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ABSTRACT

The Nyquist diagram technique is examined under very general

assumptions [see{G.l), {G. 2), and (G. 3)] : in particular, the linear
subsystem is represented by a convolution operator [see Eq. (1)]. It is
shown that if there are no encirclements of the critical point then the

impulse response of the closed-loop system is bounded and absolutely

integrable on [O, oo); it also tends to zero as t—^oo. For any initial

state, the zero-input response of the closed-loop system is also bounded

and goes to zero. If, on the other hand, there is one encirclement of

the critical point, then the closed-loop impulse response tends asymp

totically to a growing exponential.

The research herein was supported by the National Science Foundation
under Grant GP-2413. This paper was presented at the Allerton Con
ference on September 28, 1964.
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INTRODUCTION

The Nyquist criterion is proved for the single loop feedback case

The purpose of the paper is to demonstrate the extreme generality of

the criterion by constructing a proof which requires the least number of
t

assumptions. The main result is stated in the form of a theorem. The

hypotheses of this theorem include most cases of engineering interest.

ASSUMPTIONS AND MAIN THEOREM

Following Nyquist^ we consider the linear time-invariant single-
loop feedback system shown in Fig. 1. It will be referred to as the closed-

loop system. The block labeled k is a constant gain factor (i.e., inde

pendent of time and frequency): if its input is 'n(t), its output is kT|(t),

where k is a fixed positive number. The block labeled G is linear,

time-invariant, and nonanticipative (causal) and it satisfies the following

conditioi'3:

(G.l) Its input-output relation relating the output y, the zero-input

response z and the input ^ is

A
y(t) = z(t) + / g(t - T ) 4( T )dT for all t > 0. (1)

•^0

(G. 2) For all initial states, the zero-input response is bounded on

[O, go) and z(t)—^z as t—>oo, where z is a finite mL ' / ^ ^ CO CO

which depends on the initial state. Let Zj^ = sup lz(t)| .
t>0

The discussion of stability for the case where the transfer functions
are not rational is far from trivial. Any reader who doubts this should
consider the function defined for t > 0 by e^ sin (e^) and note that its
Laplace transform is analytic for all finite s. This example shows that
the discussion of stability cannot be settled by "looking at the singularity
that is the furthest to the right, " which is a legitimate procedure with
rational transfer functions.
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(G. 3) The unit impulse response g is given by

g(t) = l(t) [r + g^(t)] (2)

where the constant r is nonnegative; l(t) is the unit step func

tion; gj^ is bounded on [O, co), is an element of (0, oo) and
g^ ^0 as t—>co. We write

^[g(t)] = G(s) =|-+ G,{s). Let = sup lg(t)| .
S 1 IVi

For ease of reference, we state formally the main result of this

paper:

Theorem. Suppose the linear time-invariant single-loop feedback

system shown on Fig. 1 satisfies the conditions (G. 1), (G. 2), and (G. 3).
j.

If the Nyquist diagram of G(s) does not encircle or go through the

critical point (-1/k, 0), then

(a) the impulse response of the closed-loop system is bounded,

tends to zero as t >oo, and is an element of L^ (0, oo);
(b) for any initial state, the zero-input response of the closed-

loop system is bounded and goes to zero as t >oo;

(c) for any initial state and for any bounded input, the response

of the closed-loop system is bounded;

(d) let r be positive, then for any input u which tends to a

constant u^ as t—^oo, and for any initial state, the output
y tends to u as t—^oo.
' oo

If the Nyquist diagram of G(s) encircles the critical point (-1/k, 0) a

finite number of times, then the impulse response of the closed-loop

system grows exponentially as t—^oo.

^The Nyquist diagram is the map under G of the imaginary axis from
which the interval [-j£, j £] has been removed and replaced by the semi
circle {gej®: -TT/2 < 0 < IT/2} ; here £ is taken arbitrarily small.
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Comment. It should be stressed that the only assumption that is

made concerning the box G is that it fulfills the conditions (G.l), (G. 2),

and (G. 3). Such conditions are often fulfilled by the impulse response of

systems described by ordinary differential equations, difference-differ

ential equations, and those whose input-output relation is obtained through

the solution of partial differential equations. The latter is the case for

distributed circuits and for many control systems.

The analysis to follow applies to all cases where r > 0. For

many circuit applications it turns out that r = 0 and that for initial states

z =0. The reader will have no difficulty in inserting the consequent
00

simplifications in the proof.

Analysis. Let u be the bounded input applied to the system and

let u,, = sup |u(t)l . The response of the closed-loop system starting
t>0

from an arbitrary initial state is given by

rt

y(t) = z(t) + k / g{t - t) [u(t) - y(T)] dT forallt>0. (3)

The theorem will be proved in several steps. First, in order to be able
to apply Laplace transform techniques to the integral equation (3) we
establish that the solution is of exponential order; second, well known

facts concerning Laplace transforms are used to establish the uniqueness
of the solution of (3); third, various tools of complex function theory and
Fourier analysis are used to establish the properties of the impulse
response of the closed-loop system and those of the zero-input response.
The proof of the remaining assertions of the theorem follow easily.

then

Assertion. If (G.l), (G. 2), and (G. 3) hold and if u is bounded,

(i) the output y is of exponential order and its Laplace trans
form, Y(s), is analytic for Re s >

(ii) the output y, the solution of (3), is unique.
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Proof. From (3) and the definitions of z^, gj^, and Uj^, we get

A

Iy(t) I<(^M +'"Sm +'"Sm /q 1 I
2 3

Hence, by the Gronwall-Bellman inequality, '

1y(t) |<b(t) +ky h{t-i)g^e ^ d^ for all' t>0 (4)

where b(t) = z^ + Equation (4) implies that y is of exponential

order and that its Laplace transform, Y(s), is an analytic function of s

for Re s > kgj^. To establish uniqueness suppose there were two responses
y^^ and By subtraction we obtain from (3)

t

0

f ^Yl^t) - y^it) = 'k j g(t - t) [y^Cr) - y^(T)] dr for all t>0 (5)

Now g^ is zero for t <0 and is in L^ (0, oo); therefore the Laplace
transform of g is analytic for Re s > 0 and goes to zero as jsj—>oo

t I 4 9with \^s\ < ir/Z. ' From (i) y^ and y2 are of exponential order;
hence taking Laplace transforms of (5) we get

Yj(s) - Y2(s) = k G(s) [Y2(s) - Yj(s)] Re s

Therefore Y,(s) - Yp(s) = 0 for all s in their domain of definition. By
5the uniqueness theorem of Laplace transforms, yj^ and y2 are equal

for almost all t in [O, oo). Since y^^ - y2 is continuous, yj^{t) = 72^^)
for all t in [O, oo). This completes the proof.

It might be worth noting that since g, u, and z are bounded
2

their restriction to any finite interval, (0, t), is an element of L ,

hence the existence and uniqueness of the solution of (3) may also be

established by iterative techniques. ^
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Proof of the Theorem. To prove (a) we recall that, by definition,

h is the zero-state response of the system to a unit impulse applied at

t = 0. By definition of g and from an examination of the configuration

of the closed-loop system, to apply a unit impulse at the input of the

closed-loop system is equivalent to having an identically-zero input ap

plied to the system but having G start from the state whose zero-input

response is kg. Thus

.t

0

Let H be the Laplace transform of h; then

r
h(t) = kg(t) - k / g(t - t) h(T) dr . (6)

J r\

Now, by the principle of the argument, the denominator of H(s) is ^ 0
for all Re s > 0 if and only if the Nyquist diagram of G does not en

circle or go through the critical point (-l/k, 0). By the assumption
concerning the Nyquist diagram, .the denominator of (7) has no zeros

in the closed right half plane. Let us rewrite (7) using (2): if we multiply

the numerator and denominator by s/(s + kr) we get

H(s) = (8)l+k(i+Gi(s)) l+

The denominator may be rewritten as

l +kGi(s) -k^-^Gj(s)

Observe that o£.~^[kr/(s + kr)] = l(t)kr e which is a function in
L^ (0, oo). Since gj^e L^ (0, co) and since the product of the transforms
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of two L' functions is the transform of an L' function, the denominator

is of the form "one plus the transform of a function in L«^(0, oo). " The
denominator has no zeros in the closed right half plane. The numerator

of (8) is also the transform of a function in l\o, go). Hence, by a
8 1

theorem of Paley-Wiener, it follows that h is in L (0, oo). Now h

is bounded because (6) implies

.00

IVi IVi IVi Jq

To show that h tends to zero as t—^oo, observe that (6) implies that

t + 6 .t ,.t + 6
(h - kg) =-^ / [g(t +6- t) - g(t - t)] h{T)dT - k/ g(t +6- T)h(T)dT

t "^0 ^ t

Therefore, if we remember the form of g specified by (2), for all t > 0

and all 6 > 0,

I[h(t +5) - kgj(t +6)] - [h(t) - kgj{t)] I
/.oo

<khj^ y I +6) - g^d) Idg +k6gj^hj^. (9)

Note that the right hand side of (9) is independent of t. Since g,€lj\o, oo),
9

it follows that the first term of the right hand side goes to zero as 6 ^0.

The same is obviously true of the second term. Consequently (9) implies

that h - kg^ is uniformly continuous on [O, oo). Since h and g^ are
in l\o, oo) so is h - kg„ therefore the uniform continuity implies that

11
lim [h{t) - kg,(t)] = 0. By (G. 3) it follows that h tends to zero as t—5»oo.
t->oo

Let us prove statement (b) of the theorem. The zero-input re

sponse of the closed-loop system, z , satisfies the equation

(t) = z(t) - / h(t - T)z(T)dT for all t > 0 (10)
-'o

z
c
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since he L^O, cx>) and z is bounded, is bounded. It remains to show
that z^ goes to zero as t—^co. For this purpose we need only show
that the convolution integral tends to z^ since, by (G. 2), z(t)—
as t—>00. The properties of h imply that for any £ > 0 there is a

T(£) < 00 such that t > T(£) implies |h(t)| < ^ and

/ |h(t)| dt < £• . The properties of z imply that |z{t)|< z^ < 00
^T(e)

for all t and that for any £>0 there is a T'(£) < 00 such that t > T'(£)

implies |z(t) - < £, Rewrite (10)

/-1 ^ t
z (t) - z(t) = - / h(T) [z(t - t) - z Idx - z / h(T)dT . (11)

c go go

From these considerations we get the following inequalities: for any

t > T(£) + T'(e)

t /-t-THC)
|z (t) - z(t) + z / h(T)dTl < / |h(T)| |z(t - t) - z |dTC 00 /q

ft
+/ |h(T)l |z(t - t) - z Id-
n-T'(.-)

t - T'(£) t
<€/ |h(T)ldT +(|zj.l +|z 1) / |h(T)ldT .

•'0 JVI OO

Changing the upper limit of integration of both integrals to 00, we conclude

that t > T(6) + T'(^) implies that

/.t .CO
|z^(t) - z(t) - z^ y h(T)dTl < |h(T)|dT +|zj |̂ +|z^|]

that is

t

lim |z (t) - z(t) - z / h(T)dT | =0. (12)
t->oo •'0
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Now since he and tends to zero as t—>co,

also by (G. 2),

lim f h{t)dt = lim H(s) =1
t—>00 0 s->0

hence (12) gives

lim z{t) = Zqq
t->oo

lim z (t) = 0
t—^00 ^

Consider now statement (c) of the theorem. The configuration

of the closed-loop system and Eq. (1) imply that the output y starting

from an arbitrary initial state of time t = 0 and responding to an input

u is given by

y(t) =z (t)+/ h(t - T)u(T)dT for all t >0 (13)

where z^ is the closed-loop zero-input response. If u is bounded then
y is bounded: this follows from the boundedness of z and the fact that

1 ^h is in Li (0, oo). Incidentally, by a previous reasoning y - z^ is
uniformly continuous on [O, oo). Thus statement (c) is established.

Since z (t)—^0 as t—>oo, statement (d) is equivalent to the assertion
^ /• tthat u(t)—implies that J h(t - T)u(T)dT—This implication

has been proved in detail in proving (b). Therefore statement (d) holds.

Suppose now that the Nyquist diagram encircles (-1/k, 0) a finite

number of times. Since G(s)—>0 as |s|—>oo with {-^sl <17/2 and
since G is analytic in the open right half plane, the principle of the
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7
argument shows that 1 + kG(s) has a finite number of zeros in the open

right half plane. For simplicity of notation we shall write the following

expressions assuming that each pole is simple. By a partial fraction

expansion we get

n ^

H(s) = ^ ^ +Hj^(s) Re s >0, v=1, 2, ...n.
V = 1 V

where Hj^(s) is analytic for Re s > 0. It can be easily verified that the
behavior of H((r + jco) as co—^oo satisfies the conditions of Doetsch's

theorem. Therefore we conclude that

h(t)-b^e®l^ as t—:>oo, Re s^ >0

where s^ is the zero of 1+ kG(s) which has the largest real part. (If
there are several such zeros, then the right hand side must include the

appropriate sum.) This completes the proof of the theorem.

For some applications it may be useful to be able to relate the

norm of the output y to that of the input u and the zero-input response z.

Corollary. Let (G. 1), (G. 2), (G. 3) hold and the Nyquist diagram

satisfy the condition of the theorem. If, for some number p > 1, both

z and u are elements of L^(0, oo), then

Ih lip ^(1 + llhlli ) llzllp + l|hll^ • jjullp. (14)

When p = 00, if we let y^ = sup |y(t)|, then, using previous notations,
t>0

II ^111^ ^ II ^111 ^M'

Proof. Observe that, for any p > 1, if h is in L'(0, oo) and

z is in L^(0, oo), then h* z is also in L^(0, oo) and j| h* zjj ^< || h|| *jj z|1 .
The inequalities above follow directly from the application of this fact

to (10) and (12).
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CONCLUSIONS

Under very general assumptions pertaining to the open loop system

we have shown that if the Nyquist diagram satisfies the nonencirclement

conditions then the zero-input response, the impulse response, and the

complete response have all the usual properties associated with stable

systems. The inequality (14) shows that if z is in L', then for all p > 1

(including p = oo) the closed loop system is L -stable in the sense of
13 ^I. W. Sandberg. The results obtained here are essential for some

recent extensions of Popov's Criterion,
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Fig. I. single-l.ooiJ feedback system under
consideration: the gain factor k is
positive and the linear time-invariant
subsystem G is characterized by a
convolution operator (see Fq. 1.).


