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ABSTRACT

Five groups are discussed which naturally classify Post

functions into transitivity sets. Since all the groups discussed are

subgroups of the automorphism group of the Post algebra, the re

sulting classification into symmetry types preserves the structure

of the functions.

In all cases the number of classes is obtained and asymptotic

estimates are given.
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I. INTRODUCTION

There are a variety of ways of classifying the formulae of

m-valued logics. In this paper transformations on the truth functions

will induce a classification of the formulae.

6 2
Historically, both Jevons and Clifford considered the problem

of classifying propositional functions into equivalence classes in a

natural way. It was Folya who systematically posed the problem of

counting the number of classes under the group of complementations

and permutations and who gave the correct numerical answers for
14

functions of four or fewer variables. It was Slepian, however, who

first solved the general problem of counting the number of equivalence
5

classes for an arbitrary number of variables. In the paper by Harrison

a new method of obtaining Slepian's result is given which uses the

structure of the groups involved in a more systematic manner.

In the present paper the results for Boolean functions are

generalized to Post algebras.

We now sketch an introduction to the theory of Post algebras.

More details can be found in Refs. 11, 12, and 13.

Definition 1.1 Let Z = ( 0, ..., m-l) and define a Post
m *• J ' '

function to be any mapping from Zn into Z where Zn = Z X:... XZ
1 ' m m m m m

(n times).

The formulae of m-valued logic are built up in the usual way by

induction.

Definition 1. 2.

a) 0, ... , m-1 are Post formulae.

b) x. (1 = 1, ..., n) is a Post formula.

c) If A is a Post formula, then -v-A is a Post formula.

d) If A is a Post formula, then -\A is a Post formula.

e) If A, B are Post formulae, then AB is a Post formula.
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f) If A, B are Post formulae, then A v B is a Post formula.

g) The only Post formulae are as given in (a-f).

As usual, the interpretation is given by a mapping from the

formulae into the truth values.

Definition 1. 3. An assignment is defined as a mapping

a from X ={ x., ...,x J into Z . The valuation mapping with respect
to an assignment a is defined as a mapping | | recursively as
follows:

a)

b)

c)

d)

e)

f)

or
0, ..., Im-11 = m-1

1 or

xil a= a^0 for l =l>
^/Al = m-1 - I Al

li Aj + 1
1 a ^

AB| = min( | A|
a a

A V/ B| = max ( | A|

n

if I A I i m-1
1 a1

if
or'

= m-1

|B|a)

a |B|«>

Thus two Post formulae P and Q are called equivalent, written

P = Q, if and only if for every assignment a, | P| = | Q| .

There is a one-to-one mapping which associates with every Post

formula P the corresponding Post function. The appropriate map is

|p| -U u. |p|ff>
Oi

It is clear that

serves the operations on formulae.

,n
P is a mapping from Z into Z and in fact pre-

Definition 1.4. The system (P , = Ap •, Z
m, n 0>T m, n) •

, Q,

..., m-1^ is a Post algebra on n generators. The natural "equivalence

relation on *(P is given by = . P is the set of formulae generate
m, n m, n

from 0,1» . . .,m-l and x,, ..., x by meand of Definition 1. 2.

The mapping P-> I Pi maps the algebra of Post formulae onto the
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n
m

free algebra of m Post functions. The map also suggests how to

define operations on the Post functions so that the systems are iso

morphic.

Definition 1. 5. Define the following operations on Post functions:

(fVg)(a) = max(f(a), g(a))

(fg)(a) = min(f(a), g(a))

•^f(a) = m-l-f(a)

if f(a.) i m-1
f(a)

if f(a) = m-1

Proposition 1. 6. The Post algebra $ =<"P V, • r—»~~* > 0, ..., m-l>
, . m, n ^ m, n, _

is isctfnorphic to the free algebra of Post functions. X1 =<fF V, * ^-"
J m» n . m9 n» » »

~7, 0, . . ., m-1^.

Proof. Consider the map. | | :P-»| P|. If PsQ, then | P| = | Q| so
|| is a map from equivalence classes of Post formulae to Post functions.
The map is onto by the canonical form theorem (Cf. Rosser and

13Turquette, Theorem 2. 5). Clearly, the operations are preserved.

Next we characterize the automorphisms of y
m, n.

Definition 1. 7. An automorphism a of ^f is a one-to-one
• - Jm, n

map from F onto F such that for Post functions f and g,
r m, n m, n °

a(fvg) = a(fjv or(g)
<*m = (af)(ag)

a<~i) = - Mi)

ctini) = -i «(f)

Theorem 1. 8. The automorphism group of jf7 is isomorphic to the

symmetric group of degree m , (o^ n.

-3-



Proof. Clearly any automorphism a must fix the constant functions

0, ..., m-1. Express f in expanded normal form.

m-1 m-1

ft^, ..., xn) = V/ ... \ / J^. (x1) ... Jt (xn) f(iL
j —A : V_ a 1 ri

, ..., i )
n

i=0 i'=0
1 n

Since a is an automorphism,

m-1 m-1

\/ ... \/ atf.C^)... J (xj) f(ix,
\La 4V-a 1 nU=0 l =0

1 n

As the i. range over their respective values, the J,(x,)... J.(x ) are in
n

one-to-one correspondence with the domain elements of Z and hence

a is a permutation of the domain. Conversely, any permutation of the

domain induces a permutation of the terms of the expanded normal form.

Such a correspondence is easily seen to be an automorphism.

7
A similar result is given by Mautner for Boolean algebras.

II. POLYA'S THEOREM

The counting results to be obtained will be consequences of the

famous theorem of Polya.

Let y* be the class of all functions from a finite set D to a finite
set R. Suppose D has s elements and the M is a permutation group
of degree s and order g acting on D. Two functions f., f,e £

are called equivalent if and only if there exists a permutation ce^Ql

such that f.(d) = f-(a(d)) for all d c D. Consider R(R=q) to be rep-
1 L r

resented asthe unien-of r disjoint subsets,- i. e., R =\_J R. and
i=l X

R/^l R. = 0 if i £j. Let k^ ..., k be a partition of s. Polya's

theorem tells us the number of equivalence classes of functions from D

to R such that for Is. values of d € D, the image f(d) € R. for i=l, . . ., r.

-4-



To every set R., an indeterminate x. is attached and *\l. is

the number of elements in R. for i=l, . . ., r. The figure counting series
is defined as

*•(*!•.... xr) = X *ixi
l? 1

Usually the convention is adopted of taking x.=l. Let P(x_, . . . ,x ) be the

multivariate generating function of these desired numbers; that is, the

k, k
1 r

coefficient of x. . . . x is the number of classes of functions with the

property that for k. values of d € D, f(d) e R. where i=l, . . . r.

P(x., . . ., x ) is often called the configuration counting series.

Before stating Polya's theorem, we must develop the concept of the

cycle index polynomial of 0\ (zyklenzeiger), denoted by Z^ , Let
£,,..., f be s indeterminates, and let g. be the number of

permutations of 0\ having j. cycles of length i for i=l, 2, . . ., s, so that

Then we define

Z

£ ijt =• (1)
i=l

JHfi|s7-E«ii i <Jl'f?-.-f3<
t (j) l Z S

where the sum is taken over all partitions of s which satisfy (1).

Now Polya's theorem can finally be stated; this theorem reduces

the problem of determining the number of equivalance classes to the de

termination of the figure series and the cycle index polynomial.

Theorem 2.1. (Polya). The configuration counting series is obtained by

substituting the figure counting series into the cycle index polynomial of

-5-



2 2 s sPfxj, ...,xr) = Z (iji'txj, . . . , xr), ^(x^ . . ., xr), . . ., i|i(xlt ..„,xr))
Q

One should note that the sum of the products of the exponents and

subscripts in each term is s, since this sum is just the partitions over

which the cycle index is generally summed. Also it is a convenient check

to take f. = 1 for i = 1, . . ., s. The value of the cycle index should then

be unity.

Corollary 2. 2. The total number of equivalence classes of functions

f :D—^R under a group (A of order g and degree s is

z (q,q » .. .»qs)
where q is the cardinality of R.

III. PRODUCTS OF PERMUTATION GROUPS

In combinatorial analysis, one often defines products of permu

tation groups. It is then essential to be able to derive the cycle index of

the composite group in terms of the cycle indices of the constituent groups.

In this section two such products are considered.

Consider two groups Q^ and \y on disjoint object sets X and Y
such that the order of Otis m and the order of £>*is n; the degree of OL
is a and the degree of £)ris b.

Definition 3.1. The direct product of two groups written vL'^Jy is
defined on the object set X X Y in the following way {a>& ) (x, y) =fflr(x), p(y)

Thus, the order of ^CX^ is mn and the degree is ab. We
shall now establish the connection between the cycle indices of Ot and $&
and the cycle index of GL Y fef. Let

1 Y h ja
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and let

4Z d„ , h.

& n (k) <k> X "•

The following theorem was stated by Harary.

*b
h

Theorem 3.2. Z. = Z_ X Z^ where the cross operation for
0tXJ> 0L £• *

polynomials is defined as follows:

m n rw* jrioi*l> m n (T (k) C(j) d(k)v p=i 4P'X q=l hq

where the cross operation on indeterminates is defined as

IK1-' *
/ b

\ q= p=l q=l
TT gip x o

p=l q=l <p, q>

where <p, q> denotes the least common multiple of p and q while

(p, q) means the greatest common divisor of p and q.

The statement of this theorem involves a certain amount of

notation. For this reason, a simple example is presented. Let

\z =k <«? +*>>l

and

-£- (h-J + 3hxh2 +2h3)

be the cycle indices for the symmetric group on two and three letterSj
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respectively. We compute

\ *$ "n(<«i *hi>+ 3<«i *W+ 2<g2i xty
+ (g2 Xhj) +3(g2 Xh^) +2(g2 x h3) j

=12" (^ +3<Sl X\) (S\ XV +2^3 +4

+3(g2tfh1)<g2*h2)+2f6)

=IZ <4 +3f2l4 +2f3 +4fl +2f6>

Proof. It is easily verified that the cross operation on indeterminates is

associative, commutative, and distributive over addition. It will be

sufficient to examine the cycle structure of (a, {3 ) where or is a cycle of

length p, say (a.,..., a ), and |3 is a cycle of length q, say (b., ..., b ).
It *• q

The case p=q is trivial, so we assume p < q. Examining an element

(a., b.) € XX Y, we see that (a. Jb.) goes successively into (a2,b2),
(a3, b3), . .., (a , b ), (a^, b +1), ... ; we return to (a , b.) after <p, q>
steps and the pq symbols are permuted in (p, q) steps of length <p, q>.

Recall that pq = <p, q>(p, q). The argument is completed by noting that

the choice of a, and b, is arbitrary; any pair of elements^ one in or and
one in p would have given the same result.

The next operation to be.defined has an interesting history. In an
14attempt to abstract Slepian's solution of the problem of counting the

3symmetry types of Boolean functions of n variables, Harary constructed

a product of permutation groups called the exponentiation. As -indicated in

appendix V of 4, Harary's construction is not the right one to characterize

the symmetry group of Boolean functions.

A new group product will be formulated which will characterize

Slepian's result and will find applications in a variety of situations. Let

£yhe a group of order g acting on object set X. The degree of J^» is
assumed to be b. Let Ot be a group of order m acting on a copies of
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X; thus, the degree of 01 is b . A new group Cf^ ® C^will now be defined.
It is convenient to think of the a-tuples of X^ listed. If the array is

a

thought of as a matrix of a columns and b rows, then the operations of

0~L ® ?3*a-re constructed by first selecting a €uL which causes a per
mutation of the rows of the matrix. Selecting elements p., ..., (3
Sth la

ST (not necessarily distinct), the i column is to be permuted by

{3. for i=l,. .., a. The abstract structure of 0L® £? is the semi-direct
product of (j\ by C^ where C^ denotes ^Sft!, . • )(J5t

In the case described where OL is the symmetric group, (^ >C \y
has the abstract structure of the complete monomial group of degree n of

efr . The theory of such groups has been worked out by Ore and ref
erence to several of his theorems will be made. For the purposes of

this paper, it will be sufficient to derive the cycle index of @ 0 gjr
where jarhas a restricted type of cycle structure. The condition on j^
can be expressed by requiring that Z a^. is of the form

z%? "T k b(k) ^
r,s

Although the restrictions imposed on o^are severe, it is surprising that

the results obtained have wide applicability.

Theorem 3. 3. Let @ be the group induced by the symmetric group of
degree n and let ^. be a group of degree m and order g whose cycle
index has terms whose structure is of the form

r^s

«

^n»£r

where

^tr^ 2-

n

i=l *

V) f1

dfpk
p<i

-9-
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and |i(a) is the Mobius function., y ^ denotes yX... X.y, and the sum-
is over all partitions of n.

The previous theorem is proved in Ref. 4, and structural results

about monomial groups are derived there. A summary of these results

will be presented in section VIII.

IV. ENUMERATION. IN POST ALGEBRA

The groups to be studied are now introduced along with the

generalities of the way in which this class of groups operates on the Post

algebras.

The first allowable transformation will be to complement the vari

ables of a particular function by repeated applications of the operation I.

For example, we will say that f(x., x_, x.,) is equivalent to

f(x., "fx , —7 ~T x,). More precis-ely we have the following formal defi

nition.

Definition 4.1. Let *-» denote the cyclic group of order m generated

by the cycle (0,..., m-1) and J^ denote the direct product of n copies

of A .. t^ is defined as an operator group on Post functions in the

following way. For any (#t... ,<p. )€1^ where ^.et^ for j=l, . . .n,
and for any f(x,, . . ., x )c F , define

3 * L n' m, n

{<rr ...,*n) «^.....xn) = f(9.fy...,*nxn)

where

I x.+l if x. 4 m-1
fc.x. = J 1 1

11 [0 if x. = m-1

The same construction is also employed for the second kind of

complementation.

-10-



Definition 4. 2. Let ts denote a permutation group of order two.defined

on Z whose non-identity map 6 has the property

6 : a—^ m-l-a

Define t/ to. to be the direct product of n copies of v^•^'_ operates
r * m m

on Post functions by the following construction

(6L, ...,6a) f(Xj,..., xj = ^S^Xj),..., 6n(xn) )

yn
Thus *Nrn corresponds to allowing all complementations of the variables

x. (i=l, . .., n) by/—* while *J/ allows all possible complementations

by -».

*
In a sense, the most natural group defined on Post functions is the

symmetric group of degree n, (& , operating on the variables.

Definition 4. 3. We.define the symmetric group as an operator group on

Post functions by

0" 1 = ItX ii ii • • • i x. . .1
o-(l) <r(n)'

for any fc T and any ere (S> .
3 Jm, n J w n

Note that a Post function f is symmetric if <rf = f for all <r€ ® .

The symmetric Pbst functions can be studied from this point of view

as suggested in Ref. 7.

Definition 4. 4. Let (U denote the least group containing (& and

"J^ while -A, denotes the least group containing gf and ^Jfn .

"5 t
Cf. Mautner .
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It will be seen later that OA. and *^V have the structure

of the monomial, representation of "J^ and *}/ respectively.

n

m

The relations of these groups to one another are summarized by

Fig. 1 which represents part of the lattice of subgroups of (o£ n.
'm

i-
<*L

^m

Fig» 1

n

m

tram

The general enumeration problem which we shall solve is the

following. We have a group, say Qi , defined on the variables or

generators x. of ^ . Any \€ &L permutes the variables of
T_ . The permutation of the variables, v » induces in a natural

m, n * • •

way, a permutation h of the domain of the Post functions. h in

duces, by theorem 1. 8, an automorphism a of f . Fig. 2 illustrates
\ m, n

the situation.

F
m, n

I
D

I
X

Fig. 2

-12-

-> *m,n

D

[
X



The present situation is a direct generalization of the results
5

of Harrison which handled the case where m=2.

V. THE GROUP J^

The group Y is the direct product of n copies of JL^-
^m

- 9 Y>olvaM that the cvcle index of r-v

n

m

It is well known (cf. Polya ) that the cycle index of Av^ is given by

X

m

m

z- =4- I *<d> £d d
m d|m

where y(d) is the Euler <p function, i. e., the number of integers not

exceeding d and relatively prime to d.

of J" is giTheorem 5.1. The cycle index of T is given by
m

n
m

Xn m d/m t Id
,-xn

Prapf. Since the structure of the complementation group on the n variables

is
m m

,Jv X . . .X A » it is sufficient to evaluate

but this is

n _ m

Vk £ m ^
i=i -Jm

-=• Lp^{d'n) **m d.|«i

-13-
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since the cross operation applied to the indeterminates along with the

property of least common multiples that if d|m and t|m, then <d, t>| m
gives simply the divisors of m as the cycle lengths. It still remains to

determine what the coefficient j\ (d, n) is. It is clear that

d|m '
) = m

since the sum of the coefficients must be the order of the group. By the

Mobius formula

t| d

It is interesting to note that if m=p, a prime, then the theorem reduces

to

. n n-1

i- (f.p +(Pa-i) f p >
n * 1 xtr ' p '

P *

5 1which is given in Harrison. The case p=2 was studied by Ashenhurst.

Corollary 5. 2. The number of classes of Post functions in f under

An mm

n

is given by

\ Z L t-wf >«
m d|rn t|d

Proof. Cf. Corollary 2. 2.

VI. THE GROUP
mlf„

The group of complementations by • has a very simple cycle index.

Lemna 5.1. If m = 0 mod 2, then

-14-



ziL •?(<im+i '̂
If m=l mod 2, then

, m^l-

of#Proof. The non-identity element of 1/ has order two.

Again, the result for the direct product is derived by using the

cross operation.

Theorem 5. 2. _If msO mod 2, then

n
m

n -*-«
, / m 2
1 / > . i -.n

n Ml +(2 -1* f2
m

Proof. The argument is an induction on n.

Basis n=l. The result is given by lemma 5.1.

. Induction step.

n-1

n 1 — —

ni ^ m in

^n n n
mm m

n

^(^ +(2n-1-l) 4 +i| +(i"-1-!) £22 )

n
m

n

-L (f^ +(2n-l) f* )

Theorem 5. 3. If msi.mod 2, then

-15-



n-k. k ..

, J* /n\ n-k ™ <m "l>
Z =-±- Y (k) f? f?

'm k=0

Proof. Since the cycle index polynomials form a commutative ring under

the ordinary addition and the "cross" multiplication, the binomial theorem

holds. Thus

xn , Xk
m-1 \ n . . / m "-1.

?(*?+& "*") -•? -^O^xfv2

A 'n\ n-k n*-1, r-1 / n\ n-K •'

••3 LW? *Va 2
2 kSO

2n fe^O X *

Corollary 5. 5. The number of equivalence classes of functions in Tf
under^^ is

i/ m —

m, n

n
m

1 mn n
— (m + (2 -l)m ) if m s 0 mod 2
2

1 # n-k, nx
" /nx T (m +m >

y ^kjm _if m g 1mod 2
2 k=0

Note that the case m=2 reduces to the proper result for Boolean algebras

as it should.
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VII. THE GROUP (^n

It is possible to derive the cycle index for (^ operating on *Z*
in a way exactly analagous to the derivation for Boolean algebra as is done

in Harr

Ref. 4.

5
in Harrison. The details of the proof for Post algebras carried out in

It is much easier to observe that (S> is permutationally equivalent

to (jsj & ^l where §b is the identity group of degree one.
Thus

Theorem 7.1. The cycle index of Q as an operator group on ^y
is

n u' TTJi
i=l

6« *" (j) -rVj.^i i=l \ d»: d

j

where the notation y' J means ry%,. . Vy. The sum is over all non-
negative rational integer solutions, (j) = (j.,... j ) of <T^ ij. = n

and n 1=1

d|k

Proof. By theorem 3. 3, Z equals the expression shown. The ex-

n

ponents must satisfy

Y" dh(d) =m1
d|i

-17-



By the Mobius inversion formula.

k(k) =t- 2* m jMV)
K dlk •

Example: n= 3

X3
3.^ 3^ 3 , ^ 3, 8

=4 (hZ7 +3fi9f29 +^V>

Corollary 7. 2. The number of equivalence classes of £r under

<9n ii-

{i.,-, •*•». , **„H*i (ij). . . h, (i )I• . j. n j. 1 ,• n

n! fir n

(j) ]JviJi ^i1 g»
m

where h. (k..) = -i— m
""k A

dji.
H-( -r) for k=l, . .., n and (i, ,. .., i )

denotes the greatest common divisor of i.,..., i . The sum is over all

partitions of n.

Proof. In Ref. 4 it is shown how to rewrite the previous theorem as

z ~\ I—!
bn (j) T7

i=l

(L,...,i ) h (i). ..h (i )1 n j, 1 . jn -n.
— TT-TT^.- t> l
j.l iJi i:ll ijn 1 «

1 V <t>t 'kwhere h. (i^ =j- ^ mTK H(-g-) for k=l,..., m. <ij,..., iQ
Jk

dU
and (L, .. ., i ) denote the least common multiple and greatest common

-18-



divisors if i.,..., i , respectively. From this result and Corollary 2. 2,

the present theorem follows.

The number of classes is calculated for a few small values of m

and n; this is shown in Table I. It is interesting to note that there are

always

n+m-1

m-1
m x

transitivity classes consisting of just one function. These are the symmetric

Post functions.

TABLE I. The Number of Classes of Post Functions under the Symmetric
Group

H
•—————

1 2 3 4

2 4 12 80 3,984

3

4 256^
10£206

2,148,007,936
1, 271,126, 683, 458 *

*

VIII. THE GROUP q
n

m

n

The group Q\ is to be the least group containing f and
<Tm ^m

(£_. The group can be constructed by forming a set of ordered pairs

• ,n

(a, <r) where <*« Y and ere (& , The group is defined as follows
m n

on Post functions where a e 21 and <r € £T .
^Vm vs> n

(«,<r) f =f («^(1)) «n(^(n)))

-19-



Theorem 8.1 ^ ={(«, <r) | «c£* , o- €(£ 1
*• m n J

is a group under the following operation

{a^ u^) (of2, or2) =(a^. <r(ar2) , s-jfc^)

where . denotes the group operation of J^ and

<r(az) - <r(*21,..., a^) =(«2 <r(1), ..., *2 ^n))

Proof. First we verify that the operation is associative.

( ( a^ (rx) («2, <r2)) (ar3, o"3)

=( ( ax- (r1(flf2) ), cr^)(ay tr3)

=(<V °"l (Qr2) * orl°'2(*3)' (rlcr2cr3)

Now we compute

(*!» <r1)((or2, <r2) (a3, r3) )

= {a^ o-j) (^2- cr2(af3), <r2<r3)

= <«!' ^ (a2- w2 (a3) ), o-1ir2cr3)

= (orr vx (a2) - ir1ir2(ar3.), o^tr^)

Note that we used the fact that tr(a- p ) = v(or) • <r(p ). The verification

of the rest of the group axioms is routine.

-20-



Lemma 8. 2.

Ufcirf1 = ir~\a), 1)(0, cr"1)

(<r(a), <r) = (0,<r)(«,l)

(0,4r)(flr,ir"1) =lv(a),l)

Where 0 denotes the indentity of Y and 1 denotes the identity of (^

Lemma 8.3. For re (T and as j , the mapping <p :a >4r(or)
n ^m v

Xn

m

Proof: Clearly <p_ is a map from Y into ) . The map is onto,
m m

Y> n -1since given any ore 1 , or (a) maps onto ot under $• . Suppose

cr (or) = o*(p ), then a = cr" (*r(<r)) = <r~ (<tr(P)) = (3 and <p_ is one-to-one.

Suppose a—£ c(a), P—^ ir(p), then a. p ^ <r(ar • p)

*(<*» p) =via^ px,..., orn* Pn)

=(ao<l) * P«r(l),'-"a*-(n)' ^^

= o-(or)- tr(P )

and <p- is an automorphism.

tn

and (*~
m ^n

form Qj is a special case of forming the semi-direct product of
tfm

-21-
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tl- "by (09 . The following theorem is a special case of the theorem

4which characterizes the semi-direct product.

n. . vii

Theorem 8.4. tn is the semi-direct product of Y by Q*
u m n"

The elements of the type (0, tr ) form a subgroup isomorphic to £T

while the elements of the type (i, 1) form a normal subgroup isomorphic

to £. .Esssaoa. r-n ^ =(0>1) and £% ^£.
n

The order of Ai is nlm11.
Om

Proof. All the stated properties are obvious except perhaps the normality

°t
n

of Qi . This follows directly from Lemma 2.
m

£ ®TLemma 8. 5. The group Q4 is permutational!y equivalent to (2?
(/m n

Proof. The map is (or, cr)

^ ( (flfj, . .., ofn), tr \ where or. e J^

n

Theorem 8. 6. The cycle index of 4t '-fTCl

n

' / I i ,.v . Xi.

(j) 7Tji!lmi) ! A • *-~

zn

i=l 4=1 \ <l|m tlid
ttpi
p<d

fe(0v ***
t

where the sum is over the partitions of n, <p{&) is the Euler y-function
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and

e(ik)=i- L rn L>(^)
* d|ik

djpk.
p<i

Prooi;. Theorem 3. 2 gives the form of the result. Note that if <i|ik, but

4tpls ^or any p<i., then i1d;. Thus the non-z.ero terms will be cycle

lengths which are multiples of i. Thus

X.(id)g(id)^ mk

or r-^ d

1 ^ 1 Xkg(ik) = w (-* m u(^t- )

jxi

by a mild generalization of the Mobius inversion formula.

Example. m = 3, n = 2

2- <(fx3 +*3>*2 +3«iV +"aV >
2-3

•£- (^ +8f33 +Sf^f/ +ftf3f6)

The number of classes is computed for a few values of m and n

in Table II.
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Table II. The Number of Classes of Post Functions under°\
n

m

-\ 1 2 3 4

2

3

4

3

11

70

6
1,230

134, 355, 076

22

94,186, 271,892
*

402
*

*

DC. THE GROUP 4--
The process of constructing^ is so similiar to the construction

/U nof01 that only an outline is given.

Lemma 9.1. Jn is permutationally equivalent to Q $

Theorem 9. 2. The cycle index of Jh is given by

1112 (j)ypj.!(2i)Ji /\\d|i
i=l

0 if m = 0 mod 2

*s m

d,|2i
dti

w ere ~jl_if m s 1mod 2. The sum is oyer all partitions of n.

e(d) =i- L. md £<§) and g(2k) =i- L (rrf-2 6) u(^).
k 'd| -^ d| 2k a

dfk

-24-
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Proof. See Theorem 3. 3

The results of some computations are presented in Table III.

Table III. The Number of Equivalence Classes in 4* under J4n
-* m, n fl"**-

„x 1 2 3 4

2

3

4

3

18

136

6
2,862

537,157, 696

22

158,949,223,533
*

402
*

*

X. LOWER BOUNDS AND ASYMPTOTIC ESTIMATES

It is easy to give a lower bound on the number of equivalence

classes which is also asymptotic to the number of classes for large n.

Theorem 10.1. A lower bound on the number of equivalence classes of

/>*functions in X- is given by
1 J m, n ffi • • <*<

m

n
m - n

m
m

n

.n

m
m

n

m

n
m - n

m
m

n

n
nl2

-25-
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Proof. Replace the polynomial by only the term corresponding to the
identity mapping.

Corollary 10. 2 The number of classes is asymptotic to the lower bounds

given in Theorem 10.1.

Proof. The order of all the groups studied satisfy the hypothesis of the

following lemma.

Lemma 10. 3. If fff is any group whose order g <2m <m^ loS2 nL" elo*2; n

for any €>0, then the number of transitivity classes in -f under
n rn*

nis asymptotic to m .

g -

Proof. The number of classes is equal to

t n1 . m . rtv—(m +8)
g

where 9 represents the remainder of the cycle index polynomial. The

maximum value of 9 is

n-1
m

Thus

(g-l)m 2

n-1
. m

J£Lm-2

m m (m-rr) „,m lm- t) n
not' m 2 m 2'

g

Hence, the number of classes is

-26-
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JCI. CONCLUSIONS

Applications of the present results can be made to the theory of

switching, but these applications are immediate in light of the theorems

of Ref. 4 which require only a knowledge of the cycle index polynomials

of the appropriate groups and these have now been constructed.
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