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ABSTRACT

An approximate plasma model, using current sheets, is introduced
The prunary utility is to obtain the nonlinear behavior of ion-cyclotron
waves. Linear analysis is used to develop the bicircular particle motion,
to show the coupling of the ion-cyclotron resonance for finite TA. to show
Landau cyclotron damping fir finite T„. The sheet model is developed
w terms of vector potential £, and sheet current density J for k
parallel to the steady field Bq. There are transverse fields" only.^with
sheet motion along three coordinates. The electrons are assumed to he
hot, forming aneutralizing background. The model accuracy tests show
a reasonable duplication of cold plasma ion waves. The first experiment
shows wave.da^g for T„ >>T± at the rate expected from linear analysis,,
and wtth T„ decreasing, Tj. increasing. The second experiment shows
wave growth for T±»TU, at the rate expected, and with ^decreasing
and T„ increasing. The third experiment was to find the limit in Tx for
interaction with an electron stream for „~ ^ the nonlinear limit found
is equal transverse energies, whereas linear analysis shows an m /m
smaller value. This result is encouraging for using this method for • * •• •
ion heating.



. INTRODUCTION

The nonlinear behavior of plasmas is of great interest, for

examples, in learning the ultimate state following an instability,

or in finding the effectiveness of wave or beam heating processes.

Linear analyses are of little help, or may even be misleading in

seeking these answers. One method of solution is to condense the

plasma into a managable number of super particles and to follow
1 2

their motion. This approach has been used by Buneman, Dawson,
3

Eldridge and Feix, and others for charged sheets moving along one

coordinate; in their models there were only electrostatic forces, the

primary motion was that of the electrons, and the time scale was on

the order of the electron plasma oscillation period. In such models,

many of the results from linear analysis can be demonstrated,

lending validity to the models, as well as nonlinear results previously

unavailable* The indispensable tool, of course, is the high speed

computer and the computer runs are essentially experiments.

In this paper a new plasma model with response to magnetic

forces is given in detail. Charged sheets are used as above but are

normal to a steady magnetic field B . The solutions are for k,

parallel to B . The primary motion is that of the ions near the

ion-cyclotron frequency. The motion, however, is in three dimen

sions and the fields are two dimensional. The transverse motion

constitutes a sheet current and generates a magnetic field; an elec

tric field arises from induction, but not from charge separation.

The electrons are assumed to be hot, with negligible collisions and

negligible transverse current in the region of interest. The electro

static model, with potential <j> and sheet density p coulombs/m
s

is dual with this new model with its (vector) potential A and sheet

current density, J = p v ; the two models could be used together
J "*S •O-'S °

to obtain both electric and magnetic results. Auer, Hurwitz, and
4

Kilb have used a related model to study shocks with k normal to B.



A special model is good only as it can duplicate results valid from

other analyses. The duplication of the ion-cyclotron wave is one test.

This model is also used to show ion-cyclotron Landau damping for

T » T and ion-cyclotron wave-ion-cyclotron resonance growth for
II x

T » T . The nonlinear problem of particular interest is the limit
J. II

to T attainable from interaction with an electron stream, a result
j.

of interest in ion heating. An initial estimate might equate angular mo

menta and show a very low limit for T due to the low mass density
i

of the stream; however, the re suit found exceeds this limit, and is

equal transverse energies.

The uses of the model have only been partially exploited in this

paper and serve only as an introduction to this approach. It is felt

that much knowledge of large amplitude behavior of plasmas is yet

to be obtained from this and related models, knowledge that is very

difficult to obtain by other methods.

The paper is in three parts. Part I presents the linear analysis

for ion-cyclotron waves, with a discussion of the particle motion, to

show the random motion producing the ion-cyclotron resonance, to

give an explicit growth rate for the ion-cyclotron wave-ion-cyclotron
resonance interaction for large T , to give the Landau damping rate

for large T , and to introduce the sheet model. Part II is the devel
opment of the sheet current model; the derivation of A is given in
Appendix A and the proper force is derived in Appendix B. Part HI
gives the results of the computer experiments, starting with the runs
for model accuracy, then the T ± T runs and last, the stream-

1 II

plasma runs.
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I. LINEAR THEORY FOR CYCLOTRON WAVES

A. Dispersion Relation and Particle Motion
* * ••'

The electro-kinetic waves with the wave vector, k, parallel to

the applied dc magnetic field, B , in an infinite plasma have been

studied by Bernstein and Harris. Their dispersion relations will

be used as a starting point for getting at the particle motion and

coupling of waves in a warm plasma.

Let the plasma zero-order density function for the j-th species

be separable, given by

fj (v) =fj <yz) fj <v* +vj) . (1)

Let

^ 2 ^ 2<vz> = vT

2 2 2
<v > = <v > = vZ,

x y T±

z is the direction of the dc magnetic field and the direction of the

wave vector. Using the Vlasov equation and Maxwell's equations,

we look for wave solutions of the first-order fields, velocities and

densities. The dispersion relations for this plasma are given by

the following equations (see Harris, his Eqs. 29 and 30):

(a) for the longitudinal waves;

__ Bihdv
2 > 2 C ii zk + j WPJ )c OTT^dv.-O (2)

(b) for the transverse waves;;

, Z Z Z . y Z r w - J # » ,
kc-w + 4-w. \ , r (v ) dv

J FJ Jew " Kv~*aT~r „ z' z
z cj

i
(vJ_ )2k2fj(vJ

Ti " Z dv
(w - k v •+ w .)

z cj'

-3-

=0. (3)



The integration contours are to be taken above all the poles of the
integrand for the transformation with the phasor exp -j(wt - kz).
°PJ' "cj; ^tJ are the P^sma frequency, the cyclotron frequency
f-cj =(|e|/m.)Bo] and (1/2) <v2 +v* > of j-th species, respectively.

We are interested primarily in the second equation which contains
the cyclotron waves. It is known that the ion-cyclotron wave is obtained
from the upper sign in Eq. (3) and is right-hand circularly polarized
and that the electron-cyclotron wave is obtained with the lower sign in
Eq. (3) and is left-hand circularly polarized.

As a starting place, first let us look at the waves at zero tempera
ture in a nondrifting plasma. The dispersion relation then reduces to

2 2
? ? x WW . coo)

kV =w2 + £1 El
W . - W W . + W IA\

ci ce \-*/

for the upper sign and,

2 2
2 2 7 wa)r^ ww .kV =w2 + . Pe Ei

W - w w . + w (5)
ce ci

for the lower sign. The real w- real k relations are plotted in Fig. 1.
The k ^> 0, X-> oo, frequencies e^ and o>2 are generally much
larger than w^ . The lower frequency velocities, w->0, both
equations, are

0}
v = -=- = c

P k

n m + n.m.

1 + e 1 l
L- € B2

o o

-1/2

= VA

the Alfven waves. The fast waves, vp >c, are primarily electro
magnetic in energy and the slow waves, Vp <vA, are primarily mag-
netokinetic. We are interested in the slow waves, especially the ion-
cyclotron wave.

Now let us study the motion of the particles associated with the
ion-cyclotron wave. The Eulerian equations of motion for ions in the
self-consistent field which is given by Eq. (4) are, in terms of real

-4-



variables,
dv.x
—3-7— - w .v. = E cos (wt - kz)
dt - ci ly m.

3 1

dv.
iv e£ + w .v. = E sin (wt - kz) (6)

dt ci ix m.

dv.

1Z = 0.
dt

Similar equations exist for the electrons, obtained by changing the

sign of e and w . There is no drift motion to zero order in any

direction, so that d/dt =9/at + (v-V) to first order omits the

directional derivative, and d/dt = 8/8t . The general solutions of

these equations are easily found to be

(e/m.]E
v. = v cos ( w .t + 6.) - v — sin (<** - kz)

IX Oi ci l w . - w
•"• ci

(e/m.)E
v. = - v1 sin (w .t - 9.) - V:—^7\ cos (wt - kz)

ly Ox ci l w . - w

i
v. = v

iz o„

(e/m )E
v = ve cos (w t - 9 ) - \-—%-rr sin (wt - kz) (7)

ex oi x ce e w + w
ce

(e/m )E
v = ve sin (w t + 8 ) - }- p-r- cos (wt - kz)

ev oi ce e w + wey o±

e
v = v

ez o ||

ce

v1 . v1 > v , ve , 8. , G are given by the initial conditions,
Oj.1 o„ oj. o„ i e

t = 0, of the individual particles. For a cold plasma, the individual

particles have no energy in the absence of the wave so that these values

are zero and remain zero. However, if the wave is applied to a hot

plasma these quantities are not zero; these values must be random, in

-5-



this one dimensional model, in order to have zero net transverse

current. The particles have bi-circular motion given by these
equations; particles have an angular velocity w around a center
which rotates with the angular velocity w^ (or vice versa) around
a fixed origin. The implication is that there is a line at w= w^
(and w ) to be added to the w- k diagrams. When a finite tem
perature exists in the plasma, where the wave frequency w approaches
the ion-cyclotron frequency w ., an interference may take place
between these two motions. The effect of this interaction will be

studied in more detail in the next section.

These equations of motion hold for any particle. Where vq^
and v are zero, motion of the ions are all in phase in a plane

o II .perpendicular to z. The motion creates a convection current in
the transverse direction which becomes the source of the trans

verse-electromagnetic field. As the velocity vector in the plane
rotates to the right with angular frequency w as can be seen from
Eq. (7), the ion current on the plane also rotates in the same di
rection with, of course, the same angular frequency and so also

the field created by it.

For the net current, the motion of the electrons must also be
considered. For w^w . , the transmission band of the ion-cyclo
tron wave, the electron velocities are almost independent of u;
dropping w compared with wce , the particular solution coef
ficient is simply -E/BQ so that the electron motion is an E&c
x B drift motion. The direction and the phase of this drift is
the same as that of the ions. The electrons themselves may perform
rotation to the left at w , but the centers of rotation drift together
with the ions, being captured by them. Thus the ion current is re
duced by the electron motion, but the ion current dominates due to
the resonant denominator; the reduction is simply by w/wci . At
very low frequencies, w« w . the reduction is severe because the
motion of the electrons and ions approach the Eac x Bq drift and the

-6-



7 $&%&&*:?'

ratio of the currents at these frequencies approaches unity. However,

a difference remains so there is a net qurrent that rotates to the'right,

which is one of the Alfven waves.

B. Effects of Finite and Anisotropic Temperature

Where v^ and v_ are not the same, either wave growth
T± Tn

(vm > vm ) or wave decay (v_ < v_ ) results. The growth, with
u Tn J-i J-II

iarge vm , occurs because of the interaction between the two parts of
T± 8

the motion in Eq. (7). This instability has been noted by Rosenbluth

and by Harris. The decay with large yT , comes about by a phase
randomization along the direction of propagation. This effect is known

9 ' • • j.as the cyclotron Landau damping (Stix ).. In both situations, vT £ yT„»
the interaction tends to make the temperatures equal. The behavior

will be given in sufficient detail for use in later parts. The effect of
large transverse temperature will be considered first. Let us examine

the dispersion relation, Eq. (3), upper sign, for v^ = 0, which is

1 +
(vt ) w

pe

(w> wce)2 c2
+

w
1 -

w

Pe

w(w + wce)

«vtJ' w

(w - wci) c

w

w(w - w .)
<• Cl

(8)

The w-k dispersion relation is sketched in Fig. 2 for real k. The elec

tron-cyclotron slow wave is omitted. The difference between this figure
and Fig. 1 is that the ion-cyclotron wave curve does not go to infinite k
but terminates with the ion-resonance line at around

w
ci

1/4

m

T±

(9)
w

P1 (2(3)
-1/4
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9where p is the usual ratio of plasma to magnetic pressure. Stix has

given a k for T = T . For k > k , w becomes complex, with
° max ii j. m

growing and decaying roots. The growth rate, Im(w) = w^ of the in

stability can be calculated from Eq. (8) and is given by the following

approximate form

w.

w
ci

For k > 1.4 k
m

w

P1

2 k2 c2

w. = w .
l pi

- 1 (10)

m

T±

independent of k and . w .. This is a relatively slow growth rate for

cold plasmas but is appreciable for a hot plasma.

Now for the next step, consider the situation where there exists a

finite longitudinal temperature but zero transverse temperature. The

decay rate of the ion-cyclotron wave due to the longitudinal temperature

can be obtained approximately in the following way. As the contributions

of the electron current and the electromagnetic wave are negligible for

w ^ w ., where the Landau damping takes place, only the ion current is

considered to be the source of the wave. With this assumption and taking

the distribution to be Maxwellian only in the z direction,

'« ^ =V^-vi
Tn

the dispersion relation becomes

with

i 2 2
k c = - w

P1

-8-
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? E ? + in =
CO - CO

ci

<Z vl, k
-hi

W = CO + jw.
r J 1

10
Z((£) is the plasma dispersion function of Fried and Conte.
Expanding Z(£) in a Taylor series of in, following Jackson,11 and
taking only the first two terms we have

i 2 2 _
k c =

irf(S)
n = -

C/-CO

f'<«> du
T

r, w

*** l! ^
Cl

.vT k
''-CO

f(u) = — e

du

J

(12)

(13)

Eq. (13) can be used to evaluate the denominator of Eq. (12).
We can obtain w. in the range | (co - w .)/(V2 v* k) |» 1; the Landau

l r ci j,||

cyclotron damping in time is

= - H^fd)

or, explicitly
2 4

w . w

£1u = _ fl C1 P1
i h\ 2 i . n 2 2 ,

^ v,,, k(k c +
2 ,2

w '.)pi7

exp

2 4
w . w .

ci pi
_, i .2. 2n 2 2 , 2.22(vT) k (k c + w .)

L_ 1|| pi .

(14)

Notice that Im(w) depends on f(S) not on (df)/OS) as is the case

for the longitudinal wave (Jackson ).

C. Stream and Plasma Interaction

Where some component of the plasma has a drift velocity in

the z direction, the dispersion relation can be obtained by appropriate

-9-



Doppler shifting of the frequency. If the entire plasma drifts, there
are four kinds of forward transverse magnetokinetic waves: faster
and slower electron cyclotron waves and the faster and slower ion-

cyclotron waves. The polarization of these waves are left and right,
and right and left respectively. For a stream to have some kind of

interaction with the cyclotron waves of a stationary plasma, the
polarization of the two waves should be the same. In addition, to have
an instability due to the interaction, the wave in the stream should

carry a negative energy (Sturrock 2). These choices allow only two
types of combination of the waves. One is the interaction between the

electron slower cyclotron wave of the stream and the ion-cyclotron
wave of the plasma and the other is between the ion slower cyclotron
wave of the stream and the electron-cyclotron wave of the plasma.

For example, let us consider the former. The dispersion
relation can be obtained from Eq. (3) by assuming the existence of
three species of particles, plasma electrons and ions and the stream

electrons. • For a cold plasma and a stream the w-k plot is shown in
Fig. 3, for the upper sign (right-hand polarization). Solutions for
growths in time, w^ and in distance, k., are shown as dashed lines.
The interaction at near the ion-cyclotron frequency has been studied
by Harris, and Neufeld and Wright.1S The interaction around zero
frequency (time-growing only) is relatively unknown, also found by
Briggs and Bers independently. We call the former the cyclotron-
wave instability and the latter, the Alfven wave instability.

- II. MODEL

A. Model and Corresponding Fields

The ions of the plasma have bicircular motion in a given plane at
z, as was shown earlier, for a warm plasma and the ion-cyclotron wave,
At a fixed t, for kx =0, ky =0, all the velocities of the particles
are directed in one direction in the transverse plane and create a net
current directed in the same direction, as is shown in the Fig. 4.
Therefore, the phenomena can be synthesized by fixing particles on

-10-



transverse planes, and by letting the transverse planes rotate,

creating a rotating transverse current. Thus the new model is called

a sheet-current model. By placing a set of these transverse sheet

currents along the z direction and giving them a proper phase difference
plus random velocities, one can set up the cyclotron wave with finite
temperature. The intention, of course, is to obtain the nonlinear

behavior of the ion-cyclotron wave.

In the cyclotron waves, the electric and magnetic fields, which
are created by the transverse currents, are predominantly transverse.

Charge separation is assumed to be zero; the electric field is created
only by the time-rate change of the magnetic flux density and thus
exists only in the transverse direction. The basic equations for the

fields are

v x E=- 4#V - _*t ... a t

Vx B = u J (15)

V * E = v * B = 0.

The source of the fields is the transverse current created by the

sheets, which directly creates the magnetic field. The time rate

of change of the magnetic flux density then creates the electric field.

Both of these fields act to accelerate the sheets. The only field

variable necessary is the magnetic vector potential A.

Let the model now consist of an infinity of the ion sheets. The

motion for k-*0, \—*oo, would have all sheets in random phase

and w = w • already known. The motion for large k, X < sheet-spacing

cannot be found. Hence the motion for intermediate

k, \, is solved. The spatial behavior is assumed to be periodic of

period L with N sheets in each period to be followed. The range

covered is approximately 2tr 4 kL £ 2irN or L/N£X.£.L. The

restriction on having many sheets per Debye length in electrostatic
2 3models (Dawson; Eldridge and Feix ) does not occur here. Each sheet

-11-
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2
is made of p coulombs/m and has a transverse velocity yj.

r s **

such that there is a sheet current J = p v. amps/m; the mass per

square meter is m . As the charge and mass are condensed

similarly from the whole volume, p /m = p/m = e/m., of the ions in
question. In each period, L, it is required that the net magnetic

flux, net vector potential, and net current vanish; the justification is

given in Appendix A. The current in the j-th sheet is ^J. amps/m. The
vector potential is then found to be (Appendix A),

n f r 2z.(t) n fowl2|JL IN I CZ..\\

. (z,t) = -=°- > J. (t) \ 1 \- z- |z - z.(t)| +UJL \ (16)

and similarly for A . The restriction on currents are
y

N N

I Jix(t) =°. 1 Jjy(t) =0'j = i jx j=i jy

There is no z current, as the ions and electrons are assumed to

move together along z.

The magnetic flux density B(z, t) is obtained from VxA as

3 A A (t, z + Az) - A (t, z)
B (z,t) =-_x I = —y- :—x— a?)

x 3z k Az

and similarly for B (z, t). Here Az may be any value smaller than

the distance between sheets; in these calculations Az was fixed

at a value L/10 N that is, 1/10 of the uniform spacing interval,

rather coarse. The value of B to be used in the equations of motion

of the j-th sheet at z. should be the spatial average value,

(1/2)[B(Z+) +B(z7)] in order to include the self force of the j-th
sheet; in these calculations B(z. ) was used instead, allowing for

** J

some error, diminishing as N increases.

The electric field E is obtained from -[(aA)/Ot)] as

9Ax A (t, z) - A (t - At, z)
»*<-»>---*«-I •-- 1—— (18)

1 z At

-12-



and similarly for E . At is the integration time. Typical fields
for two sheets are shown in Fig. 5.

B. Equation of Motion of Computation

The fields and currents give the acceleration of the sheets.

The next step is to use these in the equations of motion to find the
velocity and position a short time At later. With these new values,
the fields are again computed and the motion again obtained, and so
on. The results are made more accurate as At-M), N-»co and as

the computer program becomes more ingenious. Motion is allowed
along three coordinates so there are three equations of motion;
these are simply, for each sheet,

dv

—JS = — (E + v B - v B )at m , x y o z y'

dv
1 =

m • y "x o
-57^ =^r(E -vB +v B) (1Q\
at mvxozv7 \17/

dvz__1= JL (v b - v B ).
at m x y y x7

Note that in linear analysis, the rhs of the last equation vanishes as
it ^ould be second order; it is kept here. The motion of the electrons

is neglected as based on the (linear) analysis result that it contributes
negligible current as w-»wc., the region of interest. To the order
At, the force to be used for the interval between t and t + At is
calculated from

F^l F(t) "I F(t " At> (20)

to allow for field changes during At, even though the sheets do not
cross; the details are given in Appendix B. For example, the proper
electric field to use in Eq. (19), using Eq. (18) and Eq. (20) is

-13-



Ex(z'*' ="5T [j f Ax(t' Z) +̂ x^- At' z) "I Ax(t "2At- z)"|
and similarly for B. Particles leaving at z = L are reinserted at

z = 0 and vice versa.

Besides these equations, one is also interested in having the
time dependence of the field and kinetic energies and of the longitudinal
and transverse temperature. The. energies found are really energy/m2
of cross section, hence, energy densities. The magnetic field energy
W„ is given by

N

WR = X J^ ' A,

and WB1 shows the energy of the fundamental magnetic field,
kL = 2tt. The transverse kinetic energy W^ is given by

1 N
WK =y rn 5 (vf + v2.).J\i 2 -8 jti xJ yj

The longitudinal temperature T„ is taken to be

m« N>'T" =T.| (vaj- <vzj»2-
The<^>means spatial average over the whole period. The calculation
of the transverse temperature Tx, is somewhat more involved. The

total transverse kinetic energy contains a coherent part Wvr. which is

associated with the coherent wave. A transverse temperature is
defined by

^ =-r <wkx - %c>-

WKC is obtained from the wave energy in terms of the magnetic
field, which is Fourier analysed,

-14-



• "fcW-^-.Y.- ".I -..-.'- ' ' - .j^T.

W ^ =-L Li- K pZB2
KC 2 2 2 A XP

i m K pi s 1 sr
2 2 2 A

e nu b^I

where B is the amplitude of the p-th spatial harmonic of the

transverse magnetic field; the coherent part is arbitrarily chosen

to be the first 8 harmonics, P= 8. The above relation is obtained

from VxB = llJ=ll nev; it was assumed that the density variation
v <\j rOf«' o ~ •'•

with z was negligible which is true in the linear region but may not

be so here. ..,,

An energy correction is used in order to reduce the effect

of errors. After each step the total energy is calculated and the

fields squared and velocity squared are adjusted by any change.

For the largest part of most runs, the correction is small.

III. APPLICATION AND RESULTS

A. Trial Runs

About twenty test runs were made before more sophisticated

problems were tried. The aim was to find the relation between the

error and the number of sheets per period, N, and the integration

time At. The first runs were with kL = 2ir at small amplitude,

zero temperature, with initial uniform sheet spacing. Wave ampli

tude error was found to be sensitive to N and At, increasing as

At/N. However, the phase velocity error was not sensitive to these

parameters and almost did not appear to change in the range of at

least 10^ N^ 60 and 0. 01 ^ (At)/(T ) ^ 0. 05; Tc = l/wci- The
phase velocity was obtained from the velocity of the zero crossings of
the wave. For example, the amplitude error which was less than a

percent for N = 60 and (At)/(TC) = 0. 01, becomes a few percent for
the case N = 10 and (At)/(T ) = 0. 03, in the time necessary for the

wave to propagate one period. On the other hand, the error in phase

velocity was found to be almost constant and less than a percent for

these ranges of N and At, as shown in Fig. 6. It should be noted

that this problem is somewhat more complex than that of one-dimensional

charged sheets and uses considerable more computer time per signi

ficant run. Hence, there are, to date, relatively fewer runs and

coarser results.
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B. Effect of Anistropic Temperature

Linear analysis shows that Tx ± T„ will lead to growth or

decay of the wave. The purpose of this section is to demonstrate

these phenomena with the model and observe the change of the

temperature, not available from linear analysis as it is a zero-

order quantity.

First we consider the effect of the longitudinal temperature. The

experiment was done by adding some initial random longitudinal velocity
to the sheets in addition to the set of initial conditions which was dis

cussed in the previous section (wave, with transverse velocities only).
The random velocities were chosen from the cumulative Maxwell

distribution by giving a uniformly distributed set of random numbers
between one and zero to the distribution and picking up the corresponding

random variables. Therefore, the initial velocities are supposed to

have a Maxwell distribution in the ensemble set of particles per one

wave length. The random energy was less than one percent of the
wave energy. The results of the experiment No. 1 are shown in

Fig. 7. The parameters are shown in Table 1. There is decay of
the fundamental Fourier mode and the total magnetic field energy. The

decay rate matches quite well with the linear theory 'which assumes
constant temperature) obtained from Eq. (14); the longitudinal temperature

used to calculate the decay rate is the value at wcit = 8. The longitudinal
temperature is not constant but decays with about the same decay rate
as the field energy. Some of these energies appear to be converted to
transverse kinetic energy which increases with time, implying a

growth of transverse temperature. A plot (not shown) of the'transverse
kinetic energy of each sheet does show a growth of the variance. Hence
with T„ decreasing, Tx increasing, there appears to be an entropy

increase and tendency toward an isotropic temperature.

For the second experiment, consider the effect of the transverse

temperature. A random transverse velocity with a Maxwell distri
bution was given to each sheet initially in addition to the transverse-

wave velocity. The results of the experiment are shown in Fig. 8.

-16-



The initial transverse temperature was chosen so that the wave

number of the initially excited wave is k >k , the critical wave
rri;

number for the growth of the wave. Notice the growth of the funda

mental Fourier mode of the magnetic field. The linear result shown

was calculated using Eq. (19) assuming that the growing and decaying

waves were equally excited. Another experiment, not shown here,

for k < k , showed no growth of the fundamental wave but showed
m 6

growth of the total field energy and of the higher harmonics which

were created both from the fundamental by nonlinearity and the above

growth mechanism.

The longitudinal temperature is seen to grow (from zero) initially

much faster than the wave. This growth appears to be physically

consistent. The wave energy grows at the expense of the transverse

temperature, by conversion of random energy "to coherent energy.

This alone is contrary to H theorem-like arguments. However the

growth of the wave is possible and entropy can increase if accompanied

by a growth of the longitudinal temperature.

C. Electron Stream-Plasma Interaction

An electron stream may interact with the plasma ions near

w . as known from linear analysis. The interest is to obtain the
ci J

growth of the ion-transverse temperature due to the interaction. The

real k model is used with the implication that the measurements are

made in the center part'of a finite plasma, considerably removed from

the boundary and from an external source for the electrons. A set of

experiments have been done and the growth rate in time of the wave

has matched very well with that of the linear analysis. In the region

(in time) of linear interaction, it was found that (subscript b is for

stream)

m.b,. "*bvx*b>V^
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which can be derived also from the linear analysis. This result is
discouraging if the obje

transverse energies j.s
discouraging if the object is to increase v. , fqr then the ratio of

m.(v .)2 m n,
1 J-1 /u p b

"Mv ,) m.n.
b,b' 11

This is generally small due to both the mass ratio and density ratio
of stream electrons to plasma ions. However, the nonlinear results
are considerably more encouraging, as will be seen.

1 The results of a trial in the nonlinear region are shown in
Figs. 9-12 for experiment No. 3. Fig. 9 shows the development of
the ion-transverse kinetic energy and the stream transverse kinetic
energy. The ratio of these energies is about 1/5 up to the time where
the nonlinear interaction starts (wc.t *i§)~ Beyond this time both
kinetic energies tend to grow with almost the same rate until w.t* 40,
when the stream kinetic energy decreases rapidly, giving part o^f its
energy to the ion-kinetic energy. However, /most of this goes to the
longitudinal energy causing reflection (negative velocity) of the stream,
as can be seen by the plot of the longitudinal velocities of the sheets in'
Fig. 10. In this figure one can see that four out of the ten sheets nearly
stop at wc.t^40 where the stream transverse kinetic energy becomes
maximum. Beyond this time these fOUr sheets are reflected.
Fortunately at longer times the transverse-ion kinetic energy becomes
the same as the stream transverse kinetic energy exceeding the small
linear analysis limit. In Fig. 11 are shown transverse temperatures
of the ions and stream with the magnetic field energy." The field
energy and the stream temperature grow exponentially in the linear
interaction region where the ion temperature grows more slowly; however,
the latter continues to grow in {he nonlinear interaction region. The large
decay of the field energy in the nonlinear region is possibly due to the
cyclotron Landau damping. The transverse kinetic energy of
each ion sheet is plotted in Fig. 12. Some of the sheets show almost no
growth, while the others show a large growth. The gross result is that
the nonlinear limit of v±., with roughly equal transverse energies,
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substantially exceeds the linear analysis result (down by the density

ratio) lending real hope to this means of ion heating.

It would be desirable to resolve this experiment as a semi-

infinite plasma with a stream injected from one side, to observe

the growth in distance as well as time.

CONCLUSIONS, DISCUSSION

A new sheet-current model, useful for warm plasmas and

w/v/w . has been shown to duplicate with reasonable accuracy known

results for T = 0. The cyclotron wave damping for Tu»Tj_ and

the growth for Tj.>^T|| appear also in reasonable agreement.

The electron stream-ion interaction, a possible means for ion

heating, in the nonlinear limit exceeds the limit of the linear analysis,

lending encouragement for use of this mechanism.

The initial model development has been introductory, not

without approximations and with only a small number of experiments.

There is need for refinement and for greater breadth of applications,

to satisfy the real need for nonlinear solutions. (Readers needing greater

detail than given here should consult Ref. 15. )
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APPENDIX A

Calculation of A

The vector potential A may be obtained by integrating

Vx A = B, as B is easily found for sheet currents, or by integrating

4 *rr ^ v |r-r'| 4ir J

Jf Ox1 dy1
S :- 3

\% Z r
all sheets t

In the former, A is determined to within a function of time c(t) and

in the latter, to within V^J these functions are obtained from enforcing

the boundary and periodicity requirements. It is instructive to use parts

of both methods, partly to become familiar with the model (the Coulomb

force electrostatic model i6 much simpler) and to expose the pitfalls.

The conditions imposed or implied by the model are:

(i) at a sheet of thickness z - zT = £ —> 0,

B (zx) - B (z ) = u J , - B (zT) + B (z ) = u J , A(z+) = A(z )
x x *o y y y ° "X- ~ex/

(ii) over the enitre model, all periods

f J . dS = 0 or Z. J=0, 2~ J = 0
all sheets all sheets y

The implication is that at large radial distance, away from the region of

calculation, the sheets with +x directed currents are electrically con

nected to those with -x directed currents, forming the necessary clqsed

loop. As all periods are alike, the sums are taken over one period, N

sheets.

(iii) over the entire model, all periods

Jb • d S = 0, Je • d S =0, fA- d S = 0.

The fields B, E, and A are transverse to z so that the areas d S

are dzdy and dzdx; however, there are no variations with x or y so

that for the general field G,
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Jg dz =0, fb dz =0 .
^ x ° y

As periods are alike, the integrals are taken over one period, 0 < z < L.

One finds from the ^periodicity requirement, A(0,t) = A(L,t) that the

above integrals over Jg are satisfied.

From integration over the sheets, one has i

N

A = i£- y j . 2- 2 fzx -sj n

where z is the distance from the jtn sheet to the observer at z,
n

z = - z - z.
n ' j'

However, in treating one isolated period, separated (physically) from

all others, one must be careful of what can occur at the boundaries,

z = 0, L, as these planes are shared by adjacent periods. That is,

there generally is no net current at these planes, but split in half, there

may be currents. These currents are equal and opposite and provide a

uniform B(t); the contribution to A is easily found to be

\ Jwall<2z-L>

where J ,, = J ,,(t). The A found so far contains all but c(t).wall Twair ' '-'
Requiring thatJ Q A dz = 0 gives c(t) (for each component),

C(t) =JL f j (-!2- + J±. - z,
2 j=l J \ L 2

and using A(0, t) = A(L, t) gives Jwall»

N

J „(t) = y J.(L - 2 z ) /2L .
^walr ' A ^y n'

Adding all terms produces Eq. (16).
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APPENDIX B

Calculation of Force

In contrast with the electrostatic sheet problem, where the

force on a sheet is constant until it crosses another sheet, here the

forces change within the integration period At even without crossings.

Consider the force as F(t, z) at time t, sheet position z; at time

t + 6t, the sheet will be at z + 6z and the force will be F(t + 6t, z + 6z).

The two forces are related by

F(t +6t, z +6z) =F(t, z) +|f 6t +i-£ ^TT" +' ' * <B- D
az dt '

where 6z is related to 6t by v 6t = 6z, and F is then the force
z

at the sheet position, as desired. For machine calculation, it is

convenient to have one value of force to use during the machine time

step At, such that the change in velocity of the sheet being followed,

Ay is obtained simply from

Av = FAt. (B. 2)

Should the F here be F(t, z) or F(t + At, z + Az) or some value

in between such as the average of these two? The velocity at the end

of At is similarly

v(t+At, z +Az) =v(t, z) +^-1 At +dvi At
dt It dt2 It 2I

which is seen to be

dF. At2= v(t, z) +FL At +^-\ ^- +••• . (B. 3)

That is, the change in velocity is

Av = v(t + At, z + Az) - v(t, z)

,2„ , Ai,2_ C,, dF At , d2F (At)2 , "1 A, ... ..•[F|t +dT t zr +̂ z -jr- +'- J At (B-4>

= F(t +At/2) At,

keeping the first two terms. Substituting 6t = At/2
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into Eq. (B. 1) and putting into Ecj. (B. 4), it is also seen that F in

Eq. (B. 2) is then tjie average of the forces at the start and finish

of the interval or force at the median time, t + At/2. Hence, we will

use

Av =[F( t, z) +*EjJl»L At ••J At (B 5)
The derivative will be evaluated from the previous step as

dF _ F(t, z) - F(t - At, z - Az)
dt " At

so that

Av= | F(t, z) -| F(t - At, z^ Az) 1 At.

One asks about keeping the higher order terms in order to

evaluate the error; use 6t = At/2 in Eq. (B. 1) and put into Eq. (B. 2)
and subtract from Eq. (B. 4) to obtain

2 3

±*\ ' AvI = ±-F iAt)_ +o (At4). (B. 6)
'(B.4) l(B.2) dt2 24

This further correction, even for FM~F', is At/12 smaller than

the first correction used in Eq. (B. 5) and hence is made vanishingly small
by making At small.
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LIST OF ILLUSTRATIONS

Fig. 1. Dispersion (or w-k) diagram for cold plasma, for waves

transverse to B , from Eq. (4), solid line and from Eq. (5),

dashed line.

Fig. 2. Dispersion diagram for transverse waves in a warm plasma,

Tx t 0, Tn = 0, ion waves only.

Fig. 3. Dispersion diagram for cold plasma and electron stream

for right-hand polarization.

Fig. 4. Charged sheet in steady field B for use in nonlinear

calculations.

Fig. 5. Magnetic field B and corresponding vector potential A

for two sheets in periodic model, period L.

Fig. 6. Comparison of phase velocity v obtained from linear
Jr

analysis and sheet model for varying number of sheets N,

integration period At, and incremental distance Az/L used

to obtain dtA/dz. The solid line is the linear analysis

result. The values used are tabulated below; for all runs

Az/L = 0. 01.

kc |
w . '

Cl

N
At

T
C

(a) 1.5 i 20 0.03

(b) 1.75 i 20 0.03

(c) 5.0 10 20 0.03

(d) 8.99 10 60 0.05

Fig. 7. Change of field and kinetic energies and TM with time.

Tj, = 0 initially. Experiment 1.

Fig. 8. Change of field energy and TM with time for an initial Tx.

T|, = 0 initially. Experiment 2.

Fig. 9. Change of ion and stream transverse kinetic energies with

time; decrease in average stream velocity, k chosen to

give maximum Im w. Experiment 3.

Fig. 10. Stream sheet axial velocities for Experiment 3.

Fig. 11. Transverse ion and stream temperatures and total field

energy. Experiment 3.
Fig. 12. Ion sheet transverse energies for Experiment 3.
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