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ABSTRACT

We consider a coherent, white, Gaussian channel, through which one

of two signals is sent to a receiver which operates as an optimum sequen

tial detector. A noiseless feedback link is assumed, which continuously

informs the transmitter of the state of the receiver's uncertainty concern

ing which signal was sent, and which also synchronizes the transmitter

when the receiver has reached a decision. The transmitter, in turn, uses

the output of the feedback link to modify its transmission so as to hasten

the receiver's decision.

The following problem is posed: given average- and peak-power con

straints on the transmitter and a prescribed probability of error for the

receiver, what signal waveforms should the transmitter use in order to

minimize the average transmission time, and how should it utilize the fed-

back value of the receiver's uncertainty to modify these waveforms while

transmission is in progress? We give partial solutions to these questions.

In particular, we have shown that if the peak-to-average power ratio is

sufficiently large, significant improvement of performance may be achieved

through the use of uncertainty feedback.

The work reported herein was supported by the Department of the Air
Force under grant AF-AFOSR-230-64.

Department of Electrical Engineering, University of California, Berkeley3
California.
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INTRODUCTION

Consider a channel disturbed only by additive, white, Gaussian noise

n, defined on the time interval (-co, co). Through this channel, one of

two signal waveforms s and s , defined on [t , co), may be trans

mitted with a priori probabilities P and P , respectively. The output,

z, of the channel may therefore be either of the form z = s + n

(hypothesis H ) or of the form z = s + n (hypothesis H ). Suppose that

z is observed over the time interval [t , t], where t is a parameter

taking values in [t > co); denote this observation by z .

The optimal sequential test for deciding between hypotheses H and

H , given the sequence of observations \z j i.e. , the procedure which
minimizes the expected time to make a decision for given probabilities of

erroneously deciding H and H is known to be the following: We

first form

A Pr [VZtJ
y(t)=log —— (t>t), (1)

Pr [H_/zt] ~ °

where Pr [H /z ] are the a posteriori probabilities of H , given z ,

and

A P4- Ay(tQ) = log -± ^ yQ . (2)

No decision is made for t < t < t + T, where
o — o

t + T = sup {t : Y_ < y(t) < Y+ } . (3)

It is decided that H is the true hypothesis if y(t + T) = Y ; it is de

cided that H is true if y(t + T) = Y • Since y(t) is clearly a random

process, T is a random variable, and it is its average,
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E[T] = P, E[T/H ] + P E[T/H_], which is a minimum for the receiver

utilizing this procedure.

The thresholds Y may be related to the given error probabilities

as follows. We note that whenever it is decided that H is true, i. e. ,

the test stops with y = Y , we have from (1):

-y.Pr [H_/zT] =e + Pr [H+/zT] . (4)

Averaging (4) over all observations zT which lead to decision H , we
obtain

-Y

P_ P* = e + P+(l - P®) , (5)

where P (P ) is the probability that H (H ) is chosen incorrectly. A

similar expression involving Y may be obtained. Solving these ex

pressions for Y , and using (2), we obtain

i-p?
'+= yo t lQg —-r- • (6)

+

e e e
The average error probability is then P = P_ P + P P .

For the assumed channel, one may easily derive an expression for

y(t):2

y(t) =yo+l|- f W[y(T)'T] " s-[y(T)'T]} z(T) d'
O N-'t

o

- -j^p I {s+ [y(t),t] - S_ [y(T),T]} dT ,
o J t

(7)

where N is the (single-ended) noise power density (watts/cps). In (7),

we have written the dependence of s on t both directly and also through
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y(t), the latter in order to allow for what we shall call uncertainty feed-

back. That is, we allow the receiver (observer) to feed back to the trans

mitter the current value of y, thus indicating the state of the receiver's

uncertainty concerning the transmitted signal. The transmitter may then

make modifications of the two signals s which modifications are known

to the receiver the object being to improve the progress of the test. The

feedback link also allows the transmitter to be informed when the test has
3

terminated, so that transmission of a new binary digit may begin.

We consider in this paper the problem of choosing the signals s , sub

ject to certain constraints on power, so as to minimize E[T] for given

thresholds Y, (i. e. , given P ); it is assumed that the receiver, which has
T T

previously been optimized for a particular pair of signals, remains optimized

as the signals are varied so as to find the best pair.

FORMULATION OF THE PROBLEM

If we differentiate (7) with respect to t and substitute z = s + n in the

result, we obtain

**- - +
dt

N
A2 + 2

N
A n (8)

where A = A(y, t) = s (y, t) - s (y,t). This is a generalized Langevin equa-
4 +

tion and, since n is a white, Gaussian process, it follows that y is a

Markov process. If we let p (y,t/y ,t ) be the transition probability den

sities of y under the hypotheses H, , respectively (i.e., p,(y>t/y , t ) is

the probability density of y(t), given that y(t ) = y and that H is true),
4 -then p satisfy, respectively, the Fokker-Planck equations

aP+

at

+

3y

r*2 i
9y N

(9)
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subject to the initial conditions p, (y, t /y0»t ) = 6(y - y ) and suitable
boundary conditions on p at y = + co.

We are not interested in the probability densities p themselves, but

rather in the probability densities q,(y,t/y ,t ) defined by the statements:

q (yx,t,/y ,t ) dy = probability that if H is true and y(tQ) = y , then
yft,) lies in (yr yx +dy) and Y_ <y(t) <Y+ for all tQ <t <ty These are
the densities which describe the uncertainty of the receiver at a time t.

when the receiver is still testing. Notice, however, that they are not

proper probability densities, since

1
Y

+

Y vy^/y°,to,dy

= Pr [Y_ < y(t) < Y+, all tQ <t <tj/yftj = yQ; H+ ]

A

= VVW • (10)

which is not generally equal to unity. (F are so-called "first-passage"

probability distributions of y(t); in the present context they are the prob

abilities that the receiver has not made a decision by time t., given that

H , is true, respectively. )
+ 5

It has been shown that q satisfy the same differential equations as

p+, i- e. ,

3q+
= + JL

8t 8y

rA2 1 + 82 Ta2 1
(id

subject to the initial conditions q,(y,t /y , t ) = 6(y - y ) and the bound

ary conditions q,(Y,, t/y ,t ) = q (Y,, t/y ,t ) = 0. Thus, if we can
1 ^+ + OO - T oo

solve the equations (11), we can use (10) to compute F(t/y , t ), the

probability that the test has not stopped by time t:
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F(t/yo,t Q) ^ P+ F+ (t/yo, tQ) +P_ F.(t/yo> tQ) . (12)

Further, since f(t/y , t )= - 8F(t/y 5tQ)/at is the probability density
distribution of the stopping time, we have

lo +T(yo} ~ *o +E[ T/yo] =J t f(t/V to) dt • (13)
o

Thus, we must try to choose s , subject to constraints, so as to minimize

(13).

A SPECIAL CLASS OF SIGNALS

The equations (11) are difficult to solve in general because A(y, t) may

depend in quite a complicated way upon its arguments. However, some

progress may be made by considering only the class of signals of the form

s+(y,t) = + U+(y) o-(t) , (14)

where we take U to be positive functions of y. By limiting ourselves

to this class of signals, we restrict the transmitter, on learning the state

of the receiver's uncertainty, to an adjustment only of its instantaneous

power output. If the transmitter sees that the receiver is heading toward

a wrong decision, it may, for example, increase the power drastically,

while leaving the power small if the receiver is doing well.

Substituting (14) into (11), we obtain the differential equations

N 8q+ „ „2
o [U2q+] +-^y [U2q+] , (15)= +

o-2 at ay - ay2
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where we have set U = U + U . These equations may now be solved by

the usual separation-of-variable technique, i.e. , by assuming solutions
7

of the form q (y,t/y , t ) = u(y) v(t). It is easily demonstrated that the

solutions obtained in this way depend on t and t only through the func

tion

R<t'to>- TT- I ^(T)dT . (16)
o ^t

Thus, the transition densities q are "nonstationary" i.e., do not

depend on t and t o

constant function of t.

depend on t and t only through their difference unless <r(t) is a

If we now define two new functions q by

q+(y>t/yo,tQ) = $+ [y,R(t,to)/yo] , (17)

and make the change of variable

t' = R(t,tQ) , (18)

it follows from (15) that q satisfy

A

3 q 2

_A =+ _A_ [u2n +-LT [U2^,] • d9)
at' 3y - dy -

These are recognizable as Fokker-Planck equations for Markovian pro-
4

cesses for which the transition densities are stationary. Thus, the non-

stationarity of the transition densities of y(t) derives from local expan

sions or compressions of the time scale: stationarity can be obtained by

expanding the time scale at time t by a factor 3R/8t.
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It is important to recognize that the solutions q of (19), and the

functions derived from them below, are not dependent on <r(t).

"We define

Y

F, (t'/y.) =./ q, (y,t'/yjdy , (20a)
f ++(t,/y0>=J q+(y.t'/y0)dy ,

F(t'/yo) = P+ F+(t'/yQ) + P_ F_(f/yQ) , (20b)

f+(f/y) =- -?- F,(f/y ) , (21a)
i ° at' -

f(t'/yj =- -i_F(t»/yn) • (21b)
° at»

Then, from (10), (12), (17) and (18) we have

F+{t/*o'to) = ^+ ^'^V1 ' (22a)

F (t/yo'to) = F[R(t,tQ)/yo] , (22b)

M^o'V - " 4 ^'V'o* =M***' 'cW 4- R(tjto) ' (23a)

^VV = *[*(*> V^o] "Jr R(*.to) • (23b)

Hence, we may rewrite (13) as

to + T(yo} =- f t ^[R^V^o1 "lr R(tjto) dt * (24)
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2
If we assume or (t) to be almost nowhere zero, then R is monotone in

creasing in t, and we may write a unique inverse of the transformation

(18):

t = t + r(t') . (25)

Then, using (18) and (25), (24) becomes

*•£
co

T(yJ = | r(f)f (t'/yo) dt' , (26a)

or, integrating by parts and using (21),

T(y ) = f iliil F(t'/y ) dt' . (26b)
° Jo dt' °

We now derive an expression for the average transmitted power. First

consider the class *1L of all member functions of the process y which

stop i. e. , first reach one of the thresholds at time t. The instan

taneous power transmitted at tinne t (t < t < t), given that H is true and
2 2 o — — +

that y(T) = T), is U (n) cr (t). If we average this over the conditional dis

tribution of n, given y € 'jr.* !•> ©• , over

f+(t/r],t) %(^T/y0»t0)
pr(ri, T/y ,t ;H ; y e fy ) = — : ,

I ° ° (27)

we obtain the average instantaneous power transmitted at t, given that

H is true and that the test stops at t. If we now take the time average,

over the interval [t , t] , of this (statistical) average instantaneous power,

we obtain

-9-



2 f+(t/T|,T)q+(T|f T/yo,to)
S,(t)A-l P dror2(T) P dt! U2

t t - t ^t ^Y T f+<t/yo'to)1 ° ° (28)

which is the average power expended over the interval [tit] for all tests
ending at t, given that H, is true. Now, further averaging S+ over the
distribution of the stopping time t, i.e., over f (t/y , t ), we have

5+ = r°Yrr f dT °"2(T)J dT1 U+h) f+(t/T1,T) q+(T,,T/y°,to) ' (29)
o °

which is an expression for the average transmitted power, given that H

is true. Next, transforming the variable t in (29) according to (18) and

(25), and also transforming the variable t according to

t' = R(T,t ) , t = tQ + r(T') , (30)

we obtain, using (17) and (23),

, Y+
S =N r°° -^- f dT' P dr, U2(n) f,(t' - r/n)^ (r,, r'/y )
+ ° Jo r(t') Jo Jy_ +- +- + °

(31)

Finally, averaging (31) over the a priori probabilities of H , we have an

expression for the average transmitted power,

co g(t'/yj
S = N / — dt' , (32)

•(f)

poo g(t7yQ)
° Jo r(t')

where we have set

g(f/yQ) = P+ g+(f/yQ) + P_ g.(f/yQ) (33a)

and
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Y

g+(f /yJ — P dT' / dTi u^N f+(f - T' /'i) 3. (*i,T»/yft) •t°Jo ^Y_ t t t ° (33b)

Suppose now that the transmitter is peak-power limited, so that

S+ (y,t) =o-2(t) U2(y) < Ppeak . (34)

2 2 2
We denote by A the maximum of the values attained by U and U . Then

we must have

cr2(t)< -E2S* (35a)
~ A2

or

Jf R(t,t)< -jpL- A a (35b)
az ° ~ A2 N

o

or

— r(t') > i- . (35c)
dt' ~ a

Notice that the average and peak powers cannot be chosen completely in

dependently, for, noting that r(0) = 0, we have from (35c)

r(f) > •£!• , (36)

and hence, from (32),

pPeak r°° gft'/yp)S < —K^L I ^_ dt' . (37)

We may now reformulate the problem stated after (13) for the class

of signals defined by (l'"t): Given an average-power constraint ~S = F* ,
av

with ;§" given by (32), and given the peak-power constraint of (34) or
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(35), how should o- (t) and U (y) be chosen so as to minimize the

average test length, (26)?

PARTIAL SOLUTION OF THE PROBLEM

Let us first consider the case in which there is only an average-

power constraint, but no peak-power constraint, so that the quantity

a in (35) is infinite. Then, applying the Schwarz inequality to the pro

duct of (26a) and (32), we obtain

S T
>

N -
o

J V?(t'/yo)t(t'/yo)Xdt'

the equality holding if and only if

r(t') = c
§ (Wy0>*

*(f/y0>

(38)

(39)

where c is a constant. Notice from (19) et seq. that the lower bound of

(38) depends on the signal waveforms only through U(y), but not through

a- (t). Thus, if U (y) are given, and S is constrained to equal P ,
i cLv

TT achieves its minimum value only if r is of the form (39), where c

is adjusted, using (32), so as to satisfy the average-power constraint.
2

The optimal <x (t) corresponding to (39) may then be found through use

of (16), (18) and (25).

In the other extreme, when there is a peak-power constraint but

no average-power constraint, it is clear from (26b) that T" is minimized

when dr/dt1 is taken at its minimum value for all t1, i. e. ,

or

dr<t'> = -L , all f >0
dt' a

-12-
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o-2(t) = pe2ak , all t> t . (40b)
A

When the peak- and average-power constraints are both operative,

the problem becomes considerably more difficult to solve. It is shown

in Appendix III, however, that if we assume U (and hence f and §) are
given, then the following assertion may be made: If r yields a minimum

of T^ it must be possible to write it in the form (39) in some intervals

of t', and its derivative in the form (40) in the remaining intervals, the

entire solution being subject to the two power constraints and also to the

conditions that r must be continuous in t1 and r(0) = 0. Such an asser

tion narrows down the class of functions r that must be considered. We

defer further discussion of the doubly constrained problem until the ex

amples of the next two sections, remarking here only that the introduction

of a peak-power constraint, by preventing the satisfaction of (38) with the

equality sign, results in a larger value of T (for a given S) than could be

achieved without such a constraint.

Note that we have been assuming at critical points that the functions

U+(y) are given. Under this assumption, we may be able to find the opti-
2

mal or (t) associated with the given U (y). The question remains, for

what pair of functions U,(y) will the T" associated with the optimal
2

cr (t) thus found be absolutely the smallest? The explicit answer to this

question appears unobtainable, for it would seem to involve knowledge of

a general solution of (19), explicit in terms of U(y), together with an

ability to evaluate (20), (21) and (33) in terms of this solution.

We therefore restrict ourselves to consideration and comparison of

two specific pairs of feedback functions. One of these pairs corresponds

to the case in which the receiver's uncertainty is not fed back to the trans

mitter. The other pair corresponds to linear feedback of the uncertainty

variable y.
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SYNCHRONIZATION FEEDBACK

We first investigate the case U+(y) = U_(y) =1/2, U(y) = U (y)
+ U (y) = 1. In this case, the state of the receiver's uncertainty does

not affect the transmission; the feedback channel is used only to notify

the transmitter that the receiver has made a decision, so that the trans

mitter and receiver may be synchronized for transmission of the next

bit of information.

The functions q,, F, and f, for the case U = 1 have been

derived in Appendix II.

We note first that, since y is a Markovian process, the inner

integral of (33b), with U = 1/4, is just equal to f(t'/y )/4. Hence,

!+(f/y0)

and

g(f/yo)

-it' *.(f/y0)
A + O

7-t1 fy'/yj •
4 °

From the assertion given subesequent to (40), it follows that, if a

solution exists, it must be of the form

where, from (35b),

2 C-/P
r IP VP ,0 < f < t'

- - p
r(f) = J

^
I [f +(2C- 1) t» ], t» >t'

4 P

a =
peak

N

(41)

(42)

(43)

(44)

and the constant C must not be less than unity, so that (35c) will not

be violated.
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The parameters C and t' may be related by substituting (43)

into (32) and invoking the average-power constraint:

r . „ p
av1 P? t' flt'/y )df + P ^(t'/y )dt' =

2CvfT" J0 ° ^t* t' +(2C-l)t' P ,v p P P peak

(45a)

We may also substitute (43) into (26a) to obtain:

—» t'2C-*/;' f\ p -_ A i poo A
T(y ) = 1J2- Vt/fft'/y )dt' + - / [f +(2C-l)fr]f(t'/y )df .

° a vJ0 ° a Jt' pj o
p (45b)

We must now solve (45a) for C as a function of t' (remembering that

C > 1), substitute the result into (45b), and then find the value or values

of t' which minimize T"; the value(s) of t' thus found may then be
P P J

used to evaluate C For each pair of parameters t' and C so derived,

we have a possible solution of the form (43). If we assume -- as is

physically reasonable -- that a solution does indeed exist, any one of

these solutions will serve as an optimum.

Through use of (16), (18), (25) and (44), we may convert (43) into an
2 8

expression for or (t):

2aP 2Cf

—2 P (t - tJ , 0 <t - tn < 2-
C-fp ° " °" a

o-2(t) <J P (46)
2Ctf

4P , , t-t >
peak o

Thus, the optimum policy for the transmitter is to increase its instan

taneous power linearly from zero until t-t = 2Ct' /a, and to transmit
F o op

at peak power thereafter.

The two extreme cases we have previously discussed, viz., those

in which only one power constraint is operative, are easily reduced to
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special cases of the general case above. When there is no peak-power

limitation, i. e. , P ,—>co, then from (45a) we have t' —>co (in fact,
peak P

t' /a—>co). (Then, from (45b) we see that T is minimized by taking
P

C = 1.) The transmitter's policy is thus to increase power linearly as long

as necessary to terminate the test.

The other extreme, in which there is no average-power constraint

other than that implied by the peak-power constraint, corresponds to the

condition P /P , = 1 -- see (37) and (42). In this situation, (45a) has
av peak *

the solution t' = 0, and (46) reduces to (40b). The transmitter's policy

is thus to transmit at the allowable peak power at all times.

LINEAR FEEDBACK

We henceforth restrict ourselves for simplicity to the symmetrical

case of equal a priori probabilities, P = P =1/2, and equal error

probabilities, P® =P^ . Then, from (2) and (6), yQ =0 and Y+= -Y_— Y.
In this section we consider the class of feedback functions described

by

(47)vy)= Kitk yL
where |k| < 1. The case k = 0 is the case of synchronization feedback,
previously discussed. When k < 0, the transmitter increases its power

quadratically as it sees the receiver progressing toward a wrong decision;

when k > 0, the power is increased quadratically as the receiver progresses

toward the correct decision.

Note that U, have been chosen so that again U. + U =1; thus the
T + -

expressions for q and f derived in Appendix II again hold. Substitu

tion of (A2-5) and (A2-9) into (33), followed by considerable manipulation,

leads to the following asymptotic formula for g(t'/0):

S(f/0) y^^)^ (1 +k)2 f f(t'/0) . (48)
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We have seen in (42) that this limiting form is indeed exact for all Y

(and for the nonsymmetric case also) when k = 0. When k ^ 0, the

result holds as Y >co, which, from (6), corresponds to small error

probability.

It is clear that (43) and (46) still hold asymptotically (Y ^ co) in

the present case, where (44) is now replaced by

a = peak = peak ^ (4<?)
A*N N (1+ |k|)2

o

and (45a, b) become

1 f P •/-* * , P°° t' * ,- yF f(t'/0) dt« + / \ f(t'/0) dt'
2cyP J0 Jt< Z + {6^ '^p

T p P

JJJ_M_V ^ (50a)
' peak

2C JtP pp A , poo A
T(0) = ~-£- I yPf(t'/0)dt' + ^ I [f+(2C-l)t'1 f(f/0)df .

P
(50b)

From (37) we see that, as in the case of (45a), the right-hand side of

(50a) cannot exceed unity. The discussion following (45) holds equally

here; notice in particular that the optimum values of C and t' ob

tained from (50) do not depend on k when k > 0.

As before, when there is no peak-power limitation, i. e. , P v^°°»

then t' —>oo and C = 1, and the optimum o- (t) increases linearly and

indefinitely. In the other extreme, when the peak-power constraint is

the controlling factor (i. e. , P = L •« . ) P , ), then t' = 0, and

-17-



and cr (t) becomes a constant function of t. Note, however, that for

the present case of linear feedback, the instantaneous power actually
2

transmitted is no longer of the form o- (t), as in the case of synchroni

zation feedback; now the transmitted power has the form cr (t) U+ |_y(t) J ,
which, except when k = 0, is a random process.

It would be of interest to find, for various peak-to-average power

ratios, the value of k which minimizes T". We shall consider here

only the two extreme cases in which only one or the other power con

straint is operative.

In the case in which the transmitter is strongly peak-power limited,

(50b) becomes

N(l+|k|)2 poo A
T(0) = —°- I f f (t'/0)df, (51)

4P . Jo
peak

whence it is clear that we should optimally take k = 0. This, of course,

makes good sense, since any other choice would result in the trans

mitter's not always utilizing the full peak power available to it. No advan

tage is gained in the strictly peak-power-limited case by using the feedback

link for anything but synchronization feedback.

On the other hand, when there is essentially no peak-power limitation;

so that t' >oo and C = 1, we have, from (49) and (50a),

J^p /—l 4 P
Vf f(t'/0)dt'—> ^- = (52)

0 N (1 + k)2 -vf7"* Jo N (1 + k)'
v p ox

whence (50b) becomes

N (1 +k)2 r poo -12
T(0) = - / Vf f(t'/0)df . (53)

4 P L^o J
av

In this case, taking k = -1 minimizes T, and in fact reduces it to zero.

This is a misleading result, however; for, from (49) and (52) one may
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easily show that (46) now becomes

(r2(t)= iz^l rp^^'/ojdtn-2 (i+iki/ u-t),
N LJo . J (1 + k)4 °
° (t>tQ) (54)

so that taking k = -1 would require the transmitter immediately to

transmit infinite power (although for an infinitesimally short time).

In practical situations, of course, the peak power is constrained.

None the less, if the peak-to-average power ratio is sufficiently large,

we may take (53) and (54) to be approximately correct, so long as k

is sufficiently removed from -1; (54) will then violate the peak-power

constraint only during very improbable tests of very great length. Under

these conditions, we see from (53) that use of uncertainty feedback can

result in an appreciable power advantage over the synchronization-feed

back case, k = 0. For example, if the peak-to-average power ratio is

sufficiently large, and we take k = -1/2, linear uncertainty feedback can

result in the same average transmission time and the same probability

of error as synchronization feedback, but with 6 .db less average power;

equivalently, with a given average power and error probability, one could

transmit four times faster by using this type of uncertainty feedback than

by not using it. Note, however, that a choice of k > 0 would result in a

power disadvantage. Thus, the transmitter should use its knowledge of

the receiver's uncertainty in such a way as to increase power as the re

ceiver tends toward a wrong decision.

THE RADAR CASE

We close by commenting on the modifications that must be made in

the foregoing analysis to accomodate it to the radar case. In these

comments, we identify H with the hypothesis "target present" and

H with the hypothesis "target absent. "
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There are four major differences which distinguish the radar from

the communication case:

D, - One cannot usually specify a priori probabilities in the

radar case.

D? - Unlike a communication transmitter, a radar transmitter
cannot know which is the correct hypothesis. In fact, a

radar transmitter always transmits the same signal, which

we here assume is of the form o-(t) U [y(t)J • The function U,
rather than being the sum of two feedback functions, as

previously, is now the feedback function which is always used

by the transmitter.

D, - From the point of view of the radar receiver, there are none

the less two distinct signals possible: s (y,t) = o-(t) U(y) and

s (y,t) = 0.
3

D. - The postulation of a noiseless feedback link is always valid

in the radar case, since the transmitter and receiver are at

the same location.

Difference D, leads to a redefinition of y(t) of (1) as a likelihood

ratio rather than a ratio of a posteriori probabilities. The test defined in

(3) et seq. is then Wald's sequential probability ratio test, which simul

taneously minimizes T = E [T/H ] and T = E [t/H ] for given false
alarm and detection probabilities, Pj and 1 - Pe, respectively. These
probabilities are related to the thresholds Y by (6), with y =0.

From the new definition of y(t) and from D~ it follows that we must

take y = 0 and s =0 in (7). Then the analysis leading to (19) carries

through, where U is now the function defined in D^* and y is always

replaced by 0. As before, differential equations (19) must be solved for

q , and f of (21a) must be evaluated in terms of these solutions. Now,

however, separate expressions analogous to (26a) must be written for T

and T^ in terms of f and f , respectively; (26a) itself cannot be

written because of D,.
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Similarly, we cannot write the expression for S in (32), but must

be content with the values of "5 and S given by (31), into which we

may substitute (33b) for brevity. In these latter equations, we must

replace U, with the function U defined in D-,, for the calculation of

average power is based on the transmitted signal of D2, rather than the

received signals given by D-,.

The problem now becomes the following: For a given feedback

function U, and subject to specified values of S and to inequality (35a)
2 2 -

(where A is now the maximum value of U ), find the o-(t) which

simultaneously minimizes T and T . Unfortunately, it may no longer

be true that there is an answer to this problem, i* e. , a single o-(t) which

results in a simultaneous minimization. For example, if we consider the

case in which there is no peak-power limitation, we may carry through

much as before, arriving at two inequalities of the form (38), one for ST

and one for S T • We would thus find that in order to perform the simul

taneous minimization, it would be necessary to make r(t') proportional to

both Vg,/f, and "yg /f • In the case of synchronization feedback

-- i.e. , U(y) = constant -- this is possible, since, from (41), both "y g,/f,

and y g /f are equal to y t'/2 . In other situations, however, such

an ideal solution may not be available, and a compromise solution must be

sought.
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APPENDIX I: SOLUTIONS OF (15)

We assume solutions to (15) of the form q,(y,t/y , t ) = u (y)v (t)

and substitute this form into (15), obtaining

N
o

dv
+

dt

1

(; dI dy dy
2cr v+

[U2 u±]} •
(Al-1)

Since the left-hand side of (Al-1) is a function only of t, and the right-

hand side only of y, both sides must equalfa constant, say -\. Then

u, and v, satisfy the differential equations
+ +

(A2-2a)
Li ut -X u ,

dv±
X

dt N
o

cr2 v+ , (Al-2b)

where the differential operators L are defined by

2

W u(y) A + d
t ^ L. -i dy

Equations (Al-2a) must be solved using boundary conditions u (Y )

= u (Y_) = 0. Discrete sets of solutions exist, which we label |u_/ '}
and |u ^ '\ , respectively; we denote the corresponding sets of eigen-
values by {\|n)} and {\_(n)} .

Consider now the linear space -<i of twice-differentiable functions

defined on pY , Y J and vanishing at the endpoints of this interval.
Define an inner product between two elements u, we *& as

|u2(y) u(y)j +-^- hJ2(y) u(y)l . (Al-3)
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<u,w>u ^ J U(y) u(y) w(y) dy , (Al-4)

where we take U to be a positive and twice-differentiable function defined

on [~Y , Y 1 • Now, L and L are linear operators on ^ , and in
fact it is easily shown, using integration by parts, that L is the adjoint

of L , i.e., for u,we >o ,

<u,L+w>u = <L. u'W>u • (A1"5)

It follows that the eigenvalue sets {\, } and \X } of L and L
are identical; we denote this common set by |X/ '} . Further, integration
by parts shows that for u€ Jl , <CjJ. u'u^>tt £ °' with equality if and
only if u is the zero function. Thus, there are no zero-valued eigen

values, and, in fact, Vn' > 0 for all n. Therefore, (u!_ } and {u*n'}
both span J& and form reciprocal bases, i.e. ,

<»'m) • ".(n)>u = *mn • (Al-6)

where we have normalized the eigenfunctions by assuming that

\u , u ^> = 1, and we have assumed that if, corresponding to an
eigenvalue X., there exist more than one pair of eigenfunctions u and

u , these have been orthogonalized so as to satisfy (Al-6).

For any eigenvalue V , (Al-2b) maybe solved, yielding

v(n)(t) =k(n) e-X(n)R(t,t0) , (Al-7)

where R is defined as in (16), and k are constants.

The general solutions of (Al-1) rnay be written as

q+(y.t/y0,to)= | cf> uf» (y) e-^n)R<t.to> , (A1.8)
n = 1
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where c^ are constants. We now impose the initial conditions

q+(y't0/y0'to) = 6(y ' yo*' i,e''

(n) „(n)

n = 1

Then, using (Al-6), we have

6(y - y0) = 2 c+n) u|n) (y) • (A1-9>
n = 1

Y

U(y) u(m) (y )= / U(y) u(m) (y) 6(y - y)dy
O - O vJY + °

sr- (n) ^ (m) (n)^ _ (m)

n * i " + " " (Al-10)

so that

/ w * x tt/ v ^ (n) / \ (n) / x -X(n)R(t,t0)q+(y>t/yQ,to) =u(yo) 2. u. (yQ) u+ (y) e
n = 1 +

Correspondingly, using (17), we have

(Al-11)

co , . , . .(n) ,
q+(y.t'/yo) =u(yo) 2 u. (yQ)u+ (y) e • (A1"12)

n = 1 +
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APPENDIX II: THE CASE U = 1

The functions q may be evaluated through the Laplace-transform
- 14

method of Darling and Siegert. We continue, however, in the frame

work established in Appendix I, which has certain advantages here.

In particular, we consider the case in which U = U + U =1. Then

the solutions of (Al-2a) are easily shown to have the form

y f cos nw

uf>(y> =a]n> e" 7 J ° .(A2-1,
sin ncoQ (y - y^, n = 2, 4, 6, . . .

where

(y - yx). n = 1, 3, 5, . . .

w0 = y *"" Y ' (A2-2a)
+

Y + Y

yx = + • (A 2-2b)

The corresponding eigenvalues are

\{n) = n2co2 + I (n =l,2,...) . (A2-3)
o 4

In order to satisfy the normalization assumed in (Al-6), we must have

(n) (n) o ,., ,.a' ' av ' - . (A2-4)

We therefore have from (Al-12), after some manipulation,

wo +(y-y )/2 oo (eJ ,
q+(y>f /yo) = — e 2. Lcos nwQ(y-y0> ~ cosnc0o(y +yo-2Y+)Je

n = 1

(A 2-5)
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15
Equation (A2-5) may be rewritten in terms of the Jacobi Theta function

co 2 2

9Q(u, itt) =1+2 > e cos 2n ir u
n = 1

v2
u + n

oo % '

= T=W 2 e • «A2-6)
n = -co

16
which is a tabulated function. Then, using (A2-3), (A2-5) becomes

y -y0
CO + _ .. i .

a . , , . o I 2 -t'/4q+(y>f/y0) = e * e
2 IT

{r-co icot1-! rco iw t'l"!e3r_o- ,y-yo,, _i_].eJ-0(y+yo.2Y+,. -£_]}.
(A2-7)

Note from the second equality of (A2-6) that, for very small t1, the func

tions q in (A2-7) are approximately Gaussian with mean y and
- 2 2 °

variance (co t'/2Tr ). As t' >co, q spread out over the interval

[Y, , Y_J, with areas decreasing exponentially with t1.
W e now evaluate F (t'/y ) by integrating (A2-5)

Y 2
a P + 2 co co \(nL,F±(f/y0)= J qt(y,f/y0)dy =—°- £ n 'X *

ir n = 1 (n)

e sin nco (Y, - y ) + e sin nco (y - Y ) •
l— ox + ' o' owo -'_}

(A2-8)
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Differentiating (A2-8) with respect to t' and using (21a), we have

f+(t'/y0) =
2 co co

TT n = 1

-vK

^ - y,[.*^ 7 o

+ 2—
sin nco (Y, - y ) + e

ov + 7o
sin nco (y - Y ) .

ow o -_J
(A2-9)

Notice from (A2-6) that

oo

9' (u, iTTT) = -4 TT
n =

2 2
-n TT T ->

n e sin 2niT u , (A2-10)

where the prime denotes differentiation with respect to u. Thus,

2 t1 f . Y+ " yo _ .2
co

O "1"
e le

+ e

y - y
'o

6!

co ico t1 ~1

T2- <*+ - Yo>. -M__2 TT TT _J

CO

L2-TT

ico2t' -
-(y0-Y.)> ——

TT _J

(A 2-11)

We remark that in the symmetric case in which Y. - y =y -Y = Y, the
1 + J o J o

bracketed factor in the summands of (A2-8) and (A2-9) becomes simply

2 cosh (Y/2) sin (n rr/Z), and the terms corresponding to even-valued n

vanish.
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APPENDIX III: MINIMIZATION OF T

We seek an r(t') such that

co A
T = / r(t') f(f/yo) dt» (A3-1)•fJ0

is minimized, subject to

g(f/yJrg(t/y0]

r(t')(f)

and

dt' = P (A3-2)
av x

d r(t') = r»(t')> - . (A3-3a)
dV v ' v '- a

We first rewrite (A3-3a) as

r'(t') = I + x2(t') . (A3-3b)

We than have a standard variational problem in three functions -- r(t'),

r'(t') and x(t') -- and two coi

a minimum of the functional

17r'(t') and x(t') -- and two constraints. Any solution must therefore be

Xoo

H£(f), r'(t'), x(t') J dt' , (A3-4)
'0

where

a a g(f/y ) 2 1 -,HA r(t') f(f/y ) + \ — + K2(f) [r'(t') - x^(t') - i],
r(t') a

(A3-5)

with X., a constant and \? a function, both to be determined.
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or

17A minimum of the functional must satisfy the two Euler equations:

9H d 9H

8r dt' ar

= 0 (A 3-6a)

— = 0 , (A3-6b)
9x

a d \0
f - Xx -i- - — = 0 (A3-7a)

r2 dt

2 \2 x = 0 . (A 3-7b)

If we assume that \2 and x are reasonably well behaved, then, except

for isolated points, (A3-7b) can only be satisfied if either x = 0 over an

inte rval

(A 3-3b)

18interval or X.^ & 0 over an interval. In the former case, we have from

r' = - . (A3-8)
a

In the latter case, we must have d K^/df = 0 over the interval, whence,

from (A3-7a)

r = V\ g/f • (A3-9)

Thus, any r which qualifies as a solution of the problem must satisfy

(A 3-8) over some intervals of t' and (A3-9) over the remaining intervals,

with \x of (A3-9) being adjusted so that (A3-2) holds. Of course, (A3-9)
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cannot apply in an interval in which it would violate (A3-3a). In addition,

it is clear from (16), (25) and (35a) that only those solutions which are

continuous and for which r(0) = 0 are acceptable.
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FOOTNOTES

1. D. Blackwell and M. A. Girshick, "Theory of Games and Statistical

Decisions," John Wiley and Sons, Inc. , New York, N. Y. , Chap. 9;

1954.

2. P. M. Woodward, "Probability and Information Theory, with Applica

tions to Radar, " McGraw-Hill Book Co. , Inc. , New York, N. Y. ,

Chap. 4; 1953.

3. We assume that the feedback channel is noiseless. This may be a

reasonable assumption in such cases as that of telemetry from a

satellite, in which the transmitter, on the satellite, is of low power,

but the ground-based receiver may have associated with it an ex

tremely high-powered feedback transmitter. See also the discussion

of the radar case at the end of the paper.

4. J. L. Doob, "Stochastic Processes, " John Wiley and Sons, Inc. ,

New York, N. Y. , Chap. VI, Sec. 3; 1953.

5. R. Fortet, "Les fonctions aleatoires du type de Markoff associees

a certaines equations lin&ares aux derivees partielles du type

parabolique, " J. Math. Pures Appl. , vol. 22, pp. 177-243; 1943.

6. We assume that F(co) = 0, so that f is a proper density. This

assumption is equivalent to assuming that R(t,t ) of (16), below,

satisfies R(co, t ) = oo; see Appendix I.

7. See Appendix I.

8. Note that (46) specifies low-pass waveforms as the optimum choices.

The usual narrow-band approximations show, however, that little is

lost by using instead an equivalent band-pass waveform, of which (46)

is the squared envelope.
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9- It is tempting to conjecture that C should always be set equal to

unity, so that the optimum transmitter strategy is to increase

power linearly until peak power is attained, and then to remain

at peak power. However, it has not proved possible to prove this

conjecture, and, in fact, similar problems in optimal control

theory lead to discontinuities such as that shown by (46) when C ^ 1.

10. Notice that, since the receiver would immediately (T = 0) and with

high probability (P —> 0) approach the correct threshold, the effect

of the feedback control of the transmitter power is immediately to

cut the power down to zero in a quadratic manner (see (47)).

The result given in (54) is of considerable theoretical interest,

for it implies that with proper feedback it is possible, with finite

average power, to obtain arbitrarily small error probability in an

arbitrarily short average time, so long as the allowable peak power

is unlimited. Such a result does not obtain in the absence in uncer

tainty feedback.

11. Further, Viterbi has shown that sequential detection with synchroni

zation feedback is itself 6 db superior to nonsequential detection in

the symmetric, asymptotic situation being considered, when constant

signals are used. This superiority will be even greater when the

optimal signals derived here are used. See A. J. Viterbi, "Improve

ment of coherent communication over the Gaussian channel by error-

free decision feedback, " Jet Propulsion Lab. , Cal. Inst, of Tech. ,

Pasadena, Calif. , Space Programs Summary No. 37-23, vol. IV,

pp. 179-180; October 31, 1963.

12. We have assumed throughout that all expressions for the signals s

are scaled so as to take into account the channel attenuation.

13. B. Friedman, "Principles and Techniques of Applied Mathematics, "

John Wiley and Sons, Inc. , p. 131; 1956.
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14. D. A. Darling and A. J. F. Siegert, "The first passage problem

for a continuous Markov process," Ann. Math. Stat. , vol. 24,

pp. 624-639; December, 1953.

15. W. Magnus and F. Oberhettinger, "Formulas and Theorems for

the Functions of Mathematical Physics," Chelsea Publishing Co. ,

New York, N. Y. , pp. 98-99; 1954.

16. F. Jahnke and F. Emde, "Tables of Functions with Formulae and

Curves," Dover Publications, New Yorji, N. Y. ,' pp. 41-45; 1945.

17. L. E. Elsgolc, "Calculus of Variations, " Addison-Wesley Publish

ing Co. , Reading, Mass. , Chap. IV; 1962.

18. The case in which both x and X.? both are zero in an interval can

be subsumed in the first case.
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