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ABSTRACT

This paper is devoted to establishing necessary conditions for the

optimal controls in a class of fixed duration asynchronous sampled-data

processes. These conditions apply both to the amplitude of the controls

and the sampling instants. The plants of the systems under consideration

are assumed to be described by nonlinear differential equations which do

not necessarily lead to nonlinear difference equations in a synchronous

sampled-data mode of operation. The techniques used are analogous to

the ones used originally in establishing the Pontryagin Maximum Principle

and the results are similar to the extent that one gets a requirement of a

local maximum or stationarity for a Hamiltonian-like functional, while

the Transversality Conditions remain the same.

1. INTRODUCTION

The original developments of optimal control theory were stim

ulated by the realization that the optimal control for a number of con

tinuous time problems would be bang-bang. The reason for this was that

a relay action controller has two advantages: it is simple and it is most

efficient in controlling large quantities of power. However, it is now

J
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known that for many important problems, the optimal controls are not

bang-bang but complicated time functions.

When the processes are of fixed duration and the continuous time

optimal controls are not bang-bang, it is possible to regain the practical

advantages of relay control by using an asynchronous sampled-date mode

of operation. In this mode of operation, the control is piecewise constant

with the discontinuities occuring nonperiodically.

All previous work concerning the optimal control of discrete time

systems has been concerned with systems described by difference

equations or with sampled-data systems in which the sampling instants

are fixed. (See Refs. 2, 3, 4, 5. )

This paper is devoted to establishing necessary conditions for the

optimal controls in a class of fixed duration asynchronous sampled-data

processes. These conditions apply both to the amplitude of the controls

and the switching instants. The plants of the systems under consideration

are assumed to be described by nonlinear differential equations which do

not necessarily lead to nonlinear1 difference equations in a synchronous

sampled-data mode of operation. The techniques used are analogous to

the ones used originally in establishing the Pontryagin Maximum Principle

and the results are similar to the extent that one gets a requirement of a

local maximum or stationarity for a Hamiltonian like functional, while

the transversality conditions remain the same. Computational aspects of

this problem are dealt with in a separate paper to be published, soon.
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2. FORMULATION OF THE OPTIMAL CONTROL PROBLEM

System Equations: Consider a system which satisfies the differential

equations

•^•x(t)h(t)=f rx(t),u(t)~j (i)

where

x = col (x., ..., x )cE (2)

is the state,

u = coUuj, ..., ur)c(/CEr (3)

is the control and i_ = col (f., . . ., f ). (4)

U is assumed to be defined so that if u'eU then there exists an

e > 0 and a 6u such that u' +€ 6ueU. It is also assumed that if

u'+ e16u1€ U, u» + €26u2e U, then u' + \eldu +(1 - \) €26u2eU, 0<\<1.
It is also assumed that f. e C1 on E x U i = 1, 2, . . ., n.

Assume that the time interval over which the system is to operate

is given as [~t0, tj/\ Assume that there are K-l sampling times in

this interval (i. e., tfl < t. < t- < . . . < t^ . < t,,). Define the sampling

sequence

Define the control sequence

K, K-i 1~ ry h' -" 'k-iJ • (5)

fu(0, K- 1)1 = f~u(0), .. ., u(K - 1)1 . (6)
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The sampling sequence, (4) and the control sequence (5) taken together

define the control to be applied to the system over the time interval

f"tn, tK 1 in the following manner

u(t) = (7)

u(K - 1) tK^ < t < tK

Define the sequence of the values of the state at the times
i

tA, t., . . ., t„ corresponding to the control u(t) defined by (7) as
0 1 xv v

r^to,^] * r^v *{ti]t ••-' ^wi • (8)

The relation between x(L ), x(t i)> and u(k - 1) is

xty =x(tk )+ * fTx(t), u(k - l)]dt (9)

k = 1, 2, . . .,K.

Initial Conditions: It will be assumed that the initial time, t ,

and the initial state, x(tQ), are specified

Terminal Conditions:

Time: The terminal time will be assumed to be fixed at t-,.

State: Two types of terminal state constraints, S, will be considered,

i) Assume that SeE is closed, convex set. This definition allows
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S to be a point in E , a subset of E , or the whole of E .

If S is of the second type (i. e. , a closed, convex subset of

E having more than one point), it will be assumed that it

has no sharp edges (L,e., at each point on its boundary sur

face a unique tangent plane exists).

ii) Assume that S is an (n - £)-dimensional manifold described

by the i equations

S =[x|g.(x)=0 i =1,2, ...,i <n] . (10)

In this case, S need not be convex, it will be assumed

however, that the g. have continuous partial derivatives

with respect to the x. and that grad g. ^ 0 for any

xe-S, i = 1, . . . , i.

Cost Function: Let the cost of a transition from the state

x(t .) to the state x(t ) caused by the control u(k - 1) be given by

ii*: fQ [x(t), u(k - 1)] dt, where fA€C' on Enx {J. Let x0^) be
the cost of operating the system from time tA to time L . Then

xA(t ) is the solution of the differential equation

xQ(t) = fQ [x(t)»u(t)] (11)

with xA(t0) = 0. Also, the relation between xA(t ), xA(t ,), x(t ,) and

u(k - 1) is

x0(tk) =X0(tk-1)+ J f0 ["^(t)' ^(k "X)l d^ (12)

Extended System Equations: Now, for convenience, the system

equations will be extended to include the cost variable by defining the

(n + l)-dimensional vectors
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xf= col (x_, x) (13)

?*col(fA,f). (14)

From (9) and (12), the equations of the extended system are found to be

dt (15)^(tk>= ^W+ J i [-{th -(k "^

for k =1,2,..., K, with x(tA) = col [0, x(tQ)] . Then, given

[u(0, K- 1)] and [^ K1] , [x(tQ K)j can be computed and x^^)
will be the cost incurred in operating the system over the time interval

Problem Statement: The optimal control problem for the systems

under consideration can be stated as follows.

(P): Given the initial time t the final time U,, the initial state x(tA)

and the terminal state constraints S for the system described by (15), find

the control sequence [u(0, K- 1)], u(k)e U, k = 0, 1, . . . , K- 1, and the
sampling sequence [t, K-1] > tQ < ^ < . . . < tR._1 < tR, which transfers

the state from the given initial point, x(tQ), at tA, to a point x(tj,)e S at

U,, such that x-(tK) is minimized.

Definition: The control sequence £u (0, K - 1)1 and the sampling

sequence (_t, K il which minimize xQ(tK) and satisfy the boundary

conditions of (P) will be called the optimal control sequence and the

optimal sampling sequence, respectively, for (P) and the corresponding

trajectory [_x (tA K)j will be called the optimal trajectory.
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3. NECESSARY CONDITIONS FOR AN OPTIMAL SOLUTION

The Adjoint System: Let p be an (n + l)-dimensional vector

satisfying the differential equation

8f |x(t), u(t)]
«t> = - *

8*
£(t) (16)

* El

where A is the transpose of A. The vector pi(t) will be called the

adjoint variable.

Since this system of equations is homogeneous, all that is needed to

generate the trajectory of the adjoint system is the knowledge of p(tj^)«

The determination of this vector will be a major consideration of this work.
9f fx(t), u(t)]

Notice that -± = 0, i = 0, 1, 2, . . . , n.
8xA

Consequently, pA = 0.

In other words pn is constant for all t.

The Hamiltonian: Let the "Hamiltonian, " H, be defined by

Hf]^), x(tkl), u(k-l)l =<§!t£% J"^ l.fx(r), u(k -l)JdT>. (17)

Now the conditions necessary for a control sequence [ u (0, K - 1)J and

a sampling sequence \t, „ ,J to be optimal are stated in Theorem 1.

Theorem 1. If f"u*(0, K - 1)1 is an optimal control sequence,

t.* K J an optimal sampling sequence, and |x (tA K) the corresponding

optimal trajectory for (P), then there exists a function p (t), tA < t < t„

satisfying (16) such that

i) Hfg*(t*), x^t*^), 2*l*'l>] =<£*«£>' *Jk l[k*(T>> u*(k-lf|dT>

-7-



is a local maximum or stationary with respect to u (k - l)gU

for each k, 1 < k < K.

ii><-x.--^-

k = 1, . . ., K - 1

,«. vvvv„ —, _ - — -

£*(^)> l[x*(t*), u*(k)]> =<E*(tJ). I[**($' u*(k -lj|

iii) Po(tK)<o.

Discussion: This theorem is basic and holds regardless of the

form of the terminal constraint set S.

The problem (P) is a two point boundary value problem. There

are (2n +2+ rK +K- 1) unknowns in the problem; the values of x(tQ R) I,

fj?(tA Kf|, [u(0, K- 1)1 and [t^ K_l . The given initial conditions on the
state, x(tA), eliminate (n + 1) unknowns. Condition (i) of Theorem 1

eliminates (rK) unknowns and condition (ii) eliminates (K - 1) unknowns.

There remain (n + 1) unknowns. Knowledge of the value of pUK) will

eliminate these unknowns. The value of p(tK) will be found by means of

the Transversality Conditions which do depend upon the form of the terminal

constraint set, S.

Theorem 1 will be proven by examining each type of terminal contraint

in turn and establishing the Transversality Conditions for each case. These

Transversality Conditions are developed in Theorems 2-5. It will be shown

that for each type of terminal constraint, the conditions of Theorem 1 are

necessary.

The basic technique to be used will be to assume that the optimal

control and trajectory are known. The control will then be perturbed so as

to affect the trajectory only slightly. The necessary conditions which the

optimal control must satisfy will then arise from the realization that any
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admissible perturbed control which satisfies the terminal constraints

must not result in a lower cost.

The first item, then, to be considered is the effect upon the

trajectory of small perturbations in the control. Since the value of

x\tn) is given, no perturbations of its value need be considered. Only

perturbations in each control vector u(k), i = 0, ...» K - 1, and each

sampling time t., i = 1, ..., K - 1, must be considered.. It is at this

point that the basic difference between this discrete time problem and

the similar one for continuous time problems occurs. It is required

that any perturbation must i) be such that the perturbed control is

admissible, and ii) affect the trajectory only slightly. In the con

tinuous time problem, the control is only assumed to be measurable.

Consequently, the perturbed control can vary from the original control

by large amounts, provided the length of time, over which the per

turbations are large, is small. This allows one to search out all of

the control space at each time and to therefore require that the

Hamiltonian be an absolute maximum at each instant of time.

In the discrete time problem, however, the only perturbations

which have a small effect on the trajectory are small perturbations.

Consequently, only local conditions can be obtained.

Variation of the Control, Sampling Times, and the Trajectory:

Assume that the optimal control sequence [u (0, K - 1)1 and the optimal

sampling sequence t, „ , with the corresponding optimal trajectory

x*(tA K) exist and are known. Suppose that a perturbed control

u(0, K - 1)J , and a perturbed sampling sequence L -^ .1 are defined as.
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u(k) = u* (k) + €6u(k) k = 0, . . ., K - 1 (18)

*k = *k +€6tk k= lf •••' K " 1 (19)

where € > 0 is a real number, independent of k and small. 6u(k) is an

r-dimensional vector It must be chosen so that u(k)e U for some

€ > 0, i = 0, . . . , K - 1.

6t, is chosen in the following manner:

1) If L ^ t. j = 1, 2, . . ., K - 1, j ± k, then 6t is arbitrary

2) If t£= tf j =1, 2, . . ., K- 1, choose 6^ =6t..

Then for € sufficiently small, L +c ot e (t«, tK ), k = 1, 2, . . ., K - 1.

Furthermore, € will be chosen small enough that if tj_.< t., t, +€Ot <

tf +€6t., j, k= 1, 2, ..., K - 1.

These perturbed sequences are applied to the system and result

in a perturbed trajectory I x (tn __M . Define

Then,

where

£(tK) = Z «t. t.+ ) I «t-+1. x) —i_ : dT6u(i)
1=0 t. 9u

K-l

+ ]E <«KtK,t.)|?|x*($, u*(i-l)/ - I[x*(t*), u*(i)]|6tr (22)

gt'o.KJ

6x(tk) £ 3^) - x*(tj*) , k=0,1, . . . ,K. (.20)

6x(tK)=€y(tK)+^(€) (21)

v * r'i+i * *'[**it)> ^(i)]
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and $(t, t) is the state transition matrix for the linear variational

equations associated with (1) for the optimal trajectory. Let

y^t-JcE^"1"1 , where E?+l is obtained from En+1 by translating the
. . - T^n+l , /v*/. \origin of E to x (tR).

Define the set

K =jry(tK)|l(tK) satisfies (22)j . (23)

^*/"X L is a convex cone with its vertex at x^t^) and will be calledAtK - K
the "cone of attainability" due to a similar definition by Pontryagin.

Notice that x*(t„)€ V and is the vertex of the cone since for

6u(k) =0, k = 0, 1,. .., K - 1 and 6^ = 0, k = 1, 2, . .., K - 1,

6x(tK) = 0 which corresponds to x(U,) =x (tK). Also notice that

for t€ ft0, tK"j , yi[t) will satisfy the linear variational differential

equations of (1) about the optimal trajectory,

afVxIt), ult)] ^ affxlt), u^t)]
^(t) =-Z^_ =_J ?(t) + _=-*= =—± 6u(t) . (24)

9x 9u

Case 1: Right End Constrained to Lie on a Smooth Surface: Let

the constraint set S be an (n - i)-dimensional manifold described by

S =[x | g.(x) =0, j =1, 2,. .., i <n] .

Since each g. has continuous first partial derivatives and since

(B g-/gx) ^ 0, i = 1, ..., I for xeS, there is an (n - 4)-dimensional plane,

T, tangent to S at each xeS described by

(25)

T ={x' |<x» - x, [O gj(x)/8 x] >=0, j =1, 2, . . . ,i} . (26)
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Now construct the (n + 1 - i)-dimensional cylinder defined by

S1 =[x | x=col (xQ,x), x« S] (27)
(see Fig. 1). It has been assumed that x (tjr)* S . S will have an

(n + 1 - i)-dimensional tanjent plane at x (t-_) described by

T1 =[x | x*col (xA, x), x€T*] (28)
where T* is the tangent plane fo'S at x (tR). Clearly, the projection

of T1 onto En isT*.

Construct the hyperplane C passing through x (tK) perpendicular

c =[b i xo ="cM • (29)

to the xQ axis.

C will cut T into two semi-infinite planes

T1+ =[2 |%€T1, xQ >x*(t^] (30)

T1" =[2 | xeT1, xQ <x*^)] (31)

with the common boundary

1° 1T1 =CDT , (32)

C will also cut the cylinder S into two semi-infinite cylinders

S1+ =g|geS1, x0>x*(tK)] (33)

S^^glg.S1, x0<x*(tK)] (34)
with the common boundary

1° 1S = C /IS1 . (35)

-12-



Let £ ~ col (£,, £?, ... i ) vbe an arbitrary n-dimensional

vector lying in T*. Let pfW) be a vector consisting of the last

n-components of p(tj^)

£(tK>= ^[^•k1 ' pn(tK,l • (36)
Then for this case, the following theorem holds;

Theorem 2: Consider the problem (P) when the constraint set S

is an (n - i)-dimensional smooth manifold defined by (25). Then,

necessary conditions that j~u (0, K- 1)] be an optimal control sequence

and ft, K J be an optimal sampling sequence are

i) The conditions stated in Theorem 1,

ii) <£*(tK), ^>= 0.
Proof: Since fu.*(0, K - 1)1 is an optimal control sequence and

ft, K "1 an optimal sampling sequence, it is necessary that any

admissible perturbed control sequence and sampling sequence, whose

corresponding trajectory satisfies the terminal conditions, not give a

lower cost. For this requirement to be fulfilled, it is necessary that

there exist a hyperplane separating *V and T '. This is shown by
^K

establishing Lemma 1.

Lemma 1: Let [x(tQ R)] be the trajectory starting from x(tA),

and corresponding to the control sequence [u(0, K - 1)] and the sampling

sequence £t, „ T1 . Let G be a g < n-dimensional smooth manifold

with an edge, G , in En+ . Let L be the half-plane tangent to G at

x(tR).

If the cones, °U . and L, having a common vertex at xftjJ,
K

are not separated, then there exists a control sequence [uf(0» K - 1)]

-13-



and a sampling sequence £tJ K_il with a corresponding trajectory
r£'(t'o K)], starting from £(tA) such that x'^cG but x't^W Ge .

Proof of Lemma 1: The proof of this lemma is identical with the

one given for Lemma 10 in Ref. 1.

Let us apply this lemma to the proof of Theorem 2. It follows

from Lemma 1that if the cones YtR and T ", having the common
vertex x*^), are not separated, then there exists a control sequence

— K

[u'(0, K - 1)1 and a sampling sequence [Vj K_J with a corresponding

trajectory [ '̂(tA K)] such that x'(tj^ lies in S' but not on the edge
of S1" and consequently will satisfy the constraints and have a lower

cost.

Therefore, for [u*(0, K- 1)] , [t*f K-1] and [* ^O.K*] t0 be
optimal, it is necessary that there exist a hyperplane, call it A,

separating % and T ". Let the (n +l)-dimensional vector
K

a = col (aft, a , . . ., a .) be the normal to A. Choose the directionl(), &1, . . ., «.n+1.

of a so that

<x-^*(tK), a ><0ifx-S*(tK)€ \ (37)
K

then

' V- ^ 'lK<x-x*(t ), a>>0ifx-^*(tK) € T1" . (38)

.1°Clearly, the hyperplane A contains x (tR) and T . Let

£ = col (£., . . . , £ ) be any vector in T . Then £ = col (0, £) will
~" ,o ,o „
be parallel to T . Since T CA, < a, £ > = 0. But £Q = 0.

Therefore n

<a, £> = I aj -0 . (39)
" " i=l x K
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Since xn does not appear in the constraint relation (25), any
0

'V5^,point lying on the vector emanating from x (tK) and pointing in the

direction tj = col (-1, 0, 0, ... 0) belongs to T . Consequently, from

the way a was chosen, it follows that

< a, tJ > > 0.

But < a, j] > - -a > 0

and therefore

ao<°-

Since y(tv) € ^\tv, it follows from the necessary condition (37)
— is. K

that

<a, y(tK)><

Let

P (tR) = a

Then the necessary condition (41) becomes

<P*(tK), y(tK)><0 .

Now choose a special perturbation in the optimal control. Assume

that the optimal control sequence or the optimal sampling sequence

is perturbed at only one value; i. e.,

either

u(t) =

u*(0) fc0 < fc < fci

u%-2) t;.2<t<tj-i
u*(v - i)+€6u(v-i) r_L< t< t*
u*(v) t* < t < t* .
— V — v+1

*>ulK - 1) 'k-i* fc- 4c

-15-
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or

u(t) = <

Then

*,u*(0)

u*(v - 2)

u*(v-l)

u*(v)

u*(K - 1)

tQ < t < t.

t* < t < t* .
v-2 — v-1

t* < t < t* + c6t
v-1 — V V

t* +€& < t < t*
v v — v-H

tK-l<t<tK

.-V/.s}:* _ ^/.*\ _6x(t£) = y(t£) =0 for k = 0,1, . . ., v-1 .

Since 6u(t) =0, t < t < t^., it is seen from (lo) and (24) that

d ^ ^*/i.\ -v f\J*Fi-gp <£*(t), y(t) > = < jflt), W) > + <£ (t), y (t) > = 0

The necessary condition (43) becomes

<p1tK), |(tK) >=<£*(t*)> y(t*) >< 0 .

If the optimal control sequence was perturbed as in (44),

"•**-< / V «(t*.T)y<9
8f [x (t), u*(v-1)]

v-1
8u

I 6udx I 6u( v - 1)

Then (48) becomes

< £*<'*>
v-1

.*•«Kt*, T)
af [x(t), u*(v - D]

dT > 6u(v - 1) >
du

(45)

(46)

(47)

(48)

(49)

= < Vu H^*(t*),x1t*.x), u*(v -1)1 ,6ju(v -1) ><0.(50)

-16-



Equivalently, H(~^ (t ), x*(t .), u*(v - lj] must be a local maximum

or stationary with respect to u (v - l)e XJ, v = 1, 2,..., K, and

condition (i) of Theorem 1 is proven for this terminal constraint.

If the optimal control were perturbed as in (45),

$0 =t [i*(t*). u*(v -D] - i [x*(t*)« u*(v)]j6tv . (51)
Then from (48),

<£*('*>• h O*<'*>• i*<v -lfl - t [5*<0' -S*(,,)J }6tv >^ ° • <52)
But 6t can be positive or negative hence (52) is satisfied only when

<£*<*> I [3E*(t*)> H*(v - l)] >- <£*(t*), £ [x*(t*), u*(v) ] >

v= 1,2, ..., K - 1. (53)

Condition (ii) of Theorem 1 is proven. Recall that £ (U,) = a ,

aA < 0 and ^ . . a. £. = 0. Consequently, Condition (ii) of Theorem 1

and Condition (ii) of Theorem H, are proven. This completes the proof

of Theorem 2.

Case 2: Right End Constrained to Lie at a Point: Next, consider

the problem when S is a point in E . For this case, the following

Theorem holds.

Theorem 3: Consider the problem (P) when the constraint set S

is a point in E . Then, necessary conditions for fu (0, K - 1)1 and

[~L j_ - "1 to be an optimal control sequence and an optimal sampling

sequence, respectively, are the conditions stated in Theorem 1.

Proof: (See Fig. 2.) Since S is a point, S is a line perpendicular

n 1

to E (i. e., parallel to the xA axis) and passing through S. S ~ is the
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semi-infinite line consisting of those points in S which are in or

below C. Clearly, T =S # it follows from Lemma 1that f^ t
K

and S ~ must be separated by a hyperplane A, with its normal a .

1°
As in Theorem 2, one may choose aA < 0. However, since T is

a point, no transversality conditions are imposed on a. Proceeding

as in Theorem 2, it is found by letting j> (tr,) = S that conditions (i)

u (0, K - 1)J to be

an optimal control sequence andTt, K ,"1 to be an optimal sampling

sequence. This completes the proof of Theorem 3«

Case 3: Free Right End: Consider the problem where S is

the whole space E . For these terminal conditions thefollowing

theorem holds.

Theorem 4: Consider the problem (P) when the constraint set

S =E . Then, necessary conditions for [~u (0, K - 1)J and [_t, v ]J

to be an optimal control sequence and an optimal sampling sequence,

respectively are,

i) The conditions stated in Theorem 1

ii) p i fcjj) = 0 i = 1, 2, .. ., n.

Proof: (See Fig. 3.) Clearly, S " will be the closed half-space

n+1 1°in E consisting of all points lying below or in C. Let T be an

rsjt 1-arbitrary line in C passing through x (t^.) and let T be the
1°

semi-infinite hyperplane consisting of those points lying in T or

directly below it. It follows from Lemma 1 that T " and/1^ must
K

be separated by some hyperplane A with its normal a . It follows

1° 1°
from Theorem 2 that 'a must be perpendicular to T . But T has
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arbitrary direction in C, consequently, _a must be orthogonal to

any vector in C, i. e. , to C itself. It can only have the value

a= col (-1, 0, 0, ...,0) (54)

and therefore A coincides with C. Proceeding as in Theorem 2

and letting p (tK) = a, the conditions of Theorem 1 are shown to

be necessary and in addition the Transversality Conditions (ii) of

Theorem 4 are shown to be necessary. This completes the proof

of Theorem 4.

Case 4: Right End Constrained to Lie in an n-Dimensional

Subset of E : The problems where S is a point in E , a manifold

of dimension n -i < n and the whole of E have been considered.

The only problem left is that where S is an n-dimensional proper

subset of E . Assume that S is closed and convex.

S will be a semi-infinite cylinder consisting of all those

points in S which lie in or below C. Two possibilities can occur.

(See Fig. 5. )

Ajff- 1
Case A: x (t-,) may lie on the surface of S . It will also lie

1 1*1in C. Let T be the tangent plane to S at x (t„). T will be cut

in half by C. Let T and T be the upper and lower halves as
,o ,
1 /~\ 1 ***

before with the common boundary T = C (IT . Let h be the

1 /»/* 1
normal to T at x (L) which points away from S

%= col(0,hr ...,hn) . (55)

Let c be the upward pointing normal to C, £ = col (1, 0, ... , 0). (56)
A/* 1Case B: x^t^) may lie interior to S . It will still lie in C.

————— — j^

In this case a tangent plane cannot be defined and h will be defined

-19-



as the zero vector

h= col (0,0,..., 0) (57)

c will be as in case A.

Then in either case the following theorem holds.

Theorem 5: Consider the problem (P) when the constraint

set S is a closed, convex, n-dimensional proper subset of E .

Then, necessary conditions for |~u (0, K - 1)J and (t. „ ,) to

be an optimal control sequence and an optimal sampling sequence,

respectively, are,

i) The conditions stated in Theorem 1,

ii) j> (t^) = Xh + u£ where X, ji are nonpositive constants.

Proof: (See Fig. 4. ) Consider Case B. This situation is

identical with that of the free right end and Theorem 4 holds. Since

h = 0 in this case

P*(tK) =H£ =col (u, 0, 0, . . . , 0) . (53)

But from Theorem 4 it is seen that u < 0. Therefore Theorem 5 is

true for Case B.

1°
Consider Case A. Let L be a half-hyperplane having T

as an edge and intersecting S . Then it follows from Lemma 1

that f\ . must be separated from L. Therefore, ./(. must be
K K

separated from the closed quarter-space , Q, bounded from above

by C and from the side by T . Let A be the hyperplane which

separates rC^ from Q and let a be the normal to A which points

into Q. Then -a will lie in the space spanned by h and c and

will lie between them. Therefore, Ii can be written as a negative
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linear combination of h and c .

/X"

a = \h + ji£ X, u< 0. (59)

Then,proceeding as in Theorem 2 and letting p (tK) = a , the

conditions of Theorem 1 as well as the Transversality Conditions

(ii) of Theorem 5 are shown to be necessary.

The conditions of Theorem 1 have been shown to be necessary for

each terminal constraint under consideration. Therefore, the proof

of Theorem 1 is completed.

4. CONCLUSIONS

Although all the results in this paper were developed for sampled-

data systems in which one could choose the sampling instants, most

of them also remain valid when the sampling sequence (t. K .) is

fixed. For this case, condition (ii) of Theorem 1 no longer applies

but conditions (i) and (iii) of Theorem 1 and the Transversality

Conditions stated in Theorems 2 to 5 are still necessary.

There is one particular problem in which some of the restrictions

on the control constraint set may be relaxed. For the free right-end

case it is only necessary that for any u1 € U, there exist some € and

some 6 u such that u' + €6u€ U; i. e., it is not necessary that the

set (6u | u'+ e6u€ U for some €) be convex. The reason for this is
1 — n+1

that S " for this case is a whole half space in E and the separating

hyperplane is uniquely defined. Consequently, the proofs no longer

depend on the convexity of K.
K
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For all cases considered here, it is possible for the control

constraint set to change with-the. time step k Ii. e., U =U(k)J ,

provided that each of the U(k), k = 0,1, .. ., K - 1, is an admissible

constraint set.

It is hoped that the results of this paper will be useful in developing

optimal control systems which are more readily engineered than those

operating.in a continuous time. mode.
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Fig. 1. Illustration for Theorem 2.
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Fig. 2. Illustration for Proof of Theorem 3.
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Fig. 3. Illustration for the Proof of Theorem 4.
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Fig. 4. Illustration for the Proof of Theorem 5.

-27-


	Copyright notice 1964
	ERL-49

