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tTHEORY OF A CLASS OF DISCRETE OPTIMAL CONTROL SYSTEMS1

By B. W. Jordan and E. Polak

Department of Electrical Engineering
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Berkeley, California

ABSTRACT

The problem considered in this paper is that of finding optimal

controls for a class of fixed duration processes in systems described

by nonlinear difference equations. The discrete versions of the ad

joint system and the Hamiltonian are used in conjunction with the orig

inal techniques found in the proofs of the Pontryagin Maximum Principle

to derive conditions necessary for a control to be optimal. These neces

sary conditions are shown to be related to the Pontryagin conditions for

continuous systems in the following manner: the requirement of a global

maximum of a Hamiltonian becomes a condition of a local maximum or

of stationarity, while the transversality conditions remain identical.

1. INTRODUCTION

It has been known for some time that the Pontryagin Maximum

Principle for optimal continuous time systems cannot be extended to

discrete time systems, except for a few very special cases (Rozonoer

1959). This is due to the nature of the admissible control variations..

In the continuous time case, in order to find necessary conditions for

optimal controls, it is possible to use variations which range over all

• The research herein reported is made possible through support re
ceived from the Departments of Army, Navy, and Air Force under
grant AF-AFOSR-139-63; and Nasa grant NSG 354.
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admissible values of the control variable. Thus the Maximum Principle

is a global result with respect to the control space. However, in the

discrete time case, only amplitudinally small variations in the control

may be taken and thus the most one can expect is a local condition.

Although no thoroughly exhaustive attempt has been made before to

utilize the Pontryagin techniques in constructing necessary conditions

for discrete time systems, some interesting results have been derived

by L. I. Rozonoer (1959), S. S. L. Chang (1961), and S. Katz (1962).

S. S. L. Chang considered a discretization technique for finding opti

mal solutions to continuous time problems by the use of a digital com

puter. In the process, he obtained a result somewhat analogous to

condition (i) of Theorem 1 of this paper. Since his concern was with the

continuous time problem, he did not consider the discrete time problem

in any detail.

L. I. Rozonoer considered the extension of the Maximum Principle

to systems described by linear difference equations. He obtained a

modified form of the Maximum Principle which gave not only a neces

sary but also a sufficient condition for optimality of the control.

S. Katz showed that a further modification of the Maximum Principle

did give necessary conditions for nonlinear discrete time problems with

no terminal constraints on the state. However, as will be seen from the

work in this paper, Katz's results were somewhat in error and only a

weaker statement than his is possible.

This paper is devoted to exploring the exact nature of the general

results for discrete systems which can be derived by means of techniques

similar to the ones used in the derivation of the Maximum Principle. It

is shown that in this case the Transversality Conditions are identical, but

that the condition of a global maximum of a Hamiltonian must be changed

to that of a local maximum or a stationary value.
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2. FORMULATION OF THE OPTIMAL CONTROL PROBLEM

2.1 System Equations

Consider a system which satisfies the difference equations,

x(k) = x(k-l) +_f [x(k-l), u(k-l)] k = 1,2,. . . . (1)

where

x = col (x,,. . . ,x ) € E (2)
— 1 n

is the state,

u = col (u,,. . . ,u ) € U CE1 (3)
— 1 r

is the control and

f = col (£.,...,£ ) « E" . (4)
— 1 n

.n

.r

U is assumed to be defined so that if u' e U then there exists an

e > 0 and a 6 u such that u' + € 6 u € U. It is also assumed that if
~" 2 I 2 2

u1 + € ' 6 u* € U, u' + € 6 u e U, then u' + \ € » 6 u1 + (l-\)e 6 u € U,

0 < X. < 1. It is also assumed that

f. e C on En x U i = 1, 2, . . . , n . (5)
i

Assume that x(0) is given. Then, if the control sequence

[u(0,K-l)] = [u(0),...,u(K - 1)] (6)

is given, the trajectory

[x(0,K)] 4 [x(0),...,x(K)] (7)

can be computed.
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2. 2 Initial Conditions

Since the difference eqns. (1) do not depend on k, it will be

assumed that the starting time is always at k = 0 and that the

initial value of the state is always given as x(0).

2. 3 Terminal Conditions

Time: It will always be assumed that the number of time steps

over which the system is operated is fixed at K.

State: There are two possibilities which will be considered as

terminal conditions on the state.

i) Assume that a closed, convex set SCE is given. It is

required that at the final time step, K, the state lie in

S, [ i. e. , x(K) € S]. This definition allows S to be a point

in E , a subset of E , or the whole of E . If S is of

the second type (i. e. , a closed, convex subset of E having

more than one point), it will be assumed that it has no sharp

edges, (i. e. , at each point on its boundary surface a unique

tangent plane exists),

ii) It is also possible that S might be an (n - t )-dimensional

manifold described by the I equations

S = {x | g.[x(K)] =0 i = 1,2,... ,i >1} . (8)

In this case, S need not be convex, it will be assumed

however, that the g. have continuous partial derivatives

with respect to the x. and that grad g. £ 0 for any

x € S, i = 1,... , I .

2. 4 Cost Function

Assume that the cost of a transition from the state x(k - 1) to

the state x(k) caused by the control u(k - 1) is given by

-4-



f [x(k - 1), u(k - 1)]. Let x (k) be the cost of operating the system

from time step zero to time step k. Then x (k) is the solution of

the difference equation

x (k) = x (k - 1) + fn[x(k - 1), u(k - 1)] (9)
o o 0 — —

with x (0) = 0. It is assumed that f c C'onE x U.
o 0

That this is a general cost function is demonstrated by S. Katz

(1962).

2. 5 Extended System Equations

Now, for convenience, the system equations will be extended to

include the cost variable by defining the (n + 1)-dimensional vectors

£(k) 4 col [xQ(k), x(k)] (10)

} = col (fQ,^) . (11)

The system equations become

£(k) =x(k - 1) +J[[x(k - 1), u(k - 1)] . (12)

Then given x(0) and [u(0,K-l)]» [x(0,K)] can be determined

and x (K) will represent the cost incurred in operating the system

over the time sequence [0,K].

2. 6 Problem Statement

The fundamental optimal control problem for the systems under

consideration will be denoted by P-l and can be stated as

P-l: Given the positive integer K and the initial state x(0)

for the system described by (12), find the sequence

of controls [u(0, K-l)] so that u(i) € U, i = 0,... , K - 1,

x(K) € S and so that x (K) is minimized.
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Definition: The sequence [u*(0, K - 1)], which minimizes xQ(K),
and satisfies the boundary conditions of P-l will be called the

optimal control for P-l and the corresponding trajectory [x (0,K)J

will be called the optimal trajectory.

3. NECESSARY CONDITIONS FOR AN OPTIMAL SOLUTION

3.1 The Adjoint System

Define the (n + 1) x (n + 1) matrix

A 8i
F(k - 1) = —

8x

and the (n + 1) x r matrix

x(k - 1)
u(k - 1)

-m.
x(k - 1)
u(k - 1)

B(k •
A 9f

-1) =
8̂u

x(k - 1)
u(k - 1)

r8f.n
i

3% x(k - 1)
u(k - 1)

(13)

(14)

Now the adjoint variables are defined as satisfying the following system

of difference equations

p(k - 1) = p(k) + F (k - 1) £(k)

£(k) =col [p^(k), P],(k),. .. ,pn(k)]
(15)

Since this system of equations is homogeneous, all that is needed

to generate the trajectory of the adjoint system is the knowledge of p(K).
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The determination of this vector will be a major consideration of

this work.

8f. [x(k - 1), u(k - 1)]
Notice that 7; — =0, i = 0,1, 2, . . . , n.8xQ (k - 1)

Consequently, p0(k - 1) = pn(k), k = 1, 2, . . . , K.

In other words p is constant for all k.

3. 2 The Hamiltonian

The Hamiltonian is defined as

H[p(k), x(k - 1), u(k - 1)] = <p(k), -f[x(k - 1), u(k - 1)] > . (16)

It is seen that the system eqns. (12) and the adjoint system eqns. (15)

can be written in terms of the Hamiltonian:

X(k) =X(k - 1) + -^ffi- ;
8p(k)

(17)

~T,, ., -T„ . . 8H(k)
p (k - 1) = p (k) + —z

8 x(k - 1)

Now the conditions necessary for the control [u (0,K - 1)] to be opti

mal can be stated.

3. 3 Theorem I

If [u (0,K - 1)] is an optimal control for P-l and [x (0, K)] is the

corresponding optimal trajectory, then there exists a function p (k),

k = 0,1, . . . , K, satisfying (15) such that

i) H[£*(k), x*(k - 1). u*(k - 1)] =<£*(k), J[[x*(k - 1), u*(k - 1)]>
is a local maximum or stationary with respect to

u (k - 1) € U at each time step 1 < k < K .

ii) p*(K)< 0.
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Discussion: This theorem is basic and holds regardless of the ter

minal conditions. In other words, no matter what form S takes,

the conditions of this theorem must be fulfilled. The theorem gives

a test for determining if a control [u(0,K - 1)] can be optimal. This

test is performed by computing [x(0,K)] and [p(0, K)] and inserting

these values into the Hamiltonian. The Hamiltonian is then checked

to see if it is a local maximum or stationary for these values of

x(k - 1), p(k) and u(k - 1) with respect to u(k - 1), for each k,

I < k < K. Also, in a large number of cases, there may be only one

local maximum or stationary point for H[p(k), x(k - 1), u(k - 1)].

Then, using Condition i of Theorem I, u(k - 1) can be found in terms

of x(k - 1) and p(k). The control u(k - 1) can then be eliminated

from the system eqns. (12) and the adjoint system eqns. (15). There

are then (2n + 2) homogeneous equations for which (2n + 2) initial

conditions must be found. There are (n + 1) boundary conditions, the

x(0). Knowledge of the (n + 1) boundary conditions p(K) will give the

solution. The vector p(K) will depend upon the form of the constraint

set and will be discussed.

Theorem I will be proven by examining each type of terminal con

straint in turn and establishing the Transversality Conditions for each

case. These Transversality Conditions are developed in Theorems

II - V. It will be shown that for each type of terminal constraint, the

conditions of Theorem I are necessary.

The basic technique to be used will be to assume that the optimal

control and trajectory are known. The control will then be perturbed

so as to affect the trajectory only slightly. The necessary conditions

which the optimal control must satisfy will then arise from the re

quirement that any admissible perturbed control which satisfies the

terminal constraints must not result in a lower cost.
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The first item, then, to be considered is the effect upon the tra

jectory of small perturbations in the control. Since the value of x(0)

is given, no perturbations of its value need be considered. Only per

turbations in each control vector u(i), i = 0,... ,K - 1, must be

considered. It is at this point that the basic difference between this

discrete time problem and the similar one for continuous time prob

lems occurs. It is required that any perturbation must i) be such

that the perturbed control is admissible, and ii) affect the trajectory

only slightly. In the continuous time problem, the control is assumed

to be measurable. Consequently, the perturbed control can vary from

the original control by large amounts, provided the length of time,

over which the perturbations are large, is small. This allows one to

search out all of the control space at each time and to therefore require

that the Hamiltonian be an absolute maximum at each instant of time.

In the discrete time problem, however, the only perturbations

which have a small effect on the trajectory, are small perturbations.

Consequently, only local conditions can be obtained.

3.4 The Variational Equations

Consider, then, the effect of a perturbation on the control. Assume
ate m0 &

that the optimal control [u (0,K - 1)] and the optimal trajectory [x (0,K)]

are known. Then perturb the control and require that the perturbed con

trol be admissible.
ate

Let [u(0,K - 1)] = [u (0) + c 6 u(0), .. . ,u (K - 1) + e 6u(K - 1)] be

the perturbed control where € > 0 is a small number independent of k.

Then [x(0,K)] = [x*(0), x*(l) +6x(l),.. . , x*(K) + 6x(K)] will be the

perturbed trajectory.

Then

6x(k) =x(k) - x*(k)» k =0,1,.. . ,K . (18)
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Since f € C on En+1 x U, i =0,1,... , n +1 and since 6x(0) =0,
i

where

Let

K-l

6 x(K) = € £ D(i) 6u(i) + o(€)
i=0

D(i) = (1 + F(K - 1))... (1 + F(i + 1)) B(i)

A K_1 n+1
y(K) = ^ D(i) 6 *&) € E£ 'K

i=0

(19)

(20)

(21)

n+1where E^+ is obtained from En by translating the origin of E
to x (K). Define the set

K.
y(K)

K-l
v- ... * /.v u(i) + Su(i) € U

y(K) = 2. DW 6 2iW»
i=0 i = 0,. . . ,K - 1

(227

This is a convex cone and will be called the "cone of attainability" due

to a similar definition by Pontryagin.

It is obvious that f\ is convex since if
XV

and

then

K-l

^(K) = J D(i) 6u\i) €%
i=0

K

~? K_1 2X (K) = I D(i) 6 u (i) €7<
i=0

K

K-l

X^K) +(1 - X) y2(K) = £ DM[ ^(i) +(1 - M6u2(i)] «?C 0<X<1.
i=0
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Notice also that x*(K) € >^ and is the vertex of the cone since for
—~ K „ ~

6u(k)=0,k=0;l,. . . ,K - 1, 6 x(K)s 0 which corresponds to x(K) =x*(K).

Finally notice that y(k) satisfies the difference equation

2(k) =y(k - 1) +F(k - 1) y(k - 1) +B(k - 1) 6u(k - 1) . (23)

3. 5 Case 1: Right End Constrained to Lie on a Smooth Surface

Let the constraint set S be an (n - i )- dimensional manifold

described by

S = [x | g.(x)= 0, j = 1, 2,. . . , I < n]. (24)

Since each g. has continuous first partial derivatives and since

8g./8x ^ 0, i = 1,. . . ,1 for x € S, there is an (n - I )-dimensional

plane, T, tangent to S at each x€ S described by

8g.(x)
T =[x' | <x' - x, 8Jx >=0, j =1, 2,.. . , Jt ]. (25)

Now construct the (n + 1 -i )-dimensional cylinder defined by

S1 =[x x =col (x-.x^xc S], (26)
— — —u —

~* 1 1(see fig. 1). It has been assumed that x*(K) c S . The cylinder S

will have an (n + 1 - i )-dimensional tangent plane at x (K) described

by

T1 =[x | x=col (xQ,x), xc T] . (27)

1 n

Clearly, the projection of T onto E is T, where T is assumed
ate

to be the tangent plane to S at x (K).

Construct the hyperplane C passing through x*(K) perpendi

cular to the x axis.
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C=[x|x0 =x*(K)] . (28)

The hyperplane C will cut T into two semi-infinite planes

T1+ =[£|£€ t! xQ>x*(K)] (29)

T1" =[£ | xe t! xq< x*(K)] (30)

with the common boundary

1° n 1
T sCHt. (31)

C will also cut the cylinder S into two semi-infinite cylinders

S1+ =[x|x* S1, xQ>x*(K)] (32)

S1" =[x|x« S1, xQ<x*(K)] (33)

with the common boundary

sl0= cfls1.

Let j
l^coUe^,... 6n) (34)

be an arbitrary n-dimensional vector lying in T. Let p(K) be a

vector consisting of the last n-components of p(K).

£(K) ^ col [Pl(K),...,pn(K)] . (35)
Then for this case, the following theorem holds:
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Theorem II

Consider the problem P-l when the constraint set S is an
(n - t )-dimensional smooth manifold defined by (30). Then, neces
sary conditions that [u*(0, K - 1)] be an optimal control are

i) The conditions stated in Theorem I.

ii) <p*(K), | >=0
where p(K) was defined in (35) and j, is any vector
lying in T tangent to S at x*(K).

Proof

Since [u (0, K-l)] is an optimal control, it is necessary that
any admissible perturbed control, whose corresponding trajectory
satisfies the terminal conditions, not give a lower cost. For this
requirement to be fulfilled, it is necessary that there exist a hyper- *
plane separating ^ and T*\ This is shown by establishing
Lemma I.

Lemma I

Let [x(0),K)] be the trajectory corresponding to [u(0,K - 1)] and
starting at x(0). Let G be a I <n-dimensional smooth manifold with

n+1an edge, Ge, in E , and let x(K) € G^ Let L be the half-plane
tangent to G at x(K).

If the cones ^R and L, having a common vertex at x(K), are
not separated,then there exists a control [u'(0,K - 1)] with a corres
ponding trajectory [x'(0, K)], starting at x(0), such that £'(K) €G
but x»(K) 4 G .

*~ e

Proof of Lemma I

This lemma can be proven in a manner identical to the proof of
Lemma 10 in L. S. Pontryagin (1962).
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Let us apply this lemma to the proof of Theorem II. It follows

from Lemma I that if the cones Av and T , having the common
M K

vertex x*(K), are not separated, then there exists a control [u'(0,K-l)]

with a corresponding trajectory [x'(0,K)] such that x'(K) lies in S

but not on the edge of S and consequently will satisfy the constraints

and have a lower cost.

Therefore, for [u*(0,K - 1)] and [x*(0,K)] to be optimal, it is

necessary that there exist a hyperplane, call it A, separating *9< and
1_ K

T . Let the (n + 1)-dimensional vector a = col (a , a ,. . . , a ) be the

normal to A. Choose the direction of a so that

<x - x*(K), a > <0 if [x - x*(K)] e 9f , (36)

then

<x-x*(K), a> > 0 if [x-x*(K)] 6 T1" . (37)

~* 1°
Clearly, the hyperplane A contains x (K) and T . Let

§ = col (£..»•••'£ ) be any vector in T. Then £ = col (0, £) will be
1 io n ' I©

parallel to T1 . Since T O A, < a, £> = 0. But £ = 0. There

fore
~ ~ n

<a,£ >= ^ a. g. =0 . (38)
i=l

Since x does not appear in the constraint relation (30), any
ate

point lying on the vector emanating from x (K) and pointing in the

direction r\ = col (-1, 0, 0,. . .,0) belongs to T . Consequently, from

the way a was chosen, it follows that

< a, r\ > > 0 .

But < a, r\ > = -a > 0 and therefore

aQ<0. (39)
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Since y(K) € nv» it follows from (36) that
— K

< a, y(K) > < 0. (40)

Now choose a special perturbation in the control. Let the control be

perturbed at only the vth time step, 0 < v < K - 1. Then

u(k) =u*(k) k =0, ... , v - 1, v +1," ... , K - 1 (41)

•; u(v) =u*(v) + € 6 u(v) (42)

and %h r

6 x(k) = 0, k < v (43)

6x(v +1) =J[£*(v), u*(v) + €6u(v)] - Jjx*(v), u*(v)]. (44)

Let . 8i[x*(v), u*(v)]
y(v + 1) = r 6 u(v). (45)
—x ' 8 u —

Now consider the adjoint system (15)

p(k - 1) =pT(k) + FT(k - 1) p(k) . (46)

Since 6 u(k) = 0 k = v + 1, . . * , K - 1 .

<£(k), y(k) > =<p(k), F(k - 1) y(k - 1) + y(k - 1)>

=<FT(k - 1) p(k), £(k - 1)> +<p(k), y(k - 1)>

= <p(k - 1) - £(k), y(k - 1)> + <p(k), y(k - 1)>

= <p(k - 1), y(k - 1)> . (47)

for k = v + 2, .. . , K.
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Therefore

< p(K), y(K)> = <p(v + 1), y (v + 1)> . (48)

Now let p(K) =a. Then since y(K) € P(K» the necessary condition
(40) becomes

<p (K), y.(K)> < 0. (49)

From (48), (49) becomes,

<piv + 1), y (v + 1) > < 0 (50)

or from (45)

8f[x*(v), u*(v)]
<p(v + 1), 6u(v)> <0. (51)

8 u

Equivalently, it is necessary that H(v + 1) be a local maximum or
ate

stationary with respect to u (v)» Since the choice of v was arbitrary,
ate

a necessary condition that [u (0,K - 1)] be an optimal control is that

H(v) be a local maximum or stationary for 1 < v < K.

This shows that for these terminal conditions, condition (i) of

Theorem I is necessary. Since pft(K) = a < 0 condition (ii) of Theorem I

is necessary. Finally, from (50)

n

<p(K), £> = £ a £ =0 . (52)
i=l

This completes the proof of Theorem II.

3. 6 Case 2: Right End Constrained to Lie at a Point

Next consider the problem when S is a point in E . For this

problem, the following theorem holds.
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Theorem III

Consider the problem P-l when the constraint set S is a point

in En. Then, necessary conditions for [u (0,K - 1)] to be an optimal

control are

i) The conditions stated in Theorem I.

Proof

Since S is a point, S is a line perpendicular to E (i. e. ,

parallel to the x axis) and passing through S. S is the semi-

infinite line consisting of those points in S below or in C. Clearly,

T ~ = S " . It follow from Lemma I that 9f__ and S must be
is. ^

separated by the hyperplane A, with its normal a. As in Theorem II,
lo

one may choose a < 0. However, since T is a point, no trans

versality conditions need be imposed on a. Proceeding as in Theorem

II, it is found by letting p(K) = a that conditions i) and ii) of Theorem

I are necessary for [u (0,K - 1)] to be an optimal control. Q. E. D.

Remark

Note that no conditions are imposed on the values of the last

n-components of p(K).

3. 7 Case 3: Free Right End

Consider the problem where S is the whole space, E . In other

words, S can lie anywhere in E . For this set of terminal conditions

the following theorem holds.

Theorem IVv

Consider the problem P-l when the constraint set S = E . Then,
ate

necessary conditions for [u (0,K - 1)] to be an optimal control are,

i) the conditions stated in Theorem I

ii) p. (K) = 0 i = 1, 2,. . . , n.
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Proof

Clearly, S will be the closed half-space in En consisting of
1°all points lying below or in C Let T be an arbitrary line in C

passing through x*(K) and let T " be the semi-infinite hyperplane
1°consisting of those points lying in T or directly below it. It follows

from Lemma I that T " and %„ must be separated by some hyper-
^ is. «»

plane A with its normal a. It follows from Theorem II that a must
1° 1°be perpendicular to T But T has arbitrary direction in C, con

sequently, a must be orthogonal to any vector in C, i. e. , to C itself.

It can only have the value

£ =col (-1,0,0,... ,0) (53)
and therefore A coincides with C. Proceeding as in Theorem II and

letting p(K) = a , the conditions of Theorem I are shown to be necessary

and in addition the Transversality Conditions ii) of Theorem IV are

shown to be necessary.

3. 8 Case 4: Right End Constrained to Lie in an n-Dimensional

Subset of E

The problems where S is a point in E , a manifold of dimension

n - i < n and the whole of E have been considered. The only problem

left is that where S is an n-dimensional proper subset of E . Assume

that S is closed and convex.

S " will be a semi-infinite cylinder consisting of all those points

in S which lie in or below C. Two possibilities can occur, (see

fig. 5).
~* 1

Case A: x (K) may lie on the surface of S . It will also lie in C. Let
—~—»-——^— ' *** ate 1

T1 be the tangent plane to S at x (K). T will be cut in half by C.

Let T and T " be the upper and lower halves as before with the

common boundary T = C D T . Let h be the normal to T at
*~# 1
x (K) which points away from S

h = col (0,h,,...,h ) . (54)
— In
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Let c be the upward pointing normal to C,

£= col (1,0,..., 0). (55)

Case B: x (K) may lie in the interior of S . It will still lie in C

In this case there will be no concept of a tangent plane and h will be

defined as the zero vector

h = col (0,0,... ,0) . (56)

The vector c will be as in case A .

Then in either case the following theorem holds.

Theorem 5

Consider the problem P-l when the constraint set S is a closed,

convex, n-dimensional subset of E . Then, necessary conditions

for [u*(0,K - 1)] to be an optimal control are,

i) the conditions stated in Theorem I

i) p (K) = Xh + uc

where X, u are nonpositive constants.

Proof

Consider Case B. This situation is identical with that of the free

right end and Theorem IV holds. Since h = 0 in this case

p (K) = uc = col (|i, 0, 0,. . . , 0) . (57)

But from Theorem IV it is seen that u < 0. Therefore Theorem V

is true for Case B.
1°

Consider Case A. Let L be a half-hyperplane having T as an

edge and intersecting S ~. Then it follows from Lemma 1that 5*(
must be separated from L. Therefore, ^yr must be separated

-19-
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from the closed quarter-space, Q, bounded from above by C and

from the side by T ". Let A be the hyperplane which separates

^ from Q and let a be the normal to A which points into Q.

Then - a will lie in the space spanned by h and £ and will lie

between them. Therefore a can be written as a negative linear

combination of h and £ .

a = Xh + u£ X, u < 0 . (58)

Then, proceeding as in Theorem II and letting p (K) = a, the con

ditions of Theorem I are shown to be necessary and in addition the

Transversality Conditions (ii) of Theorem V are shown to be neces

sary.

The conditions of Theorem I have been shown to be necessary for

each terminal constraint under consideration. Therefore, the proof

of Theorem I is completed.

4. CONCLUSIONS

This paper demonstrates the extent to which the techniques used

in the construction of the Maximum Principle can be used to obtain a

related necessary optimality condition for discrete time problems but

which is not necessarily a maximum condition.

It is interesting to see that Rozonoer's assertion, that the "exten

sion of the Maximum Principle to discrete systems is possible, gener

ally speaking, only in the linear case, " is correct and that the corres

ponding necessary conditions for the nonlinear case are, in fact, weaker

than those given by Pontryagin, (i. e. , the Hamiltonian is required to

be only a local maximum or stationary rather than an absolute maximum).

In many systems, however, the Hamiltonian will have only one local

maximum or stationary point and for these problems, the results derived

here are as useful as those derived by Pontryagin.
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Also noteworthy is the fact that Katz's conclusion that the

Hamiltonian must be a local maximum, is not quite complete due to

his neglect of second order terms. Rather, as shown in this paper,

it is only necessary that the Hamiltonian be a local maximum or

stationary.

There is one specific problem in which all the assumptions of

this paper need not be met. In the free right-end case (see Section

3. 7 of this paper) which was considered by Katz, the control con

straint set U need not be restricted as in the other cases. For

this case it is only necessary that for any u' € U, there exist some

e and some 6 u such that u'+efiut U; i. e. , it is not necessary

that the set [6u | u' + € 6 u € U for some €] be convex. The reason

for this is that S " for this case is a whole half space in E and

the separating hyperplane is uniquely defined. Consequently, the

proofs no longer depend on the convexity of /( .

For all cases considered here, it is possible for the control

constraint set to change with the time step k [i. e. , U =U(k)], pro

vided that each of the U(k), k = 0,1,. . . , K - 1, is an admissible con

straint set.

It is hoped that the results presented in this paper will help to

complete the theory of optimal control systems.
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