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CURRENT MODULATION

In the case of current modulation only, ignoring <|> the dis

placement is

co i, co
-E. x(t, t ) = co (t - t ) + ^L -H sin (cot ) cos go (t - t ) . (1)
v a' p oa' i co a' pa'

o r o

This expression appears to be similar to that for velocity modula

tion but shifted in t and t - t axes by it/2, a result expected
a a

from the Eulerian analysis. However, the rub comes in that the

departure times, t , are not uniform for current modulation (by
a

definition!) as given by (5) p. 26; a simple translation is not cor

rect except for vanishingly small excitation. (Thanks to R. Kompf-

ner for reminding me. ) The value of t can be inserted here and
2a

an expansion made through terms in i. to give,

co i, co

-E x(t, t ) = co (t - t ) + t±- -2. sin cot cos co (t - t )
v a p oa' i co oa p oa

cos cot sin cot cos co (t - t ) (2)
oa oa p oa'

w 2 ~1+ —2 sin cot sin co (t - t )+....co a p' oa'J

Keeping only the i term allows for the translation and use of the

previous diagrams for velocity modulation; for values of (i./i

co /co) > 0.1 or so, the higher order terms obviously alter the tra

jectories appreciably. Plots have been made, using the exact

expressions and are given in Figs. 18, 19, and 20 for co/co =

2, 1, and 0. 5. The contrast with those for velocity modulation is

not large, even with i./i ^0.3 as used here.
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INTERACTION WITH A TRAVELING WAVE

The stream may react to its own fields, space-charge fields,

and may also be driven by externally applied fields. Such fields, of

course, are necessary to provide the initial modulation, v^ and i.,
used earlier; these fields presumably are imposed over a short length

of stream, a diode or gap region. Particle motion in a gap has been

given in great detail by many authors over the past three decades, as

found in the classical monograph by Llewellyn (1941) and as outlined

by one of the earliest workers with transit time effects, Benham,

in Benham and Harris (1957).

Interaction with a traveling wave provides an interesting example

of a driven stream, as well as insight into the bunching process in a

traveling-wave tube. The problem solved here is very simple but

somewhat nonphysical. A slow wave of phase velocity v is coupled

to a stream of average velocity v . The wave produces bunching

and may alter the stream kinetic energy; this change in kinetic energy

should appear in field energy, some of which may cause the driving

wave to increase (as in a traveling-wave tube) or decrease (as in an

accelerator), all as a self-consistent process. However, here, the

driving field will be taken to be constant. Thus, the model is closely

related to the traveling-wave resonant cavity devices, ignoring inter

action with the reflected wave, and loosely related to the traveling-

wave tube amplifier and traveling-wave accelerator.

The electric field of the driving wave is given in terms of

laboratory coordinates as,

E (x, t) = E sin (wt - — ). (1)
W W V

p

The equation of motion for a particle is

m
82x = e E ,_ + e E (2)

2 space charge wave
31
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where the fields are to be given at the particle position x. The

particle position x appears in E , whereas solution would be
^ ^ ^^ wave

simpler (an understatement'.) if the equilibrium position x appeared.

Expand E as
r w

3E (x , t)
E (x, t) = E (x , t) + w—2 (x - x ) +

w wo 9x o

= E
w

cox

sin (cot -
co

The second term compares with the first as,

x-x

— (x - x ) = 2ir ——
v o y

p w

cox

) — (x - x ) cos (cot )+
V v o' V

p p p
J

(3)

(4)

(5)

where V is the wavelength of the driving wave. In the limit of

small excitation, the deviation x-x will be much smaller than y ,
o w

so that the second term may be ignored. The problem solved is for no

initial current moculation and no initial velocity modulation. Thus,

t = t . Hence
oa a

x = v (t - t ) .
o o a'

Thus, the phase of E becomes
r w

cox cov

CO t = CO t (t - t )
v v a

P P

V v

= co(l - —) t + — CO t
v v a

P P

= co't +

v cot
o a

•6-

(6)

(7)

(8)

(9)



co' is the frequency of the wave as seen by the stream, the usual

Doppler shifted value. The response of the stream to the wave is

expected to be greatest if co' is at the resonant frequencies of the

stream, + co , or
- P

0.(1-^) =+ co (10)
P P

-*L = -£• T-S- . (11)
V V V
poo

That is, greatest response is expected if the wave velocity is that

of the faster or the slower space-charge wave. Physically this re

quires that the wave should move one wavelength past the stream in

one cycle of the plasma frequency; this slip is just that used to obtain

maximum growth rate in traveling-wave tubes with moderate-to-large

space-charge densities. Choosing this synchronism, one obtains the

equation of motion,

O X , ^ / V e T7>
=• +C0 (x - x ) = — E sin

at p m w
+ co (t - t ) + cot
— p a' a (12)

The solution for x = v at t = t is found to be (e. g. , by
o a

Laplace transform),

(e/m)E | ,-
x(t, ta) =v (t - t ) - —2 = i + U (t - ta) cos i +u (t-ta) + wta

2"p ^

- cos cot sin
a

+co (t - t )] !> . (13)
— P a i ',

The cost term shows the growth of displacement from equilibrium

due to the traveling-wave interaction.

Trajectories are plotted for the six points marked on the co-(3

diagram of Fig. 21, for the slower and faster space-charge waves
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stream

Fig. 21. Interaction frequencies for trajectory plots to
follow, (a) corresponds to Fig. 22, (b) to Fig.
23, etc.
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at to/co = 2,1, and 0. 5, and given in Figs. 22-27. It is tacitly assumed

that the circuit that provides E is well behaved and was sketched as
r w

such in Fig. 21, with v = v ; in all six interactions, linear, self-
* P g

consistent analyses (in a later chapter) show that E ^exp(ax), or

cosh(bx) or cos (ex) so that the simplifying assumption of E constant

is good as x—>0. Note that the motion is still oscillatory, just as for

the waves without a driving field, with electrons sliding through the

bunches and not being trapped. Also, note that the growth is in distance

and that there is no growth in time t for a fixed position x.

The slower waves (a, b, c) are all very similar in appearance.

The bunching of slower electrons, occurring in the retarding phase

of E , implies a decrease of the stream total kinetic energy, which
w r

would lead to an increase in E ; had such been allowed, E would
w w

grow and cause stronger bunching, with further growth, resulting

in exponential rather than linear growth.

The faster waves (ds e, f) have faster electrons in the acceler

ating phase, to be sure, but bunch in special ways depending on co/co .
For co > co , the bunches have faster electrons, implying an increase

P
in stream total kinetic energy which would lead to a decrease in E^;
if allowed, E would decrease and the rate of bunching would decrease,

w

with E '^cos (kx) and density^sin(kx), as known from the coupled-
w }

mode analysis of Gould (1955) for the Kompfner dip (1950). For co < co ,

the wave is reversed (v <0) and may be called a backward wave,

requiring that it be launched toward x = 0 at some x = L >0. The

bunches form with slower electrons but W and Pk are positive so
that power is fed to the stream at the expense of the wave; E must

decay away from its value at its source, E /^coshKx/coshKL, as

discussed by Gould (1955) and given by Hutter (1960). The behavior

at co = co is quite singular; v—»oo, v—£oo, and both change sign as
[T ST &

co goes through co , altering the interaction from forward-forward to
forward-backward. There is no ac charge density (vertical spaemgs

^J •if

remain constant), no bunching, but there is still Wk> v^ >0; where
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v is large, i. is large so that P, > 0, implying a stream power

increase, requiring a decrease in E .

Solutions of the self-consistent problem would be more useful.

Also, in either solution, as the deflection grows, particles must

cross at some point so that complete solution to maximum growth of the

wave or stream energy virtually requires use of a high speed computer;

typical machine solutions and trajectories are given by Tien (1955).

ADDITIONAL REFERENCES

1. Kompfner, R. , "On the operation of the traveling-wave tube at

low level, " Brit. Jour.IRE , Vol. 10, pp. 283-289; Aug.-Sept. 1950.

2. Gould, R. W. , "A coupled-mode description of the backward-wave

oscillator and the Kompfner-dip condition, " Trans. IRE. „ED-2,

No. 4, pp. 3 7-52; Oct. 1955.

3. Hutter, R. G. E. , Beam and wave electronics in microwave tubes,

D. Van Nostrand Co., Inc. , N. Y. ; I960 .

-16-


	Copyright notice 1964
	ERL-57

