
 

 

 

 

 

 

 

 

 

Copyright © 1964, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



Electronics ResearchLaboratory
University of California
Berkeley, California
Internal Technical Memorandum M-68

EQUIVALENCE OF TIME-VARYING SYSTEMS

by

D. A. Calahan

This work was supported in part by AFOSR Grant AF 177-63,
University of Illinois.

May 5, 1964



EQUIVALENCE OF TIME-VARYING SYSTEMS

Let a linear time-varying system be described by the state

equations

dt
(MX) = AX + Y

or

MX = (A - M) X + Y

where M and A are n x n matrices, and

X = Y =

n

r

*1
0

0

(1)

(2)

(3)

An "equivalence" variable z is now defined such that

M = M(z) A = A(z) X = X(z;t) z = z(t). (4)

Hence, all time variations in M and A will be regarded as explicit
functions of z rather than t. It is now proposed to find M(z) and

A(z) such that one of the x.'s (x ) be independent of z, for any

excitation Y.

To begin, it is clear [letting dz/dt =k(t)J

dX _ t /, \ 9 X , d X
-at k(t) TF +~w

(5)
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and

«•*««

Taking the partial derivative of Eq. (2) with respect to z yields

dz \ 8z 8t

at
A-

k8M

8z
x +

3M ( kaX +_3X_ ) +M[ k92X + 82X
dz'

r

A -
kdM
dz

8z8t

ax + 8Y
at ax

(6)

(7)

Sufficient conditions that x and Y not be functions of z are
P

ax

az
= aX

8Y =
3z

bY (8)

w here a, b are (1) nxn matrices, (2) functions of z only, and (3)

a . = 0
PJ

Then, it is clear

b -0 j = 1, 2, . . .n.

ax _ aa „ , 2 v ax _ aax
~T ~d£ A a ' azat " at
9z

(9)

(10)

Substituting Eqs. (8) and (10) in Eq. (7), and separating terms involv

ing aX/at yields

kaM , , x, aa , . .., 2 a , A ,•yr a + k M -s- +kMa -5-7 A - k -=—- ,8 z 8z a z dz J['
dUl

.[A.k|M]a+b[A-k^-]- kbMa X

+ -ff< +Ma-bM |f=0.
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Eq. (11) can be satisfied independently of X if and only if both

bracketed terms are identically zero. Thus

8M _

3z
= b M - Ma . (12)

Before setting the other term to zero, it is helpful to note

ifM =|k M+b2 M- 2bMa +Ma2 - M|f . (13)
. 2 8z 8 z
8z

Now setting the other term to zero, one has

k b Ma - k Ma2 +k M|*- +k Ma2 - |£ +k|£ M
dz dz dz

2 2. 8a
+ kbM-2kbMa + k Ma -kM-~ -Aa+kbMa

- b Ma2 +bA-kb2M +kbMa-k bMa = 0 (14)

or, simply

M =b A - Aa +k|^M. (15)
dz dz

The solutions of Eqs. (12) and (15) yield M(z(t)) and A(z(t)) such

that x (t) is independent of z.

Several special cases are of interest:

1. k(t) = 0 so that M and A are varied only when the

system is in a zero state. Eq. (15) then becomes

M =bA-Aa (16)
3z
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1 2an equation previously derived by somewhat similar means. ' Note

that in this case, the matrix equations are similar in form to those

which would be obtained by projection techniques, i. e. , by evaluating

the transfer function from y, to x in terms of s with coefficients

c, (m.., a..), and setting dc. = 0. However, not only are Eqs. (12)
k ij ij k

and (15) more succinct since they are in terms of the parameter

matrices themselves, but they show the differential equations in un

coupled form. Coupling through a and b will occur only when

certain of the elements of M and A are required to remain in

variant (8 m. ./8 z = 0).

2. x = t so k(t) = 1 . Equations then become

dM

dt
= b M - Ma (17)

_dA -_- b A. Aa +*£ M. (18)
TT dt

If b is a discontinuous at tQ [ as would occur if an element in M
had a discontinuous derivative at t =-0, and so requiring a discon

tinuity in b to satisfy Eq. (17)] , then integrating Eq. (18) yields

A+0 =A0 +^0 ~V M0 • (19)

Here, bt - bZ is the discontinuity in b. Thus, a discontinuity in
the derivative of M must be accompanied by a discontinuity in A

as given by Eq. (19). For example, if

1. a is the zero matrix for all t

2. b is the zero matrix for t ^.0" and is a matrix of

constants bQ for t > 0 ,

then

M(t) =MQ e °
-btt (20)

since the system is now time invariant when k = 0.
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and

dA =bn A (21)
dt 0

so that -b+t
A=(A" +b+ MQ) e ° . (22)

Several rather obvious applications are the following:

1, Given a single time-varying element, find the time vari

ations of other elements required to make the system behave as the

time-invariant system, described by MQ, A~ .

2. Given a time-varying system with undetermined stability,

find an equivalent system (possibly time-invariant) for which stability

is more readily determined.
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