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Limiting Stable Currents in Bounded Electron and Ion Streams

W. B. BRIDGES, J. I. FREY, AND C K. BIRDSALL

Summary - The classical static analysis of the infinite planar

diode has been extended to include the effects of finite transverse beam

size. Simple expressions have been found for the increase in maximum

stable current density over that of an infinite stream for finite cylindri

cal and strip streams flowing between plates of infinite diodes. The

results are also given in terms of stream perveance. The effect of a

nonuniform distribution of current across the stream is shown to be

relatively small. Experimental values of maximum stable current

agree with those obtained from the analysis. A further extension of the

static analysis has been made to include the effects of additional con

ducting plane boundaries parallel to the stream motion. For length-to-

width ratios L/D less than 0. 25 the tube is adequately described by

the results for the infinite planar diode and for L/D greater than _4,

the infinitely-long drift-tube theory suffices. At intermediate values of

L/D , the maximum amount of current that can be stably passed through

the tube is greater than that predicted by either asymptotic theory.
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INTRODUCTION

Values of limiting current are given for the finite diameter

stream in a diode in Part I and for a finite-length planar drift tube in

Part II. These time-independent solutions complement the well-known

solutions for infinitely broad diodes ~ and infinitely long drift tubes

The fields (or potential) in the infinite diode and the infinite drift tube

vary along only one coordinate; the fields in the present models vary

both radially and axially. The motion of the electron or ion stream,

however, is constrained to the axial direction by a strong axial mag

netic field, so that the current density is constant along the direction

of motion.

Limiting current in this time-independent type of analysis is

established in a special way. Solutions with unidirectional flow for

which V(r) > 0 are found for currents increasing from zero. Such

solutions cannot be found beyond a certain value of current, and this

value is called the limiting current. Energy relations and small sig

nal stability at this "limiting" value have been discussed by Bridges

9
and Birdsall . Beyond this value of current, only solutions with bi

directional flow are expected. A time-dependent solution that would

show time growth leading to large amplitude oscillations beyond limit -

9
ing current is only implied and is not presented here.

In Part I, several finite diameter stream cross-sections in

a diode are analyzed, and the results checked against experiment.

In Part II, the effect of adding side walls (making a planar drift tube

with ends ) is found and the results related to both the diode and

infinite-drift-tube solutions.
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PART I. FINITE DIAMETER STREAM IN AN INFINITE DIODE^

The model for this analysis is a cylindrical stream flowing

normal to the electrodes shown in Fig. 1. A variety of radial dis

tributions of current density, including hollow streams and streams

with no definite boundary, is allowed; in the latter, b is to be

interpreted as a "characteristic" radius. In the configuration shown,

electric fields exist outside as well as inside the stream. Some of

the field lines from charges located near the center of the region

(z = a/2) terminate on the electrodes at points outside the stream;

charges located near an electrode thus "see" less electric field

produced by charges near the center than if the stream were infin-

itely broad. A given current density thus produces less space-

charge depression of potential, and the current density necessary

to produce limiting is thereby increased.

A. Method of Solution

The problem is to integrate Poisson's equation for the poten

tial V(r, z) in two dimensions,

V2V(r,z)= -p(r,z)/6 . (1)
o

The charge density p (r, z ) is related to the current and velocity

by

i( r, z ) = p ( r, z) v ( r,z ) . (2)

We use the time-independent, zero-temperature equation of motion
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for a single-valued velocity,

1/2 mv2 = -eV . (3)

In the infinitely broad diode or the infinitely long drift tube, potential

depends on only one coordinate and closed-form solutions can be

obtained. With two-coordinate dependence, no closed-form solutions

have been found. An approximate solution using a Fourier-Bessel

expansion is given in this Part for the diode; a second method is used

in Part II with the drift tube.

For the diode, we write the potential V(r,z) and the charge

density p ( r, z ) as expansions in suitable functions. The current

density i is assumed to be independent of z, for example, due to a

strong axial magnetic field; several simple forms are later assumed

for the radial distribution of the current. The potential is written as

oo

oo p
V(r,z) = V+ 2 / F (kJsinHH^j (kr) kdk (4)

° m=l J m a °

where the expansion coefficients are given by

a oo

Fm(k) =if ]V(r',z') sin( ^-) J (kr1) r'dr'dz' . (5)
o

0 0

The charge density is expanded in a similar series
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where

co °°
p(r,z) = 2 Pm(k) sin(m^.) Jo(kr) kdk (6)

m=l vj

a co

-iJS
0 0

Substitution of these expressions into Poisson's equation yields the

relations between the expansion coefficients,

F (k) [ (HI)2 + k2] = _J__p (k). (8)
mx/LVa' J e mx/ '

o

The potential can then be written in terms of the charge density as

Pm(k) = F I I P(r',z') sin (£^-) Jq (kr1) r'dr'dz'. (7)

00 a co

00

V(r,z) = Vq+ 2 f[ _^_ P P p(r',z') sin (m^)Jo(kr')r'dr'dz']
m~ 0 ° ^0^0

. { (™)2 + k2}"1 J (kr)kdk sin (BZi) .
1 a ' J o a '

(9)

The second equation that the potential and charge density must satisfy

is Eq. (2). Eqs. (2) and (9) can be solved numerically, given the

transverse distribution i(r) . This distribution is chosen so as to

approximate the current density variations occurring in typical elec

tron devices. A normalized current distribution <&• ( r ) is introduced;
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i(r) = p(r,o)vQ = PQvo^r(r) = iQ^r(r) . (10)

For a rectangular distribution i is related to the total current I
o o

2.
by I = irb i . The charge density p(r, z) is assumed to be separable;

p(r,z) = po*r(r) • *z(z) (11)

where ylf (z) is the normalized longitudinal distribution of charge

density. Clearly, SF (0) = 1. Eq. (8) thus becomes
Zj

2 oo oo

poa °° r 2 PP^r^'^o^r^'^o^r^V(<r, t) = V + 2-°— • 2 [ (P — ° ° cr'y dcr'dy )
o e . Lxrr I «2 , 2 r Tr'o m=l \J<J (3 + y

0 0 r r

1

' ( ——r- f V(£') sin (mir£')d£)] sin (mirQ (12)
(mir)2 J Z

0

where the normalized constants and variables

& = z/a

cr = r/b

miTb
P

r a

Y = kb
"r
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have been introduced.

For a very broad stream ( b ->oo) the potential is given by

1

V(C) = V +
2p a oo

O €
o m=l

12 P *Z(V) sin(mir£')dt
Jmir) ^

sin(mir£).

(13)

This form differs from Eq. (12) by the reduction factor,

co oo

JoJo

¥ (or')j (Y <r»)J (y 0")
o-'do-'y dy = R (P , o"),

'r Yr mVhr' '

This factor is evaluated below for simple current distributions.

B. Results of Analysis

1. Uniform Current, Solid Stream

For a uniform current distribution

1, I <r| < 1
* (o-) =

r ' 0, | o-| > 1

and the reduction factor becomes

co

^ 6 + v v/»

1 - PrI0(Prcr) K1(Pr).

-7-

r ^ r

(14)

(15)

(16)
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For a thin stream, I ( p a) = 1 in the first few terms of the series;
or

for a thicker stream this approximation is not so good, but p K, ( p )

is small and the error introduced by taking I ( p (r) = 1 is still small.

Physically, this means that the potential varies only a little over the

stream cross-section. At this point we take the potential to be the

value on the axis, cr = 0. Some average over the stream cross-section

could be made in this simple case, but this refinement is probably not

justified considering the other approximations involved. All r-depen

dence is thus removed, and one-dimensional equations are regained;

the effects of the transverse variations are included in R ( p , 0),
m v rr '

which gives the measure of reduction in the m-th Fourier component

of the longitudinal potential distribution compared to the infinite stream

value. Introducing the normalized potential <j> and current density a ,

<M£) = v(o,&)/vo ,

i i
o o

a = —

^( -\/Ulv 3/V2 -2.33xl0-6V 3/2a"2
9 o v m o o

(18)

we have two simultaneous single-variable equations to be solved,

+(t) = i-t« s [i-^K. (2^)]
m=l

\ (rrnr) *JQ
*Z{V) sinfmTr^d^ ] sin(mir£) (19)

\ (miT) wQ

%(l) = <j>"1/2K) . (20)
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This pair of equations was solved iteratively using a digital computer.

Asa first guess, to start the iterations, the normalized charge density

was assumed constant (\&" (£,) = 1) and the resulting potential calcu-

lated from (19). This potential was used to determine a new charge

density distribution from (20), and this charge density was in turn

used to calculate a new potential from (19), and so on, converging to

a sufficiently accurate solution for the potential at the particular value

of current, a . The largest value of a for which convergence can be

obtained is thus the limiting current. This maximum value was deter

mined by increasing a after each convergence (using the solution for

the previous value as the new initial trial to reduce computer running

time ) until a value was finally reached that caused the iterations to

diverge. The interval in a between the values giving divergence and

the last convergent solution was then successively halved until a suffi

ciently accurate value for this maximum a was obtained. The numeri

cal solution for potential was allowed to converge to a maximum differ

ence between successive iterations of 0.0001; the limiting current was

determined within an error Aa of 2" . The value of a - 8 was

obtained with this accuracy when this method was applied to the infinite

1-2
stream case, agreeing with the well known analytic solution . Eleven

terms were taken in the series (19). The values of limiting current,

normalized to the infinite stream value, a = 8, for different values of

b/a, are shown as open circles in Fig. 2.

An interesting and compact approximate solution can be found

for (19) and (20) if two more assumptions are made. First, the
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space charge is assumed to be distributed axially as in the infinite

diode; that is, only the first, m = 1 , term of the series in (19) is

retained. Second, limiting is assumed to take place at the same mini

mum potential as in the infinite diode, <b = 1 . The increase in
m —r

4

limiting current is then simply

a /8 = [ 1 - — K< (~) ] -1. (21)
max L a I x a ' J x '

This expression is shown as the solid line in Fig. 2, and is seen to be

sufficiently accurate for normal design purposes. The potential pro

files compared in Fig. 3 indicate that the'above assumptions are not

unreasonable as long as b/a is not too small. The perveance corres

ponding to Eq. (21) is given in Fig. 4, compared with the 11 term

3/ 2series calculation.. Perveance is given by P = I /(V ) , where

2
I = irb i. for uniform current density. . In the limit of small b/a ,

P = ~1L \ (22)
b/a-^0 ln(-2a_)

which agrees almost exactly with the one-term approximation for

b/a < 0.1; this approximation does not approach a minimum perve

ance, although the series might have, if carried to smaller b/a .

2. Nonuniform Current: Thin Hollow Streams

A simple model of a nonuniform current distribution is

now solved. A uniform density of 1 +.A is assumed for .0 < r < c ,
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a density of p for c < r < b , and a density of zero for r > b . In order

to compare correctly the effect of the nonuniformity, the same total

current is required for this case as for that of the uniform distribution:

Tib2 = ir(l +A) c2 +irp (b2 - c2) (23)

hich requires, with the definition c/b = \,w

p = 1-M (24)

The nonuniform distribution to be compared to the uniform-current

case is then

1 + A 0 < cr < X.

*r<°"> = I AX2r ' 1 _ ** \ < o- < 1 . (25)
1->T

0 cr > 1

The range of the parameter A is

1 \Z- 1 < A < i-^-i- (26)

with these extreme cases illustrated in Fig. 5. The factor R (p , cr)
° m *r

for this distribution is
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R (6,0-) = [ 1- p I ( p cr)K, (P )]
m xrr ' L rr ox rr ' 1 rr ' J

1 +
A / l-^rI0(Pr^)Kl(PrM _x2 ]

i-* L i-^y^)^!^)

(27;

No iterative computations were made for this type of distribution; the

same simplifing assumptions as applied to the uniform stream, how

ever, yield an expression for the approximate increase in limiting

current:

a
max 1

1-1* k, (2£)
a 1 v a '

1 +

L i+m

1- (Trc/a)K1(TTc/a)

l-tirb/aJK^irb/a)
(-)vb;

-1

V

(28;

Eq, (28) with c/b = 0,5 is shown as the two dashed lines in Fig, 2 for

the two limiting cases of inequality (26). This approximate expression

breaks down for A = -1 and large b/a, as the potential on the axis

has been used to obtain Eq. (28), while A = -1 defines a hollow stream,

and large b/a removes this stream far from the axis. A better

answer in this case of a hollow stream would be obtained if the potential

<j> ( <r, £ ) were evaluated at a point within the hollow stream, say

r = 1/2 (c + b) . The other limiting case of Eq. (28) is also a bit mis-

2 2leading, since A = [ (1-X. )/( \ ) ] eliminates the stream for cr > \ ,

12



defining a uniform stream of diameter \b . For this new stream,

with a smaller diameter-to-length ratio, the limiting current density

is expected to increase rather than decrease as shown; the difficulty

lies in the requirement that both streams carry the same total current

2
in an area tt b . Despite these difficulties, Fig. 2 does show the

direction of the change in the limiting current for streams with some

nonuniformity, and it demonstrates that in thin streams the correction

due to nonuniformity is small.

3. Rectangular Strip Beam

The same method of approximate solution as that applied

above can be applied to a strip beam of thickness 2 h and length a,

illustrated in Fig. 6. The stream is uniform (irnplyiag infinite) in the y

direction. In this case, a Fourier series-Fourier integral expansion

is used. The resulting equation for potential is the same as Eq. (13)

with the first term in parentheses, now R (p , £ ) , given by
ill X,

OO CO i i

oo x x

The normalization is

6 = x/h

P = m it h/a
rx

Y = kh.
'x

With a uniform current density Eq. (29) becomes
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Rm(Px,6) = 1 " exp(-px) cosh(pxe) (30)

for £ < 1 . The same assumptions used with the cylindrical stream

are applied here to obtain the approximate limiting current density:

a -1
max r , . -im . -i ~,.

—- = [I -exp (-£-)] (31)

a for h->0 .
irh

This is shown as the solid line in Fig. 7. Numerical solutions for the

equations corresponding to Eqs. (19) and (20) are again shown as

open circles. Eq. (31) is obviously sufficient for design purposes.

The perveance corresponding to Eq. (31) is given in Fig. 8 , com

pared with the series calculation; there is an apparent asymptote for

h/a—>0. The maximum current is given by (i Warea); let the cross-
b J max' v '

section be (a) (2h) , so that

0 I 16 2. 33 u
P = max = max

max —TT? Kv 3/2 1Q6
o

a

= 11.85 for h—>0. (32)

14
A nonuniform, triangular distribution is also treated . The

extreme cases of this distribution are shown dotted in Fig. 7; the effect

is obviously small. A gaussian distribution has also been treated by
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one of the authors (W. B, B. , unpublished) with results very close to

those for the uniform stream,

C. Experimental Results

11-14A number of experiments illustrate the validity of the above

results. The observed values of increase in maximum stable current

are given on Figs. 2 and 7 for different beam aspect ratios, b/a

and h/a.

A typical electrode arrangement (CAL-2) is shown in Fig. 9.

The current-limiting region lies between anodes 3 and 4 (the ends

of a cylindrical cavity in this tube); anodes 2 and 5 are guard anodes,

held at a slightly higher potential than anodes 3 and 4 to retard

secondary emission and to shield the beam apertures in anodes 3 and

4 from the strong fields produced by the potentials on anode 1 and

the collector.

For the cylindrical-stream experiments (Fig. 2) the observed

values of the limiting current increase are seen to be generally higher

than the simple theory predicts by as much as three times. Partial

neutralization of the beam space charge by the residual ions could

account for part of this increase. The potential depression formed in

the beam near limiting strongly attracts any ions formed and traps

them. Unfortunately, pulsed experiments which might have resolved

the question of ion neutralization were not performed, although it is

likely that pulsed currents would cause "premature" limiting because

of the lack of equilibrium conditions. Such effects are discussed by

9
Bridges and Birdsall .
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The points shown for CAL-2(Fig. 2) are for different values of

beam-forming-electrode (BFE) potentials with V fixed. Limiting

occurred at lower currents for the more negative BFE potentials.

This is in agreement with the result obtained here for the nonuniform

radial distribution of current; negative BFE potentials tend to inhibit

emission from the cathode edges and hence produce a beam of smaller

diameter, giving a distribution similar to the nonuniform beam model

with A = + 3 .

13The four points shown for Hammer's experiment are also for

different BFE potentials, but the variation is in the opposite direction

from that expected from the above discussion. Because limiting occurred

between amicus 2 and 3 ( no input guard anode ), field penetration

from anode 1 may have more than offset the change in the transverse

distribution of current, since the potential of anode 1 was increased as

the BFE potential was decreased.

Only diodes symmetrical about z = a/2 have been treated

here, although it is clear how to apply the present computational method

or obtain the analogous simplified expression for asymmetrical cases.

Limiting in asymmetrical diodes,such as those in Berghammer's ex

periment , may be compared, however, through the following argu

ment. In Berghammer's tube, limiting was obtained between anodes

2 and 3, with anode 2 at 2 volts and anode 3 at 10, 20, and 30 volts for the

three points shown, As the anode 3 potential increases, the potential min

imum moves closer to anode 2 (the input electrode). The electric field
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and charge distribution between the input electrode and the potential

minimum are similar to those in a symmetrical diode with spacing

2 z , where z is the distance from the injection plane to the poten-
m m ** * ±

tial minimum, instead of a. If the observed values of limiting-cur rent

increase are associated with aspect ratios b/2z , rather than b/a ,

the points move to the right ( as shown by arrows ) and the agreement

with the theoretical curve of Fig, 2 is improved.

Fig. 7 shows the experimental results for tubes using thin hol

low streams. All tubes used had a stream diameter-thickness ratio of

more than 10, so that the approximation to a rectangular strip beam

12
is quite good. Jory's tube and the PAS-2F-2 were both experimen

tal low noise backward-wave amplifiers with multianode guns. Tubes

VIEW-2 and VIEW-3 were beam testers using guns similar to that in

PAS-2F-2. The range shown for each tube corresponds to different

values of limiting-region potential. Again, a change in gun optics is

probably the cause for the spread. Of the two points taken from Jory,

the lower was obtained with a symmetrical limiting region and the upper

with an asymmetrical region. If h/2z is used as the applicable

aspect ratio instead of h/a , the upper point moves to the left, as

shown by the arrow.

PART II. STREAM IN A FINITE-LENGTH DRIFT TUBE ^t

The model treated in Part II is a sheet stream as shown in Fig.

6 , but with an additional set of parallel planes above and below the

stream added to form a closed box, as illustrated in Fig. 1 0 .
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A. Method of Solution

The basic equations to be solved are as before, written now in

the rectangular coordinates x and z. Approximate solutions are

again found to be necessary. The technique analogous to that used in

Part I would be the expansion of potential and charge density in a

double Fourier series. This technique was initially used to solve cer

tain cases of the gridded-drift-tube problem, but the two-dimensional

array of coefficients required to obtain a sufficiently accurate answer

resulted in unreasonably large computer solution time. Instead, a

relaxation technique was adopted which greatly shortened the compu

tation time.

Introducing the normalization

X = x/D

Z = z/L

d> = V/V
T o

A = i L2/-2.33- 10"6V 3/2 (33)
o o v '

Eq. (1) becomes

L\2 d^± + d^± -PL2
D/ ax2 az2 e v

o o

(34]

The equations of motion Eqs. ( 2),( 3) give the expression for charge

density p :

A A € V
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Using a digital computer, Eqs. (34) and (35) were solved iteratively,

subject to the boundary conditions imposed by the conducting walls. At

each step in the iteration, Eq. (34) was solved by the method of suc

cessive over - relaxation , using the charge density at that step. In this

15method, described in detail by Hornsby , an accelerating factor,

which adjusts the amount of over-relaxation, was used to reduce the

computing time. A special method for choosing optimum values of this

^16
factor, described by Carre , was used. Asa consequence, the bulk

of the computing time was consumed by the major iteration loop (charge

density to potential and back again).

The numerical solution for potential was allowed to converge to

a maximum difference between successive iterations of 0. 00005 (nor

malized). For this problem, it was discovered that larger differences

masked situations of marginal convergence very near limiting; instead

of converging to a final answer, the potential would first converge and

then diverge very slowly. Because of this difficulty and the necessity

of performing the computations for many sets of the parameters L/D

and B/D , "limiting" was taken as the point where the slope of the

minimum potential versus input current curve exceeded ten times its

value at zero current.

The fineness of the mesh used for the relaxation solution was

tested by increasing the number of points at which potential was cal

culated from 441 to 1641 . Since the maximum difference in results

produced by this change was less than 0. 001 percent, all calculations

were performed with the 441 point mesh. As an overall check of the
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computation, current dependence of the potential in an extremely short

diode (L/D = 0.05, B/D = 1.0) was calculated. The curve of poten

tial mimimum versus input current agreed with that for an infinite diode

within 0. 01 percent up to A = 6 (the infinite diode limits at A = 8 ) ;

beyond this value, the effect of the side walls began to be noticeable.

It was possible to use any spatial distribution of potential as an

initial estimate for each computation. Most calculations were started

at low input currents with a uniform-potential estimate; the solution

obtained was then used as a first estimate for the next, increased cur

rent calculation. To ascertain whether or not there might be another

stable potential distribution in addition to the single-minimum solution

found by the sequence described above, two calculations were started

with input currents only slightly below the critical value and with poten

tial distributions having two and three minima. In each case, the

several maxima in the potential distribution disappeared within two or

three iterations and the previously found single-minimum solution was

ultimately obtained; this solution is thus assumed to be unique.

Bo Computational Results

All results discussed here were obtained for a uniform current

distribution across the beam width B at the input grid of the drift tube.

Limiting current as a function of the stream aspect ratio is given in Fig.

11, normalized to a limiting current in an infinitely broad diode. Also

shown is the data from Part I for the sheet stream in a diode ( i. e. ,

the side walls have been removed to infinity, D >> B). The effect of

the tube walls in reducing the space-charge potential depression is
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apparent; the closer the boundary to the stream edge (i.e. , the lower

the value of D/B) , the greater the increase in the limiting current.

As the ratio of beam thickness to length is increased (large B/L ) the

side walls play a less important role.

In the opposite limit, where L»D, B, the model approaches

that of an infinitely long drift tube. For design purposes, it would be

useful to know the value of L/D above which the result for the infinite

4
drift tube is valid. Haeff has derived the following expression for the

limiting perveance of a stream in such a drift tube:

P =9.35 10"6 -Sr F . (36)
max D max x '

Here, w is the depth in the y direction, and F is a generalized
* ' max &

current parameter, somewhat like our A , but dependent upon the fill

ing factor w/D. For the finite-length drift tube, the maximum perve

ance is given by

2 "^ 10P = B • W- fli^ ^— A . (37)
max T 2 max

L

Consequently, the ratio of these perveances for any B/D or L/D is

0.249 1Z5L ^max . (38)
(L/D) max

Eq. (38) is plotted in Fig. 12 for two values of B/D , using F
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from Haeff s paper and A from the present numerical calculations.
max r

The limiting behavior of the finite-length tube approaches that of the

infinite-length tube within five percent for L/D > 4 if the stream fills

the tube, and the L/D > 2. 5 if the stream only fills half of the tube.

Fig. 13 shows the effect of length to diameter ratio L/D

on minimum potential in the tube for the stream filling the tube, D/B = 1.

The fact that the stream is entirely enclosed does not change the shape

of these curves from those of the infinite diode or infinitely long drift

tube. However, as the tube is made more "box-like" (L/D approach

ing unity) the minimum potential at limiting drops below the value of

0. 25 at limiting obtained in the infinite diode and infinitely long tube

(with B/D = 1).

C. Experiments

Experimental results for unneutralized electron streams in

cylindrical drift tubes with gridded ends have been reported by Atkin-

17-18 1Q
son and Volosok and Chirikov . These experiments were, however,

performed in order to study the behavior of streams at and beyond limit

ing current, independent of longitudinal boundaries. Consequently, the

L/D ratios used were generally large enough so that, as predicted by

the present work, the behavior duplicated that of the infinitely long sys

tems. The fact that Atkinson observed no change in behavior for a

stream with B/D = 0.134 when L/D was increased from 1. 5 to 3.0

tends to affirm the implications of Fig. 12.

D. Calculation of Kinetic and Electric Energies

The relative magnitudes of the kinetic and electric (or potential)
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energies in the drift tube can be compared with results obtained by

9
Bridges and Birdsall for the infinite diode . The kinetic energy in

the stream is obtained from the integral

WK =M 7mv2(4 ) ^dz-SS -*mv'
stream

-V i f {\ /2 ~ V(x, z)' dx dz ,
2 ° JJV m

(39)

while the electric energy is obtained from

WE =T'o JT IE|2 dxdz. (40)
tube

The above integrals were calculated numerically. The potential within

a mesh square was taken as the average of the potentials at the corners;

the electric-field components within a square were considered to be the

averages of the field components calculated by subtracting the proper

corner potentials and dividing by the length of a side of a mesh square.

The result of the energy calculation for the "square" stream

(L/D =1) is shown in Fig. 14. 8W /9I and 9WE/ai are large and

of opposite sign at limiting for this case, and 8W/3I is large and posi

tive, indicating instability for currents greater than I . (It is, of
max

course, impossible to show infinite slopes from numerical results. )

Similar behavior is exhibited for all other values of L/D and B/D
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for which calculations were made, and is very similar to that obtained

9
for the infinite diode

For the interesting limiting case of a very thin stream in a very

long drift region, the energies can be calculated in closed form using a
4

method suggested by Nergaard . As shown in Fig. 15, the behavior of

the energies as a function of current is quite similar to that demonstra

ted in the infinite diode. At limiting current, 8W /8I, 8W-V8I, and

8W/8I all become infinite, indicating a rapid onset of instability. How

ever, in the infinite diode, at this point W-, = 7/4 WE , while here

W^ = W„ . It is proposed that this difference may result in a smaller

amplitude of oscillation subsequent to the onset of instability, as noted
Q

earlier for the thin beam in a diode, and may also result in a smaller

drop in transmitted current.
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t

.. 14
tion

Part I comprises a portion of W. B. Bridges'Ph. D. disserta-

tt This is analogous to the situation arising with the Hahn-Ramo

space-charge waves. Asa very broad stream is reduced to a thin

stream, a given bunching of charge produces a smaller and smaller

axial electric field. This effect is accounted for in the space-charge

reduction factors, as tabulated by Branch and Mihran ( Ref. 10) .

ttt Part II describes work performed in partial satisfaction of the

requirements for the M. S. degree of J. I. Frey.
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FIGURE CAPTIONS

Fig. 1. Stream and electrode configuration for the finite cylindrical stream model.

Fig. 2. Increase in maximum value of stable current density of a cylindrical stream

as a function of stream aspect ratio b/a. The open circles are the series results;

the solid line is the first series term, all for uniform current density. The dashed

lines are for nonuniform current densities, with \ , A defined in Fig. 5. The solid

points are experimental.results, as discussed in the text.

Fig. 3. Potential profiles in the inter electrode space for (1) first term approximation

[1-0.75 sin (tr t,)] ', (2) exact solution for the infinite stream with ex = 8; (3) computer

solution for cylindrical stream with b/a = 0. 222816 and a = 30. 50 (maximum value);

(4) computer solution for a cylindrical stream with b/a = 0. 0636609 and a = 182.777

(maximum value). \

Fig. 4. Limiting perveance, P =IQ/V0 , IQ = ub iQ, for a cylindrical stream of

uniform current density. The open circles are the series results; the solid line is

the first series term, which is of questionable value for b/a~*0. The dashed line,

- (b/a) , is the asymptote for large b/a, the infinite diode.

Fig. 5. Extreme limits of nonuniform transverse current distributions: (a) hollow

stream; (b) solid cylindrical stream with smaller radius.

Fig. 6. Stream and electrode configuration for the finite-thickness strip stream model.

Fig. 7. Increase in maximum value of stable current density of a strip stream as a

function of stream aspect ratio h/a. The open circles are the total series calculations;

the solid line is the first series term, all for uniform current density. The dashed

lines are for triangular density variations, with current concentrated near the stream

edge (upper, line) (.and^.nearthe,:^ points are discussed

in the text.

3/ 2Fig. 8. Limiting perveance, P = IQ/V , IQ = iQ2ha, for a strip stream of uniform



current density (perveance for a width 2a along y). The open circles are the series

results; the solid line is the first series term, which has a limiting value of 11. 85 for

h/a->0. The dashed line, - h/a, is the asymptote for large h/a, the infinite diode.

Fig. 9. Typical electrode arrangement (CAL-2) used in current limiting experiments.

Fig. 10. Stream and electrode configuration for the finite-length drift tube model.

Fig. 11. Increase in maximum stable current density for a strip stream as a function

of stream aspect ratio h/a (as in Fig. 7) with addition of side walls, with aspect ratio

of D/B.

Fig. 12. Ratio of limiting perveance of drift tube of length L to that for L~"*°° for

stream filling and half-filling the cross-section.'

Fig. 13. Minimum potential in drift tube as a function of input current for different

L/D ratios, for stream filling the drift tube* D/B =1.

Fig. 14. Energies in a bounded drift tube as a function of input current. L/D =1,

D/B = 1.

Fig. 15. Energies in a bounded drift tube as a function of input current. L/D~*°°,

D/B-*co.
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