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PROOF OF THE GENERATION RULE

FOR THE STABILITY CONSTRAINTS

IN LINEAR DISCRETE SYSTEMS1

by E. I. Jury

In a preceding publication the generation rule has been

presented without the detail proof. In this short not this proof

is constructed and is presented by the following theorem.

Theorem: Given a^a,, . . . ,a , define the substitution
. 0 1 m

function by the following rules:

S(b ) = a.b -a.b
m 0 m -1 1 m

1) a. = b., i = 0,1, . . . ,m
i i

2 2
2) S(aJ = a - b

' 0 0 m

S(a.) = a.a-b b
1 0 1 m -1 m

S(b !) = anb 7-a?b
m-l U m ~ £ c. m

S(a .) = arta ,-b.b
v m -l' Om-1 lm

^V^oVSn-^m

S(b.) = a„brt -a b .
x l' 0 0 mm

3) If P(a„, a,, . . . , a, , b , b _,..., b . ) is a polynomial,
0 1 km m-l m-k

let S{P(a_, a ,. . . ,a , b ,b , ...,b ,.}
^01 k mm-1 m - k)J

2 k2art - b
0 m

=P[S(a ),. .. ,S(a ), S(b ),... , S(b _ )] .
0" ' K k' • in-

Then, the stability constraints are

2 2

0 m

b = a
k k

„m - 1. 2 2 .
, ..,. S (a -b )

bk = ak bk=ak



Proof: It is easy to check the above for m = 2, assume it

is valid for m =n-l,then it suffices to prove it is valid for m = n. The

table begins:

a0 ai ••• an-l

a a « ... a.| a -
n n-1 I n-1

„rd 2 2
3 row art - a a.a-a .a • • • a a ~ -a a a a -a a

On 0 1 n-1 n 0 n-2 2 n 0 n-1 1 n

2 2
a a ,-a a ... ... ... a -a

0 n-1 In U n

Note that the manner of generating the rest of the table is the

same as obtaining the whole table for m = n - 1. Thus, we can utilize

the induction hypothesis as follows:

1. Define

(1) 2 2 (1)
a0 =a0-bn ~b0

ai(1) =ana -b _b =h.(1) =aftb.-a .b
1 0 1 n-1 n 10 1 n-1 n

ai1} =ana?"b 7b =41} =anb? ~a„ zK2 0 2 n-2 n c \j c. n-£ n

a^ !,= a_a _-b_b =b , =a b 9-a b
n-2 0 n-2 2 n n-2 0 n-2 2 n

a(1) =arta -b.b =b{l\ =anb -ab
n-1 0 n-1 1 n n-1 0 n-1 1 n

or in a compact form,

a!1* =S(a.), i =0,1, ... ,n-1
i i

b{l) =S(b. .), i =1,2,..., n-1
i l+l
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One readily notices that

(1) (1)
h0

, a
(1)

1 n-1

rd
are just the 3 row in the table.

2. The substitute function corresponding to the rest of the

table, in accordance to the theorem is:

e ,JD, _ ,(D.2 (1)2
Sl(a0 >- (a0 > " (bn-l}

q/Jl)> _a(l), (1) Jl)h(l)
Sl(bn-1) " a0 bn-2"al b„-l

„(JD. .JDJ1) , (1) h(l)
Sl(al >" a0 al -bn-2 bn-l

~,M) .. (Dh(l) JDJ1)
Sl(bn-2,-a0 bn-3"a2 Vl

^n-j'^O an-3"b2 Vl rf) =a^ =b?> -a'1', b*"
12 0 1 n-2 n-1

Sl(an-2>-a0 an-2'bl b„-l S1(b'1>)=anb«1)-a«1)b<1)
r 1 0 0 n-1 n-1

Then, the rest of the stability constraints are,

t,M\z /k(1)*2 «? nJV ,J1] >2n cn"2n (1\2 ,k(1> t2n(a0 » • 'Vl* ' Sl Ba0 > -'Vl' J"'"8! [<a0 >-(Vi1 J

To prove the theorem, we have to show that the following two

sequences are identical:

(1)

(1) 2 (1) 2

(a0 } " (bn-l>

2 k2= a^ - b
0 n

2 2=S(a0-bn)
r (1) 2 (1) 2n 2 2 2

'iK' -(bn-l> ^ =S<a0-bn»

C2^1,)2-b!1V]
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= S (a -b)



It is easy to check the first two relationships. To show the

rest, we may note that ignoring superscripts S(a.) and S (a. )

are identical except the subscripts of the "b" terms in S(a.) are
(1) x

one greater than the corresponding ones in S (a. ). The same
(1) 1situation holds for S(b. .) and S.(b; ), i.e., the subscripts of

l+l 1 l

the "b" terms in S(b. ) are one greater than the corresponding
(1)ones in S (b; ) . From these two facts, it follows that (except

for superscripts and the difference in the "b" subscripts),

S?* [(a!1*)2 - (b(1\ )21 and SkTa2 - b2 1are the same. There-
1 Lp 0 n-1 J «- 0 n J

fore, to verify that the above sequences are the same it is only

necessary to note from the previous definition that,

S(a.) =a! , i: = 0,1,. . . ,n-l
l i

S(b.,_) =b!1*, i =1,2, ...',n-l .
l+l i

Thus, the theorem has been demonstrated.
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