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ABSTRACT

The admittance function for an insulating crystal with mono-

energetic traps subject to space-charge-limited electron injection
is considered. Frequency limitations imposed by the trap-emptying
sequence are shown to result in frequency-dependent conductance
and capacitive susceptance values. An explicit solution for the ad
mittance variation is not possible, but the results obtained from a
computer solution to the representative equations are given. Two
distinct physical situations are shown to apply, depending on the
frequency range investigated.

Application of the theoretical analysis presented here should
permit the use of comparatively easy and accurate measuring tech
niques (ac admittance bridge measurements) to obtain the attempt-
to-escape frequency for monoenergetlc trapping centers. Observa
tion of the admittance variation derived here would confirm the trap-

influenced, space-charge-limlted current theory of Rose.

*Thls research was supported by the Electronic Technology Laboratory,
Aeronautical Systems Division, Wright-Patter son Air Force Base under
contract No. AF 33(616)-7553.



INTRODUCTION

The theory of the effects of volume-distributed trapping centers

upon the electronic properties of single-crystal insulators, as pro

posed by Rose, has been successful in explaining much experimental
2-3

data. Some authors have, however, disagreed over the applicability
4

of the physical model employed by Rose, and others have had only
5

partial success in using the theory to explain their measurements.

Basically, the theory proposed by Rose states that trapping centers

distributed uniformly in the insulator bulk may exist in various energetic

configurations, both discrete and distributed. As a consequency, the

volt-ampere behavior may vary widely among crystals of the same materi

al, dependent upon the position of the interior Fermi level with respect to

these trapping centers.

Under the assumptions of Rose's theory, ac bridge measurements of

the admittance of thin single crystals should show a frequency-sensitive

behavior which would be indicative of fundamental properties of the trap

ping states. This frequency dependence comes about due to the rate limita

tions of trap-filling and emptying. Actually, the measured admittance of

crystals subject to charge injection and having trapping states is a function

of three rate processes. First, there is the rate of charge transfer at the

contact. Second, there is the transport rate for electrons either from the

contact to the trapping site, or to the collecting electrode. Finally, there

is the rate of emission and capture at the trapping site.

The first rate process has a counterpart in vacuum-tube theory,

emission from the contact leading to the Richardson equation. Likewise,

for vacuum tubes, transit time from emitter to collector results in the high-

frequency admittance variations given by the Llewellyn-Peterson analysis.

The effects of transit time in solids carrying space-charge-limited currents
7

has been considered by Brojdo. The third rate process mentioned above

is, however, unique to solids because it concerns the interchange between

free and immobile electron states in the space-charge region. For typical

insulating crystals subject to charge injection this interchange between the



conduction band and the trapping states is very likely to be the lowest

limiting rate process, and therefore to be the cause of a detectable ac

impedance variation in the crystal. When this occurs, ac bridge mea

surements can be used to provide information about fundamental prop

erties of the trapping states.

ANALYSIS

The following analysis will calculate the expected variation in

admittance due to electron trapping under the assumption that contact

and transit-time limitations occur at higher frequencies than does the

trapping-rate limitation. Calculations are simplest in the case that a

voltage-independent Boltzmann factor, designated 6 by most authors,

relates free and trapped charge in the crystal at thermal equilibrium.

Under this condition, the volt-ampere characteristic, potential profile

and current-voltage law are modified from the trap-free case only by

the factor 0 appearing in either numerator or denominator. The

frequent observation of square-law currents in insulators is usually

interpreted to imply the existence of this condition, which is postulated

for the following analysis. Hence, the contacts are taken to be instan

taneously capable of space-charge-limited emission of electrons into

the crystal and subsequent instantaneous transfer of these electrons

either to the trapping sites or to the collecting electrode is assumed.

In addition to a dc bias of magnitude V there is postulated an ac driv

ing function of radian frequency co and magnitude V , small enough to

ensure continuous charge injection from a given contact. Then, one can

write:

Qi =Re [C(VQ +VmeJwt)] . (1)

In Eq. (1), the real part of Q. is the injected charge and C is the

geometric capacitance. Consideration of the spatial distribution of
Q

electrons from the space-charge-limited current analysis shows that

in the dc case C is given by (3/2) C where C = A€€ /a is the elec-
c CO

trode capacitance. The crystal is assumed to have thickness a, and

cross-sectional area A.

-2-



If the crystal has a very high resistivity without any charge

injection, the average values (over the length of the crystal) for the

free- and trapped-charge densities will be the real components of the

solutions to:

eaA(n + n.)= C(V +V eJwt) . (2)
torn' v '

It is convenient to rewrite Eq. (2) in the form

n = K(V + V ejwt) - n. (3)
o m ' t v '

where n and n denote respectively average values of the free- and

trapped-charge densities over the crystal length and K = C/eaA.

For trapping centers more than a few kT above the steady-state

Fermi level, the rate equation for the trapped-charge density n is

given by the difference between the rates of filling and emptying, and is
9

easily derived to be of the form:

dnt - -= -(n - Yn)ve (4)
dt

where n is the trapped-charge density, n is the free-charge density,

v is the probability-of-escape frequency for a trapping center, and

v is the equilibrium ratio between trapped and free charge.

If a thermal equilibrium prevails between the conduction-band and

trapping states, then y will be 9~ , the reciprocal of the Boltzmann

factor which specifies the ratio of the populations in the conduction band

and trapping levels. In most cases of interest in which appreciable

space charge is injected into crystals, y will be much greater than
unity.

The probability-of-escape frequency v may be expressed in

terms of fundamental parameters, provided that it describes a thermal

equilibrium situation for shallow trapping levels. In this case, it can

be shown that v is given by:
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ve = Nc v St exp [ -(Wc - Wt)/kT] (5)

where N is the effective density of conduction-band states, v is the
C 7electron thermal velocity (10 cm/sec at 300°K), S is the capture

cross-section of an empty trap for a conduction-band electron, and

(W - W ) is the trap-depth below the conduction band.

The use of Eq. (3) in Eq. (4) leads to the form:

dn .

— = -[5 - YK(V + V eJC° ) + y nJ v (6)
t'o m ,tJe

dt

Eq. (6) is recognized as describing the charge storage on a capacitor

in a simple voltage-source-driven RC circuit, provided y v is

analogous to the circuit time constant, and the voltage source is pro

portional to K(V + V e^ ). Thus, the steady-state solution to the
differential equation is familiar. It will be convenient to express this

result in terms of complex numbers which will be signified by hats over

the variables and accompanied by reference angles. The complex

angles denote phase differences from a reference vector as is done con-

veniently in ac circuit analysis. With the voltage V equal to V L— 0

as the reference, and y v represented by the reciprocal time constant
-1 e

<. , the solution to Eq. (5) is the real part of:

_ yk / vmbh
5*=— (V°V^T^' (7)

with i^l = tan~ (cot) and t = (yv^)~ . Hence, from Eq. (1), the solution
for n is:

n =
K

y +1

e1

A

V
m m

V y V co t lfL~
V +

° /i , 2 2. /! , 2 2\l/2(1 + co t ) (1 + to t ) '
(8)

where <p^ = tan (cot) . At this point, a further physical restriction

becomes evident. This restriction is the fact that the free-electron

-4-



density n is constrained to be positive. The result obtained in Eq. (8)

is not constrained, since the magnitude of the third term becomes com

parable to the magnitude of the second term as co approaches

co = (y t) , and the third term becomes comparable to the first term
-1as co approaches co, = (V /V )(y r)" . An exact expression for the

frequency at which n, as given in Eq. (8), may become negative can

be derived. The frequency at which this can occur, and therefore at

which Eqs. (7) and (8) cease to be valid will be between co and co,,
a b

and will approach co, as the ratio V /V becomes large. Hence at
b o m 6

frequencies roughly above co,, the physical treatment of the problem

must be modified to include the constraint of a positive value for n .

Because of this constraint, the trapping and trap-emptying sequence

which does take place above co, is asymmetric.

The physical result of this asymmetry will be a dc buildup in the

value of n . When the net voltage applied to the crystal favors electron

injection, the conduction band becomes flooded with electrons, and trap

filling takes place at a very rapid rate because thermal equilibrium con

ditions require that n greatly exceed n. When the net voltage applied

to the crystal favors charge extraction, the conduction band is immediate

ly emptied and the trap density decays with the characteristic time con

stant of the trapping sites. Instead of the simple RC equivalent circuit

which was the analogue to the low frequency situation, the analogue cir

cuit now becomes the asymmetric capacitor-changing circuit shown in

Fig. 1. The time constant R.C in the circuit of Fig. 1 represents the

characteristic trap-filling time, while R?C in the same circuit repre

sents the trap-emptying time. The trap density n is analogous to the

capacitor voltage in the circuit of Fig. 1.

If y (tne ratio of trapped to free charge at equilibrium) is large,

it is apparent from Eq. (2) that trap filling will take place at a much

faster rate than will trap emptying (R,C < < R^C in Fig. 1). A plot of
the average trapped-charge density through one cycle of applied voltage

under this condition is given in Fig. 2. The trap occupancy is capable

of following the applied voltage through a complex angle <p, = cot,, which
-1-1is given by the expression <p. = tan (cot) .
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This result is most easily visualized by considering the complex angle

at which the diode opens in the analogue circuit of Fig. 1. The traps

then decay exponentially (solution to Eq. (2) with n = 0) until free-

electron injection occurs again at cot? = <py- The injected free charge

after this time is assumed to fill the traps immediately. The equations

governing the trapped-charge density through one cycle of q> = cot under

these conditions are:

nt =

— v K An, = y ^ (V + V )
t , , v o m

y + 1

yK
V COT "I

V + ™-
o - • 2 7x1/2y + 1 [_ (1 +w* rcY

0 <cot <<p, I

<?2 < cot <2tt

<P - <P

(9)

exp (- ) 00, < COT <&-,
COT ' *1 ^2

(10)

where (p, = tan (cot) , and <p2 is the solution to the equation:

VVm +(1+02t2)1/2
co T exp (-<p2/cot)

V

V
»— m

+ cos q>. (11)

The solution for n in Eq. (9) applies provided co > co, = (V /yV ).

If this inequality is not true, then the solution of Eq. (7) is applicable.

Because y in real crystals has turned out to be of the order of 1000
2 |

or greater, the frequency dependence of n embodied in Eq. (9) is,

therefore, the one considered in the following section in which ad

mittance variation is discussed.
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ADMITTANCE VARIATION

The frequency dependence for the trapped-charge density as
considered here will result in a frequency dependence for the admit
tance function which characterizes the crystal. At all frequencies,
the equivalent admittance to the crystal will consist of a parallel con
ductance and a capacitive susceptance. If measured on a frequency-
variable bridge circuit, the equivalent capacitance will decrease from
its low-frequency value of 3/2 Cq (where Ce is the capacitance of a
parallel-plate capacitor of equal dimensions) to Ce. This relaxation
corresponds to the difference between the modulation of interior charge
by the applied voltage which occurs at low frequencies and the modula
tion of charge stored on the electrodes, which occurs at high frequencies.
The frequency dependence for this capacitance relaxation will, there
fore, be the same as the frequency dependence of the Fourier component
of nt which is in phase with the applied voltage.

Fig. 3 is a plot of the in-phase component of n vs frequency,
normalized to the frequency represented by the reciprocal-relaxation
time t . The curves in Fig. 3 are drawn for five values of
P=Vo/Vm' the dc to ac voltage ratio. The dependence of p for the
relaxation phenomenon apparent in Fig. 3occurs because the trap-
emptying rate is a function of the total trap density. The emptying rate
will, therefore, be increased by increasing the applied dc bias.

As the measured capacitance decreases because of an inability to
modulate the trap density in the crystal, the measured conductance will
increase because of the increased free-charge density. The free-charge
density will remain in phase with ^, and will, therefore, increase from
KVo/(y +1) to K(VQ +Vm)/(Y +1) as frequency increases. The specific
dependence on frequency for n and, therefore, the dependence of con
ductance on frequency will be that of the dc component to the trapped-
charge density. Curves of the calculated dependence of n on frequency
are given in Fig. 4 for the same values of p the dc to ac ratio that were
used in calculating the curves of Fig. 3. The crystal conductance will
therefore increase from eu KVq/(y +1) to eu K(Vq +Vm)/fr 4- $.
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From these expressions, it is apparent that the total conductance

variation is limited to the ratio p/(p + 1) of the high-frequency

value, and hence conductance variations become very slight as dc

bias is increased. This behavior is clearly seen in Fig. 4.

The admittance variation considered here can be expected to

occur at fairly low frequencies; in typical crystals in which space-

charge-limited currents have been observed, the frequency t~

should be less than a few Mc. As an example, in a crystal having a
14 -3

trap density of 10 cm , the trapping time constant y would range

from about 100 ms to 1 us for centers with capture cross sections in

the normal range (10~ to 10" cm ).

This low-frequency range is particularly suitable for admittance-

bridge measurements, so that positive identification of the phenomenon

analyzed here would permit a sensitive and convenient means for the

determination of trapping relaxation times. This determination, if

coupled with dc space-charge-limited current measurements, would

allow one to obtain trapping capture cross sections much more easily

than by such measuring techniques as thermally-stimulated trap

emptying.

Although other mechanisms can lead to admittance variations

with frequency in the low-frequency range, the derived dependence on

bias voltage for the effect analyzed here should allow a positive

identification of the trap-emptying mechanism. An experimental

program is now underway to see if admittance variations, already

observed on crystals believed to conform to the model considered

here, can be explained by this theory. Applicability of the distri

buted trap theory of Rose demands that such a variation will take

place.
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FIGURE CAPTIONS

Fig. 1 Analogue circuit to the trap-filling and trap-emptying sequence

considered in the text. The voltage across the capacitance is

analogous to the volume-distributed, trapped charge. The trap-

emptying time constant has its analogue in R2C while the trap-
filling time constant is analogous to R-R2C/(R. + R2) which is
roughly R.C for R2 > > R. .

Fig. 2 Average trapped-charge density through one cycle of cot at

frequencies such that trap-emptying limitations result in a

build-up of n . The trap density n follows the applied

frequency for <p = cot < <p. and at <p > <p2 • From <p. to <p-
the density decays exponentially. Equations for <p. and <p?
are given in the text.

Fig. 3 Decay of m (the Fourier component of n that is in

phase with the applied voltage) as frequency is increased.

The frequency scale « = to t is normalized to t , the

attempt-to-escape frequency. The dependence on dc bias

is embodied in the curve shift with changes in the ratio of dc

to ac bias voltage P = V /V . As described in the text,
& r o m

capacitive relaxation should follow these curves.

Fig. 4 Calculated variation of the free-carrier density n with

normalized frequency a - co t. The density is normalized

to its high-frequency value n = K V (p+ l)/(y + 1). The

crystal conductance will be proportional to this variation.

The five curves represent five values of the dc to ac voltage

ratio p .
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