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ABSTRACT

In radar or radio astronomy we observe a signal whose covariance

function depends on some target parameters of interest. We consider here

the problem of estimating the values of these parameters from our observ

ation of the signal. One possible procedure is to use the method of maxi

mum likelihood estimation. This method has the advantage that, as the

duration of the observation interval becomes long, the mean square error

in the maximum likelihood estimate approaches the minimum given by the

Cramer-Rao bound. However, the maximum likelihood estimate is usually

difficult to compute. We present here a recursive estimation procedure

which divides the observation interval up into subintervals of short length:

on each subinterval the signal is processed quadratically and the resulting

calculation used to improve our estimate. This method has many compu

tational advantages and, under certain conditions, we can show that the

error in the resulting sequence of estimates approaches the Cramer-Rao

bound.

We begin by giving brief consideration to the problem of determining

the functional dependence of the covariance function of the received signal

on the target parameters. We then present expressions for the terms that

appear in the Cramer-Rao inequality. Lastly, we describe the recursive

estimation method and state conditions under which it is applicable.
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I. INTRODUCTION

In radio or radar astronomy, we observe a signal emitted or

scattered from an astronomical body or target with the objective of

gaining information concerning the nature of the body. If the observed

signal is emitted by the body, the source of the emission is at the atomic

level; if the observed signal is a radar signal scattered from the body,

the signal is scattered from a very large number of specular points. In

either case, the resultant signal is the sum of a large number of incoher

ent sinusoidal contributions and hence will have zero mean. Further, the

central limit theorem is applicable and the signal should be characterized

to a good approximation by a gaussian random process. The statistical

behavior of such a process is completely described by its covariance

function

<ps(tv t2) =E{(St - 5t )(St - ^ )} (1.1)

5t =E{St} = 0

and thus all information concerning the body that can be gained by observ

ation of the signal is contained in 0 (t,, t~) .
*b x Cd

We consider here the problem of estimating the numerical value

of those parameters of the body which may be of interest; we assume the

estimate is to be based upon observation of W(t) -S(t) + N(t); the signal

corrupted by white gaussian noise; we take the number of parameters of

interest to be M, and denote generic values of these parameters by an

M-dimensional vector.

a- {a,, or-,, . . . , a ) .
~ x 1 2' ' m7

The covariance function associated with the observed signal will

depend on which values of the parameters actually pertain to the body,

and we will denote this functional dependence by writing
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^s(tr t2) = ^s(tr t2' 2) (1,2'

Given the problem of trying to estimate some parameter a in

the absence of any a priori statistics, the usual solution is to use the

maximum likelihood estimate [ 1] . As shown by Price [ 2] , the maxi

mum likelihood estimate of a would be that value of a which maximizes

the quantity
co

![W(t)g] =ilT (a) -\ Z !n[l+\n(a)/N] (1.3)
0 n=l

in which

IT (a) = / / h(t, s,a) W(t) W(s) dtds (1.4)
0 ^0 ^0

and h(t, s,a) is the solution of the integral equation

T
v 0

T T
o no

Nh(t, s,or) + / 0 (t, r,a)h(r, s, a) dr = 0 (t, s,o) (1. 5)

the X (a) are the eigenvalues associated with cj> (t, s, a), t, s e [ 0, T], N

denotes the magnitude of the noise spectral density, and Tn the total

observation time. Price also shows [2] that, under the usual weak

signal to noise ratio conditions prevailing in radio or radar astronomy,

the quantity IT (a) is given approximately by

1tJz)~J 1 cf> (t, s,or)W(t)W(s)dtds (1.6)
0 ~0 s ~

In the radio astronomy situation, the process observed might be

a stationary process and

^(t* s>,&) = «j>s(t - s,a) .
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Using the symmetry of IT (a), a change in the variables of integration

will yield

I_ (a) =2 / dxcj) (r-,a) / dsW(s +t) W(s) (1.7)

In the radar astronomy case, if the transmission is a sequence of Q

sinusoidal transmissions, each of duration T , and T is large compared

to the delay spread of the target, then IT {a) can be expressed approxi-

mately as a sum of Q integrals of the form of Eq. (1. 7).

The use of the maximum likelihood estimation procedure has the

advantage that it is asymptotically efficient; that is, as T~ becomes large

the covariance matrix of the errors will approach the minimum given by

the Cramer-Rao bound [l ] . However, the computational problems asso
ciated with this method can be almost prohibitive. The usual situation is

one in which a long total observation time (large T~) is required to obtain

a reliable estimate. In this case the data handling and processing problem

is enormous (typical signal bandwidths may be 100 c. p. s. or greater and

observation times upwards of several hours). Even if IT {%) can be

expressed in the form of Eq. (1.7) and one-bit correlation methods [3, 4]

used to calculate the time correlation function of W, the computational

problems associated with evaluating IT (a.) and implementing a search
0or gradient seeking procedure for maximizing &CW;a) are not trivial.

To solve the computational problem, we propose a recursive esti

mation method. That is, we will divide the total observation interval of

duration T~ into a large number of short subintervals, each of duration

T. The duration T can be picked for compatability with computational

facilities or on some other basis of convenience, as long as it is long with

respect to the reciprocal of the bandwidth of S(t). We start with some

arbitrary estimate <x,. During the reception of W(t) in the first subinterval

of length T, the signal W(t) is processed once by a quadratic processor

and a correction term based on this calculation is added to ^ to yield cx~.
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This process continues: at the start of the n-th subinterval of duration

T we have the estimate a, which we update by quadratically processing

W(t) during the n-th reception subinterval and adding a correction term

to g . The computational advantage of such a method lies in the fact

that no more than T seconds of data is ever handled by the computer

and the only quantity that needs to be stored from one interval to the next

is a , the current estimate.
~n

In Sec. 4, we will present a specific such recursive method, and

state conditions which are sufficient to guarantee that g converges to

the true value of the target parameters. This method will be asymptoti

cally efficient; that is, when a does converge, the resulting error co-

variance matrix tends to the bound given by the Cramer-Rao inequality

[l] as Tn becomes large. Before discussing this method, we briefly
discuss in Sec. 2 the relation between <j> (t, s, a) and the properties of

the target in the radar-astronomy situation. Section 3 presents explicit

closed form expressions for the matrix appearing in the Cramer-Rao

inequality and several quantities relevant to the discussion of Sec. 4.

Section 5 concludes with an example.

II. RELATION OF THE SIGNAL CORRELATION FUNCTION TO THE

PARAMETERS OF A RADAR TARGET

In the radio astronomy case there is nothing that we can say in

general relating the parameters of interest and the covariance function

of the radiated signal; in each case the relation between the parameters

and the physical origin of the radiation must be considered.

In the case of a rigid radar target, a useful concept relating the

scattered radiation and the target parameters is that of the scattering

function discussed by Green L5J . Consider the surface of the target

divided up on the basis of range and relative velocity with respect to the

radar antenna. The scattering function is denoted by o-(t,w) and

ct(t, co)dTda> denotes the effective area of radar cross section of those

portions of the target located at delays between T-dT and t and

doppler shifts between u>-doo and u>. The average power returned from

those portions of the target lying in these delay and doppler zones is thus

proportional to ct(t , w) dTdco.
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The dependence of the target scattering function upon the target

parameters is usually direct, and enables one to find the functional

relationship ct(t, cr, a). For example, Green [5] has derived an expres

sion for the target scattering function of a rough rotating sphere which

directly expresses its dependence upon the rotational velocity and angu

lar scattering function of the sphere.

Inasmuch as our results are based on the dependence of the co-

variance function on the target parameters, it would be useful to have a

relation between 4> (t,,t_) and ct(t,co),
S 1 u

Consider transmitting the narrow band signal

x(t) = Re{%(t) exp(j^2t)} (2.1)

in which "X(t) is a complex valued lo-pass signal. The signal, S (t),

returned from that position of the target at delay t and doppler shift go,

is then the real part of

£TjW(t) = K^t - r)r(t - t,t,co)ct1/2(t,co) exp [j(»H>)(t-T) ]
(2. 2)

in which the constant K depends on the antenna gain and range of the

target. The random time-varying complex-valued reflectivity coef

ficient r describes the variations in the area and number of specular

points at t , co caused either by rotation or by local motion if the scatter

ing is taking place off a gaseous atmosphere.

We assume r is normalized such that

E{|r|2} = 1

Although the variation in delay over a region between t - dr and t

is negligible with respect to the modulation, there will still be fluc

tuations large with respect to a carrier cycle. This would imply first

that

E{r(t, co, t)} = 0 . (2.3)

-5-



Secondly, one would expect that if a steady sinusoidal signal were scat

tered from the region, the covariance function of the scattered signal

should be independent of the phase of the transmitted signal. It can be

shown, in a straightforward but laborious manner, that this implies

that

E{r(tr T,co)r(t2, t,co)} = 0 (2.4)

Lastly, these same considerations imply that r(t, t, co) will be uncor

rected at regions of different delay and doppler shifts, thus, applying

Eq. (2. 3) and (2. 4), we have

E{r(t1} Ty co^r (t , t 2, u^)} = 6(1^-t ^S^-co^ pft^t^ rv 0^)

(2.5)

E{r(tr Tr co^r^^ t2, co2)} =0 (2.6)

Returning to Eq. (2. 2), we have that the total returned signal is

given by S(t) = Re{£,(t)}, in which

Ut) =KjJdTdco X(t-r) r(t-r, t, co) ct1/2(t, co)exp[j(n+co)(t-T) ]
(2.7)

the integration being over all values of delay and doppler shift associated

with the target. Using Eq. (2. 7) to write out the quantities

S^Sft-,) = [Re ^fl [ReC(t2)]

and

Re[;(tx) cT(t2)]

taking expected values, and using Eqs. (2.5) and (2. 6) yield

♦s(trt2) = E{St,St} = (l/2)Re E{£,t ^*} =
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(l/2)K"ReJJdrd^(tl-r)X (t2-T )p (^-t^ r, co)

Xct(t,co) exp[j(^+co)(t1-t2)] (2.8)

Lastly, if we assume that p(t,-t_, t,co) is independent of t and co, we

have

.2

<J>S(tl't2) = T" ^ P(t1-t2)JdT^(t1-T)^(t2-T)

yJdcocr(T,co) expCj^+coJ^-t^] (2.9)

III. EXPRESSIONS RELATED TO THE LIKELIHOOD FUNCTION AND THE

CRAMER-RAO BOUND

In this section we present an expression for the matrix appearing

in the Cramer-Rao inequality [1,6] . This inequality is lower bound on

the error that can be achieved in estimating a linear combination of the

components of a based on some observation related to ct„ Let a be

any unbiased estimator of ja, J9 be the "true" value of Oj and c_ an

arbitrary vector. Then the Cramer-Rao inequality is

r M

E 2 c.(2. -0.) 2f= c'R/sC > c'B"1*
L_jti J J J J ' — "a~ —

(3.1)

in which prime denotes transpose, Ra is the matrix whose ij-th ele

ment is

E{(a. - Q.)(a. - 9.) }

and B is the matrix whose ij-th element is

K - it d£ d *

L 1 J a = e

-7-
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i denoting the log-likelihood function of jx based on the observation

made. The quantities di/da. and b.. are thus of direct interest,

and we now present closed form expressions for these pertinent quan

tities.

Consider observing the random process W(t) = S(t) + N(t), the

signal of interest plus white gaussian noise, on the time interval [0, T ].

Let v|j (t,a) and \ {a) be the normalized eigenfunctions and eigen

values of the integral equation

ds 4> (t, s,a)i\>(s,a) = \ (o)i|j it, a) 0<t< T (3.3)
^v O XX XX ^"^ XX

If a were the value of the parameter vector actually associated with the

process S(t), then the process W(t) would be described by [8]

n

W(t) = l.i.m. 1 WlA(t'̂ > <3-4)
n—^co k=l

in which

j:

W
k -X W(t) \(t,a)dt (3.5)

The coefficients W, are all zero mean independent gaussian random

variables with variance X. (a) + N~, N~ being the (two sided) spectral

density of the additive white noise. The likelihood ratio of a based

on the observation W(t), t€ [0, T] , can then be taken as the limit

To be strictly correct, the quantity & appearing in this expression
should be the Radon-Nikodyn derivative. If the correlation function of
W is continuous our definition of I as defined in Eq. (3. 6) would be
equal with probability one to the Radon-Nikodyn derivative [ 7 ] . In
actual fact, the noise N is not white but merely very broad band so
this condition would be met. However, for simplicity of the resultant
expressions, we will use an expression for i [Eq. (3. 9)] that results
from letting the bandwidth of N become infinite.
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p(Wj ,W ;a)
A(W;a)= lim ( w ;o) <3-6)

n—^oo r\ ]_» n '

in which p(W., . . . , W ;a) is the density function associated with

W,. .. , W under the hypothesis that the process S(t) is character

ized by the parameter value jx and p(W15 . . . , W ;0) is the same

density function under the hypothesis that the process W(t) is the

noise alone. It is shown [9] that the natural log of this quantity is
given by

oo oo

i(W;a) = (1/2N) ]> W2 [\ (a>)/(\ (a) + N)] - &/2)ln[ TT{\ (a) +N)]
, n n/-^ n r^ . n

n=l n=l

(3.7)

If h(t, s, a) is the solution of the integral equation

Nh(t, s,a) +Jdr<|) (t, r,a)h(r, s,a)dr = tj> (t, s, a) t, s, e [0, T]

(3.8)

then the first term in Eq. (3. 7) may be expressed in closed form, and

T T

£(W;a) = j—-J J h(t, s, a) W(t) W(s) dtds

oo

- (l/2)ln[77(\ fe) +N)] (3.9)
n=l

To develop further expressions, we will need to interchange certain oper

ations such as integration and partial differentiation. These interchanges

are justified only if <j> (t, s, ex) is suitably well behaved; thus we now state

conditions that will be sufficient to justify these operations.

Condition 1: W(t) = S.(t) + N(t) in which S and N are independent

zero mean gaussian processes; the noise N(t) is white with spectral

density N.
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Condition 2: Let a superscript denote partial differentiation

with respect to the corresponding component of a^ The functions

<j> (t, s, a), h(t, s, a), and h (t, s, a) are assumed to be

continuous in t and s on [0, T] X [0» T] and the functions cj> (t, s)#c*)

and h J(t, s,jg) assumed to be integrable square over [0, T] X.[0> T]
for i, j = 1, 2, . . . , M.

Let us now take the partial d I dot. of both sides of Eq. (3. 9)

and interchange differentiation and integration on the right hand side

(the above conditions justify this interchange [10] ) to obtain

di/da{= jfi-J J hL(t, s,a) W(t)W(s)dtds

? a\ (or)
-a/2) z 8^ /unfe) +n) (3.io)

n=l i

Starting with the integral equation (3. 3), it is possible to find an equi

valent closed form expression for the sum in Eq. (3.10) [10]; the result

is

d£/da>i =±^J J hl(t,s,£)[W(t)W(s) - (j>w(t, s,a)] dtds
° ° ~ (3.11)

in which cj> (t, s,a) = <j> (t, s, a) + N6(t-s). From this expression and

Eq. (3.2) one can obtain the b.. appearing in the Cramer-Rao bound.

The resulting expression reduces after some manipulation [10] to

'0 ^0bij =-m-11 ^*•*) *[<l-s> °>dtds <3-12>

These quantities, when used in inequality (3.1), bound the per

formance of an unbiased estimate of a^ based on a single observation

of W(t) of duration T. It can be shown directly that the corresponding
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bound for an estimate based on n statistically independent such observa

tions is simply the right hand side of Eq. (3.1) divided by n.

Reflection upon Eq. (3.11) can suggest an iterative method for

estimating 0. Take the expected value of both sides of this equation,

noting that condition (2) allows the expectation and integration to be

interchanged.

,T T

'0 °0
2N On Un hl(t' S'^ [4>w(t, s, 0) - 4>w(t, s,or)]dtds

(3.13)

For convenience we denote E{dJl/da.} by m. (a) and the M-dimensional

vector whose i-th component is m. (a) by n}(a). Note that rn(a) is equal

to 0 for a - 0. We will restrict ourselves to situations in which this is

the only value of a. satisfying this equation and use a recursive search

procedure based on successive observations of duration T of the process

W(t) to find the value of a that sets m(a) = 0.

IV. A RECURSIVE ESTIMATION METHOD

We now wish to investigate the possibility of recursively estima

ting ^0, the value of ja, that satisfies m(or) = 0, by making successive

observations of W(t). Further we wish to do this in such a manner that

the resulting sequence of estimates is asymptotically efficient; that is,

as n, the number of observations, becomes large, the covariance matrix

of the errors, Ra, should approach (l/n)B, the entries of B being given

by Eq. (3.12).

To facilitate the discussion let us denote by Y (a) the M-dimen-

sional vector whose i-th component is di/da. evaluated from the obser

vation of W(t) on the n-th time interval of duration T. Note that Y (a)

is calculated by the M quadratic operations of of Eq. (3.11), in which the

integration is carried out over the n-th observation interval instead of

[ 0, T] . We shall assume that observations of W(t) made on these (disjoint)

intervals of time are statistically independent. Now consider finding 0,

-11-



the value of jz for which m(o) is zero; under suitable conditions on

m(a), we might regard m.(ar) as the gradient of a unimodal surface. If

we were able to make successive observations of m{a) at different

values of a, then we could employ a conventional gradient seeking or

hill climbing method to search out 0^. Although we are not able to

observe m(a), we can observe Y^ {a), n = 1, 2, . . . , where E {jg (a)}
= jti(o}. If we carry out the usual gradient seeking procedure using

the £ and weight of the sequence of resulting corrections by a "gain"

that decreases as the observation number increases, the fluctuations

in Y tend to be cancelled out and, under suitable conditions, the
^n

resulting sequence of estimates tends to converge to 0..

To make this explicit, consider the sequence of estimates

a , n = 1, 2, . . . , in which a. is chosen arbitrarily and the remainder

of the estimates are determined by the recursion equation

a ,. = a + (A/n) Y (a) (4.1)

Such methods are known as Stochastic Approximation methods; they

have been studied for some time and the convergence of or to 0 has
& ~n -*-—

been proven under a variety of conditions [ll, 12, 13, 14] . The difficulty

with existing methods is that the covariance matrix of the errors R ,
or

n

depends very critically upon the gain constant A. A poor choice of

A can result in a mean square error

E {II a - 0 II2,}
1 ^n ^ J

which is much larger than that given by the Cramer-Rao bound [14] .

Unfortunately this dependence upon A also depends upon the unknown

value of Qj hence a good a priori choice of A is not possible.

To correct this situation, we consider a stochastic equivalent

of a Newton-Raphson procedure in which the correction terms are

weighted by the inverse of the matrix of second partials of the surface.

-12-



Specifically, let

a ,. =a + (l/n)G_1 (a )Y (a ) (3. 2)
^n+1 /^n x^n'-^n Hi'

in which the ij-th entry of the matrix G(a) is given by

T ^T

h^ =^rJ J hi(t's^> *j(t> Sj^ dtds (3-3)
J 0 0

It can be shown directly from Eq. (3.13) using condition 2 that

da.
J

m ite) = g»(D (3-4)
*=0 lJ

thus as a—^0 the matrix G(a) approaches the matrix of second partials

that appear in the Newton-Raphson method. Note that g..(0) is equal to

the s.. of the Cramer-Rao bound.

Under suitable conditions, it can be shown that the sequence of

estimates approaches J^ and the covariance matrix of the errors approaches

(l/n) G for large n. We now state conditions which are sufficient to guaran

tee this.

Condition 3: Observations of W(t) made on the disjoint time inter

vals of duration T are statistically independent and identically distributed.

Condition 4: 0 is known a priori to lie in the interior of some

bounded set A (in the M-dimensional space of parameter values) and the

sequence of estimates generated by Eq. (3. 2) is constrained to lie in this

set.

Condition 5: G(c*) is invert ible for all a € A.

Condition 6: The quantities

2 M
-5 5 Z. g..{a)m.(a)

and
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M

^ y_ b., (a) g..(o;) g., (a)
dai i,j7k=i lk~ Jl~ Jk~

^r 7T I are bounded for all a € A.da^ da. j ~

^ Condition 7; There exist a K-. and Kn, 0 < Kn < Kn < oo

such that

Kn II a - 0 II2 < - (a - 0)'G(of)m(a) < K' lit* - 0 II2

for all a € A.

Condition 3 can be assumed to hold in practice as long as the

bandwidth of S(t) is large compared to l/T. The remainder of Con

ditions 2-6 are of the nature of regularity conditions and will usually

be satisfied in practice. Condition 7 is restrictive and will seriously

limit the situations to which our method is applicable. Condition 7 is

required to guarantee that the equation m(aj = 0^ have as its only solu

tion a = 0; i.e., that the "surface" whose maximum we are locating

Ipe unimodal.

We have shown the following result:

Theorem: Conditions 1-7 imply that the sequence of estimates a
r J ^-n

generated by Eq. (3. 2) is asymptotically efficient, i. e.

E {{a .- Q.Xa .-0.) ) =(l/n)g.. +Kn~*1+ y) K < co, y >0
L* n, i iA n, j y J /&ij T

*

This statement is proved in [10] ; the proof is long and involved and we

do not give it here.

In the closing section we present an example to indicate the

method's applicability to a problem of practical interest and the scope

of the limitation imposed by Condition 7.
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V. AN EXAMPLE

We now consider the case in which S(t) is a gaussian process

whose correlation function is of the form

<j> (t, s,a) = Aexp[-y|t-s|]cosco(t-s) (5.1)

in which A, y, and co are unknown and to be estimated. Reflection

upon Eqs. (3.2) and (3.4) reveals that in order for Eq. (3. 2) to be

correct dimensionally the a.'s must all have the same dimension.

We will take them to be dimensionless and rewrite Eq. (5.1) as

<J>s(t, s,^) =o^Ay exp i-yTaz |t-s |] cos <*3yr(t- s) (5.2)

in which A and y are arbitrary reference values. In order that
r r

condition 3 be sati fied we will need to pick T such that

ay « T

for all values of a? that are regarded a priori as possible.
For cj> (t, s, a) given by Eq. (5. 2) the function h(t, s, a) can be

found directly [ 15,16] . However, the computations involved are some

what laborious, and we will make an approximation. In the usual case

in radio astronomy, the signal S would be grossly weaker than the noise;

i. e. ,

aAT
« N (5.3)

az\

In this situation, expansion of h(t, s,#) in a Von Neumann series

indicates that under the conditions of inequality (5. 3)

h(t, s,a)~(l/N) <j> (t, s,a) . (5.4)
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For convenient normalization we shall set

A /v = N
r r

(it can be shown 10 that condition 7 is independent of the scale factor

chosen) so that we are interested in those situations in which

aJa? < < 1 (5.5)

Further, most cases of interest will be those in which S(t) is narrow

band; hence we assume

a?/a~ < < 1 (5.6)

Using the approximation of Eq. (5.4) and using inequalities (5. 5) and

(5. 6) to simplify the resulting expressions, we have calculated for G(a)

8Na

G(a)^
YrT(ax)'

and for m(a)

2

"l a\aZ

°la2 2<«2>
0 0

0

a

m^a) =F{2*2[(c*2+ 0-,)2 +(^ - 03)2][(<*2 +e^2^ - 6)

- ei(«2 + Q2)(az - 02) +az(a3 - 83) ] }

m2(a) =F{2c101(c2 +©/(o., - Qz) - afa - 0^ +0/

+Qfiei(a2 +e2)2(a2 - 02)2 - al{a?> - ©3)2[ O^o^)2

+2or1(af2 +02)2 +ax(a3 - ©3)2]

-16-
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C-

m3(a) =F{2(2a2)2 ^(o^ +e2)(<*3 - ©3)} (5.10)

in which

^rT
F = = = =- (5.11)

8N(<* r[ (a + Q f + (a - 0 f]

From Eqs. (5. 7) -(5.11) we can calculate the quantity {a - 0)'G{a) mja).

Making use of Eqs. (5. 5) and (5. 6) to obtain a simplified approximation

to this quantity, we have

-(a -^)G(a)m(a)^2o;101(a2)2(02)5 j(Aq^)2 [4 +8A<*2 +5(A<*2)2
Q

+(Aaz)3] +(Aa3)2 [8 +(16) +4-^—A^) Aaz

+(6 +4Aa1)(A«2)2 +(^ - l)(Ac*2)3n (5.12)

in which

*,..*L^I, ^-X^ , ^="3^3l ex ' 2 ©2 ' "3 0 3

Condition 7 will be satisfied for those values of a. for which the right

hand side of Eq. (3.12) is positive; thus, as long as a is constrained

to lie in a set for which this expression is positive, our recursive esti

mation method may be applied and will be asymptotically efficient. The

table below gives a brief list of inequality constraints whose satisfaction

implies that -(a - 0)' G{a) m(a) is positive. The expressions are given

in terms of the original A, y and co parameters of Eq. (5.1), Aq, Yq>
and a^ denoting the true values of A, y, and co and Aco denoting

co- coQ.

-17-
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No constraint on A co

0 < A < 2AQ 0 < A < 3AQ 0 < A < 6AQ

0.45y0 < Y < 3.2y0 °-56vo < ^ < 3-2^0 °' 13y0 - Y - 3'270

0 < I Aco | < 4y0

0 < A < 2AQ 0 < A < 3AQ 0 < A < 6AQ

0. 435y0 < y < oo 0. 56yQ < Y < oo 0. 7^Yq < Y < oo

0 < | Aco | < 2y0

0 < A < 2AQ 0 <A < 3AQ 0 < A < 6AQ

0. 43y0 < y < oo 0. 56y0 < Y < oo 0. 73yQ < Y < °o

0 < | Aco | < y0

0 < A < 2AQ 0 < A < 3AQ 0 < A < 6AQ

0. 41y0 < y < °° °- 55y0 £ y < °° °- 72Y0 £ Y < oo

0 < | Aco | <(1/2)y0

0 < A < 2AQ 0 < A < 3AQ 0 < A < 6AQ

0. 37y0 < y < oo 0, 51y0 < Y < oo 0. 71yq < Y < oo

From the above table, we can see that the method cannot be applied

with unqualified success to this example; that is, it is not possible to apply

this method when there is no a priori information regarding all three para

meters, A, y» and w' However, from the above table we also note that if

-18-



any one of the three parameters is known to lie within a fairly narrow

interval, a wide latitude of values is allowed for the other two. For

tunately, in many problems of interest there is a priori information

concerning one of the three parameters which allows us to restrict our

search in this manner. Thus, although Condition 7 places definite limits

on the range of application of our recursive estimation method, there

will be problems of interest to which it does apply. For these, its

computational simplicity and asymptotic efficiency make it attractive.
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