the experimental points obtained

using the 10-inch reflector and the curve exp ( - Sb ) . According

to Eq. (11) this is just the normalized incoherent power s + s. . .

The theoretical normalized time-average power, F , given

by Eq. (11), is

(11)

This expression shows that the time-average power is composed

of a "coherent" term exp f- * J and a "noise term" s + s. .

The standard deviation of phase * can be computed immediately

from Eq. (3-b).

tf = 2 k C <r (3-b)
o o N '

where k is the free space propagation constant-^-— ; C is the
cosine of the angle of incidence; and tr is the standard deviation

of surface height. The average angle of incidence is 45 and the

electromagnetic wavelength is 8.40 millimeters. ^ is therefore
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given by

* = 1. 06 <r
o

where cr is the standard deviation of surface height in millimeters.

-% may now be determined for any roughness state by reference to
o

Table I, which lists <r for the different roughness states studied.

As pointed out in Section III, it is not feasible to determine
2 2

s and s. exactly; the following order of magnitude argument

must therefore suffice to gain an idea of the size of these quanti

ties. The first nulls of the surface illumination from the 30-inch

reflector were measured and found to be separated by 15 centi

meters in both the x- and y-directions. (As before, the x-direction

is taken along the tank and the y-direction is taken across the tank.)

Since from Table I £ and £ are seen to average about 3 centi-
'ox 'oy °

meters, the illuminated surface is roughly equivalent to a uni

formly illuminated rectangular rough scatterer having dimensions

a by b with a/ £ = b/£ =5. Reference to Fig. 8c indicates
7 ox oy

2 2
the dependence on S& of s. and s for such a scatterer. A sim

ilar order of magnitude argument shows that the surface illumi

nated by the 10-inch reflector is roughly equivalent to a uniformly

illuminated rectangular scatterer having dimensions a by b with

a /£ = b/£ =2. Reference to Fig. 8b indicates the dependenceox oy t»
2 2

on ^ of s. + s for such a scatterer.
o l r

/ 2\ *
The coherent term of Eq. (11), exp ( - \& J, is now known.

2 2 °
The noise term of Eq. (11), s. +. s , is known approximately and

depends on the reflector used. It is thus possible to make a pre

diction of the time-average power scattered by both the 30-inch

reflector and the 10-inch reflector. Let us now compare the measured

"?
Hie accuracy with which this term is known depends upon the

accuracy with which cr can be measured. This accuracy is about
- . 05 millimeters.
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values of time-average power with these predictions.

In Fig. 19 the experimental points of time-average power

measured using the 30-inch reflector are presented. Also plotted

in Fig. 19 is the coherent term.of Eq. (11), expf-1^ \. Close
agreement between the experimental points and this curve is evident.

The fact that the experimental points are given very nearly by the
2 2

coherent term of Eq. (11) indicates that the noise term s + s. must
2 2 r x

be small. The approximate dependence of s. + s on ¥ for the

30-inch reflector is given in .Fig.$c. Reference to this figure shows
2 2

that the maximum theoretical value of s + s. is . 053. This is
r i

in good agreement with the conclusion reached above, namely,
2 2

that s. + s is "small. " According to Eq. (11) the time-average
1 r 'y

power always exceeds expf - St ). The fact that some experimental
points fall slightly below this value is attributed to experimental

error. The significance of the above measurement is that it shows

that the time-average power is given very nearly by exp(-Sk "\ if
the scatterer is composed of "many" surface variations. It is

also significant that the theory of Section II is able to give a quanti

tative meaning to "many" surface variations.

In Fig. 20 the experimental points of time-average power

measured using the 10-inch reflector are presented. Also plotted

in Fig. 20 is the coherent term of Eq. (11), expf- * ). All of
the experimental points exceed this curve; some exceed it by a

considerable amount. According to theory (see Eq. 11), the amount
7 ? ?by which the experimental points exceed expf- >& ]is s + s. .

2 2Thus s + s. may be determined by taking the difference between
r * 2 2 2the experimental1 points and.the curve expf-^ \. s + s.

measured in this way is presented in Fig. 21a. The approximate
2 2

theoretical behavior of s + s. for the 10-inch reflector is
r i

plotted in Fig 21b, which is taken directly from Fig 8b. It will
2 2

be recalled that the predicted theoretical behavior of s + s. • was
r l

based on the assumption that the surface illuminated by the 10-inch
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reflector could be approximated by a uniformly illuminated rectangular

rough scatterer having dimensions a by b with a/£ = b/£ = 2,

where a and b were taken as the distances between the first nulls of

the surface illumination in the x- and y-directions respectively. This

assumption is somewhat arbitrary and therefore while the apparent

agreement in magnitude between the experimental and theoretical

curves of Fig. 21 is encouraging, it must be taken for what it is--a

rough approximation. The agreement in Figs. 21 that is more sig-
2 2

nificant is that of the form of s 4- s. . Both the theoretical and the
r i

experimental curves are seen to rise from 0 and reach a maximum

in the neighborhood of * ,= 1 radian. For greater values of W , both

curves are seen to decrease. Examination of Figs. 8a-b-c indicates
2 2that s + s. has this same general dependence of * , regardless

of the number of surface variations composing the scatterer. Thus

the above rough approximation as to the size of the scatterer should

not affect the form of these curves. The fact that the form of the

curves of Fig. 21 do not agree exactly is attributed to experimental

error. In particular, it appears that the experimental curve

flattens out for & above 2. 5, while the theoretical curve contin-
o

ues to decrease. The explanation of this effect is probably due

to the fact that the 10" parabola was not constructed with the neces

sary accuracy to obtain a good focus at 8-millimeter wavelengths. *

Purposely defocusing the 30" parabola produced a similar effect.

The above measurement is significant. In the first place,

it shows that the effect of reducing the number of surface varia

tions illuminated is to make the normalized time-average power

exceed exp - ^ . Secondly, it v3hows that this increase may be
° 2 2interpreted as s. + s , whose form may be predicted by the

theory of Section II. It also tends to indicate that the magnitude
2 2of s + s. may be approximated by considering the scattering

surface to be a uniformly-illuminated rough scatterer of dimen

sions a by b, where a and b are the distances between the first

nulls of the surface illumination in the x- and y-directions,

respectively. This last point could be of considerable practical

interest and therefore might be worthy of further investigation.
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The above-de scribed measurements argue strongly for the

validity of Eq. (11) and the theory on which it is based. The re

maining theoretical point which must be checked is the magnitude
2 2

of s relative to s. . This is the subject of the next section.
r l J

2 2
V. 2 Measurement of s Relative to s.

r ,i

In Section II it was seen that the instantaneous, normalized

field was made up of a coherent component exp ( —-^ land the

two random-phase-quadrature components E ' and E.. E ' was

2
in phase with the coherent component and its variance was s .

E. was in phase quadrature with the coherent component and its
1 2 2

variance was s. . Reference to Figs. 8 indicates that s. and
2 x

s are not equal. This section describes a measurement of

2 2
s relative to s. .

r l

A microwave bridge was constructed as illustrated in Fig.

22. The power in the reference arm of this bridge was adjusted

to be about 100 times the power scattered from the surface when

the surface is smooth. The ratio of the reference arm field to

the smooth surface, scattered field is thus 10 to 1. By adjusting

the field in the reference arm, E., to be in phase with the coher

ent component from the surface, the variation in the magnitude

of the resultant field could be made approximately equal to E r.

This is illustrated in Fig. 23a. E. is, of course, still present

but since it is in phase quadrature with the large added field

component, the variation in the magnitude of the total field due

to E. is small. Alternately, the phase of the reference field E.

can be adjusted to produce the relationship illustrated in Fig.

23b. In this case the constant part of the resultant field is in

phase with the random component E.. Thus the variation in the

magnitude of the resultant field is.;very nearly the variation of E..

The. variation in the magnitude, of the resultant field produced by

E * is small compared to the variation produced by E., because
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field variations in phase quadrature with the large constant field have

negligible effect on the magnitude o.f the resultant field.

The magnitude of the total field at the crystal is in general

the sum of a constant component E, and a random time-varying

component E . Since the crystal detector is operated in its square-

law range, its output V is

V =(E, +E )2 =E, 2+2E..E +E 2
x k v k k v v

E, is merely the magnitude of the vector sum of the coherent

scattered field expf J£- \ , and E- the field in the reference arm

of the bridge. If E., which is measured relative to the smooth-

surface-scattered field, is very much greater than 1, E, is prac

tically independent of the coherent scattered term, expf - -70-) .
As discussed above, E can be made approximately equal to

either E or E. by adjusting the phase of E.. The. results of the
r 1 2 2

last section indicate that s. + s was much less thanl even for
1 r

2 2
the 10-inch reflector. Thus E and E. must also be much less

r 1

than 1, and very much less than E,, which is approximately 10.

Therefore it is possible to approximate the above expression

for V by
x J

Vx . Ek2 +2EkEv
2

- —«2_) means
that the second term of this expression is proportional only to E .

2
The time average of E is measured with the circuit

illustrated in Fig. 24. After amplification V is detected and the
2 xconstant (time-average) component E, removed by a blocking

condenser. The output of the blocking condenser which is propor

tional to E is squared by the function multiplier and integrated

with respect to time. The integrator output is therefore propor-
2

tional to the time average of E . Thus in the case where
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Fig. 24 Circuit Used to Measure

E'2 and E2
r l»

E = E. ;the integrator output is proportional to s. ; when E = E

the integrator output is proportional to s

2 2
s and s. were measured as described above and the

r l

results presented in Fig. 25a. Figure 25b, which is a reproduc-
2

tion of Fig. 8b, gives the theoretically predicted behavior of s
2 r

and s. . General agreement between the theory and the measure

ments is observed. Agreement is also noted with the measurements
2 2

of s + s. made in the last section. Despite the general agree-
_2

menti is is seen to increase more rapidly than would be expected
r 2 2

in the neighborhood of f =0. It is also noted that s and s.

do not have exactly the same values at 3 radians as predicted by

the theory. These discrepancies are attributed to experimental

error.

The above measurement is significant because it showsithat

the noise component of the scattered signal is non-Rayleigh; that
2,2

is, s t s. .
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V. 3 Summary of Electromagnetic Measurements

The foregoing measurements confirm the theory of Section II.

Theory predicts that if the scatterer is composed of many surface

variations the normalized time-average power scattered by it is

very nearly expf - ^ j. This was measured and found to be the
case. Theory further predicts that if the scattering, surface is

composed of only a few surface variations the normalized time-

average power will substantially exceed expf * Sb \ . This was
also found to be the case. The increase over Yexp r- * \ of the
normalized time-average power was measured and found to have

2 2
the same ^ dependence as s + s. predicted by theory. It was

therefore concluded that this increase could be interpreted as the
2 2"noise power term" s + s. of Eq. (11). The magnitude of the

noise power term could not be predicted exactly because of the

nonuniform surface illumination. An order of magnitude approx

imation, however, was found to predict the noise power surpris-
2 2

ingly closely. The magnitude of s relative to s. was measured

and found to agree closely with the theory of Section JI.

Where exact correspondence with theory was not observed,

the differences are within experimental error. The above meas

urements thus strongly substantiate the theory of Section II.
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VI. CONCLUSION

The foregoing theoretical development and measurements

indicate that the specular scatter from a time-variant rough sur

face is dependent both on the surface roughness (standard deviation

of surface height) and on the number of surface variations illumi

nated. If many surface variations are illuminated the scattered

field is very nearly constant. This constant is the smooth-surface-

- -*°—J .. If only a few surface vari
ations are illuminated the scattered field becomes time-variant

and may be considered to be composed of a "coherent" ( time-

average) component and two-phase-quadrature "noise" (random-

time-variant) components. The coherent component is the smooth-

—J^-J. ^ke noise components
depend on both the surface roughness and the number of surface

variations illuminated.

The dependence of the noise components on the size of the

illuminated surface, the standard deviation of surface height cr,

and on the surface autocorrelation function p(|) has been theoreti

cally predicted and the validity of these predictions has been

experimentally verified. The magnitude of the noise components

depends on the number of surface variations illuminated. If many

surface variations are illuminated the noise components are small.

As the number of surface variations illuminated is decreased the

noise components increase. The dependence of the noise components

on the surface roughness is of particular interest. As the surface

roughness is increased from zero the noise components also

increase from zero. When the standard deviation of phase produced

by the rough surface is about one radian, the noise components

reach their maximum values. Beyond this point the noise compo

nents decrease with increasing surface roughness.

The two-phase-quadrature noise components contain equal

power only when the standard deviation of phase exceeds three
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radians. For smaller standard deviations of phase the noise

component in phase with the coherent component contains less

power than the noise component in phase quadrature with the

coherent component. The scatter from a time-variant rough sur

face may therefore by thought of as a coherent component plus a

non-Rayleigh noise component. The behavior of these components

may be predicted by the theory developed in tl^is report.
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VII. APPENDIX

VII. 1 Calculation of p ( £)

+x 2 2

^. J Tcos (*(x)) -exp (- -°-)~j fcos (*(x+|)) -exp(- -^-)jdx
P„J£) = lim

x-*x> -tx ^2 2
^ J fcos (tf (x)) - exp (--£- )1 dx

(A.1)

Since *is linearly related to surface height^ its probability distri

bution p(19B) is Gaussian.

1 ' -2P(*) =7=^ expf-JL-.)
v O O

The denominator of (A. 1) represents an average which may just as

well be found by averaging over \&instead of over x. Writing the

denominator of (A. 1) as an average over % we obtain:

•ft0 ^2 2 2
f fcos (¥) - exp (--^-fl p(*)d*=^fl- exp(- *2 1 (A.2)

Since ^is Gaussian its joint probability distribution in the

x-direction p (\fc, >&-), is given by

/•• * ^ i f-(*i2 -^t'zP^e) **22>
2* %V-Px <*) [ 2* 2(1-Px2 (6))

where St- and SI> are the phases of the field components contri

buted by two points on the surface separated by a distance £ in the

x-direction. Since the phase ^and the surface height are linearly
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related, they have the same autocorrelation function. Thus

p (£) may be taken as the surface autocorrelation function in the

x-direction. p (\&., *-) is the iprobability distribution of *2 given
"& allowing for the proportion in which *. itself occurs.

Like the denominator, the numerator of (A. 1) represents

an average which may be evaluated by averaging over *. By using

the joint probability distribution this average may be expressed as:

+00 +00 2 T 2

p r * ocos '&. cos ^L - cos * exp ( - -J2—) - cos S&2 exp ( ^~)

-00 -co

exp (- *2)] p(*x, *2) d.tfj d*2 (A. 3)

where <&. replaces ^(x) and St- replaces ^(x + £ ).

Equation (A. 3) may be integrated term by term. The first

term is:

2tt •*

+ CO +co

_j r
, \A - Px (£ ) -co ^00

, d*x d*2

cos \t cos^- exp<-
*l2-2*l*2PX<^+*22,

11 i • . I 1

2%2 (1-PX2(D)

By separating the numerator of the exponential term this expression

becomes:

cos ^ cos *2 exp -(VVx(5))'
"" n ' * •••••"

2fe
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where

1^ =2* •» V - px2 (6 ).*.

V =%2 <X " Px2 <* »

The integral with respect to \&. is

+00 9

f-(^t- *2Px(£)) .cos ^ expJ i — Vd^1 .... (A. 5)
rc» L 2k/

making the substitution a = (^ - *~ p (£ )), we obtain
1 M X

2V+^° / 2 \ / K

-00 x 2

cos (a +*2PX(£)) expf--S—Jdo =v/S? K2 exp(--£-jcos *2Px(t )#''
(A. 6)

Substituting this result into (A. 4) and evaluating K. and K2> we
obtain

I J j cos ^ cos *,p (|) exp^ —-> }^^o
V2?* aro 2x i^vr
since

cos (A) cos (B) = j ( cos (A - B) + cos (A + B))

the above expression integrates to

exp J- *2icosh j*02px2 (6)1. , . • (A. 7)
This is the first term of the integral (A. 3).
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The second term of integral (A. 3) is

2
{^ i +oo +oo { "\ r 7

-^i i cosVxpt ^ jeT%
. d^ d#2

The integral with respect to \&. is exactly equation (A. 5). Therefore^

the above integral becomes

j. 2, , „2.
} ( **1 F° f *22 1•JeXPl'̂ ~J I co8(*2px(4))exp|--|4 --2

yj2? Vq ^oo

2 „ 2 _2

^expL-^-jexpL^jexpj-^ p/ (|) 1= -expj- *2L . . (A. 8)
The third term of (A. 3) is also (A. 8) because p(*j, *2) is symmetric
with respect to ^. and .*_. The fourth term of.(A. 3} is

+exp|, *2J:
+ 00 +00

because I p(*.» *2) d * d *2 is by definition 1.
-oo -oo

Summing the terms of (A. 3) the numerator of (A. 1) is found to

be

exp I- *o2| cosh I*2 px (6 ) -l|
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Combining this with (A. 2), p (§) is

... 2exp{- tt2}cosh{tt2px(|) -l} (A9)
Prx(6) =

[' •" { *'fl
\& is the standard deviation of phase ^and p (§ ) is the autocor

relation function of the surface in the x-direction.

p (£ ) is found by substituting y for x in the above argument,

p {£ ) is thus

2 exp il - ^ ,^»ii 1~ f \* // -m /a m\/t\_ I oj [o »*yx* " J_ (A. 10)
ry

{l-^o2}cosh{^2py(e)) -l}

[• --{- %1J
where p (§ ) is the surface autocorrelation function in the y-

direction.

The above expressions for p and p require only on the

probability distribution of surface height of the scatterer be Gaussian.

VII. 2 Calculation of p. (£ )

pw(£ ) = lim
X-)CO

2£ I sini ^x) I sinJ^(x+£)j dx
(A, U)

dx

IX'-" ' +x

H H™R
The numerator and denominator of equation (A. 11) represent aver

ages which can be taken over ^ just as well as over x. Again,

assuming the Gaussian distribution of \& given by

1 f *?p(^)=-=L— exp- *
VSff^ •{•£}
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the denominator of equation (A. 11) becomes

lCO

s

~00

in2*p(*) d* s^fl - exp{- 2*q2} (A.12)

Applying the joint probability distribution of % p (*., S&2), dis

cussed in VII. 1, the average in the numerator of (A. 11) becomes:

+/cp +co

sin tff sin ^2 p (*., S&2) d^. d*2 (A. 13)

11
As before, S&. corresponds to ^(x) and SB- corresponds to SB(x+£).

Substituting p (^.j %) from VII. li (A. 13) becomes

+oo +oo -» 2

vX X^,^4'^^{>H^
d^ d^2

(A. 14)

where

*! - 2tr *V - PX2U)

K22-%2(l.-Rx2(6))

The integral with respect to Sb. is

(% - %pJI))2
sin ^j-exp^ = =^= } d^

•too

Xsin W L
;K2

Making the substitution a = ^, - *2 p (|)» we obtain
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2

J sin ja +SB2px(| )jexp I- -S^j d^ a^K^ sinj*2px<£ )U*p|- -^-j

(A. 14) now becomes

, ^ 1 +oo r *> 2
H4 7

24x/271*
sin {*2 }sin{*2px(|)} expj -—T fd*2

^00 ^ o

since

sin A sin B =i- cos (A - B) - cos (A + B)

The above integral becomes

j-*2Jsinhj*2px<4)} (A. 15)exp

Combining (A. 12) and (A. 15), p. (£ ) becomes

2 exp

Pix<6>-—r ,-,|j-exp{-2* }J

|-%2Jsinh^o2px(e)}
(A. 16)

SB is the standard deviation of phase *and p (|) is the autocor

relation function of the surface in the x-direction.

p. (£) is found by substituting y for x in the above argument,

thus, 2 2
2 exp ( - **) sinh (SB p (£ ))

P. (£) = 1-—°- ° py
xy 2l-exp(-2^)

where p (§ ) is the surface autocorrelation function in the y-direc

tion.

The above expressions for p. and p. require only that the

probability distribution of surface height of the scatterer be Gaussian.
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