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ABSTRACT

The one-dimensional motion of electrons in O-type traveling-wave

devices is described in terms of wave mechanics. For the case of

large-signal interaction it is found that in the final stage of interaction

the electrons travel along with the phase velocity of the electromagnetic

slow wave at discrete energy levels involving Planck's constant. By

making use of the Pauli exclusion principle the saturation power and

electronic efficiency of a large-signal traveling-wave tube are obtained.

This work was carried out at the Electronics Research Laboratory
with the support of the Departments of Army, Navy, and Air Force
under contract AF-AFOSR-139-63.
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I. INTRODUCTION

The nonlinear behavior of O-type traveling-wave tubes has

intrigued many workers in the field of microwave tubes. Of particular

interest is the derivation of expressions for the efficiency of the tube

in terms of the tube parameters; a number of theories pertaining to
12 3

this subject has been published in the past decade. ' ' However,

the problem turns out to be so complicated that only by resorting

to computer calculations can reasonably correct answers be obtained,

so that the advantages of an analytic expression in terms of the tube

parameters are lost.

In the present theory the problem has been approached from

the viewpoint of wave mechanics. It is felt that the Schrddinger

equation of motion yields a more suitable starting point because its

solutions contain all the relevant information about the motion of

the electrons, the charge density, and, in particular, the energy of

the electrons. Work on the wave-mechanical description of O-type
4 5interactions has been done earlier by Brillouin. '

It is shown that the method is capable of yielding an analytic

expression for the efficiency in terms of the tube parameters,

without the need for large-scale computer calculations; moreover,

it is easy to keep track of the assumptions that are made. A

comparison with experiments is made. The results of the theory

agree encouragingly with the measured results.

II. WAVE-MECHANICAL FORMULATION OF THE EQUATIONS

If we introduce the potential

V=- IEz dz, (1)

then the equations for one-dimensional, nonrelativistic motion that

must be satisfied are
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The wave-mechanical analog of the above equations is obtained

(see Appendix) by replacing the equation of motion by the time-dependent

Schrodinger equation for the wave function \\t, letting

and

J =

p =-e i|i \\i ,

•iHe

2m
ib iL - ib ib'

(5)

}• (6)

where -ft is Planck's constant divided by 2ir and the primes denote

differentiation with respect to z. With this definition of the current

density J the continuity equation is automatically satisfied. The

two equations with which we are left are

the equation of motion,

-fc2 a2i|)
2m a*2a z

Ul _ . ^ a^,- eV^ =i1iTf- ;

and the interaction equation,

32V 82V_ e
dz at

* €H- (4,4,*" - 24;' 4/*' +i|/V!) +ty* 4i
4m
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We shall look at the case of weak reaction of the electron wave on the

voltage wave. Then, although the electron wave may contain all harmonics

of the basic frequency co, the dominant harmonic in the voltage wave

will be the zero-th harmonic (that is, has the basic frequency co). The

phase velocity co/k of the voltage wave may differ from l/y€ ji .

Thus we write

V = V + 2 V. cos (cot - kz); (9)
o l

where

e Vo =A m v2 , (10)
o L o

and v is the dc velocity of the electrons. The equation of motion

then becomes;

af±+_2me rVo +2ViCOs(wt_tan +_|n ,!£ »o. (U)
8z2

We make the substitution

where

i(co t - k z)
+(z,t) = e ° ° 4>(g); (12)

g=| (cot - kz) , (13)

and co and k are as yet undetermined constants,
o o

Then the differential equation becomes

I2 AZii_ £JC + (ik k
4 dg

dfi+dkk mc°)d<|) +r k2 2mc°° i2me •

. (V +2VL cos 2g) <|> =0. (14)
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We choose

k = ™£ =- ™v , (15)
o -if k -ftp

where v denotes the phase velocity of the voltage wave.

Then the coefficient of the d<|>/dg term vanishes and Eq. (14)

becomes

^ +̂ [" ko "T^^o +2V! cos 2*>] ♦ =o. (16)

We define

=-7[k°:?v°+^] ' (17)
. 4meV

k il

Then the differential equation reduces to the standard form of the

Mathieu equation:

-£-£- + (r\ +vcos 2g) <[» =0. (19)
dg2

It is important to recall that

so that

k 2 = HL_ v2 (isa)
° *2 P

and

™ 2 eV =HU- v2 , (16a)
.,2 o j-2 o

"K Ti
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2
, 2 2me ,, _ m / 2 2V /->n\
k —=— V = —=- (v - v ). (20)

° -ft2 ° "ft2 P °

Thus we may write for r\

24m'

k 3i

fv2 . v2 +2̂ 2_1 . (21)
p o m I

III. PROPERTIES OF THE SOLUTIONS OF THE MATHIEU EQUATION

Floquet's theorem for the Mathieu equation states that the
5

general solution can be written as

<j> =Aux (gje1^ +Bu2(g) e1^ , (22)

where u, (g) and u?(g) are periodic with period ir . Along the n-axis
in the n-Y plane the solutions are of the form e— W^ ', so that u =Jr\
and the functions u, (g) and u?(g) are constants. Alternatively, we
may write the solutions along the n-axis as cosJr] g and sin fr^ g . .

For Y ^ 0 Mathieu functions Ce (y, g) and Se (y, g) have

been defined. These functions are known as expansions in powers

of y, starting with either cos \x g or sin jxg as the independent

term. Lines of constant |i run through the n-v plane as shown in

Fig. 1. On each line, two functions Ce and Se may be computed,

except along the lines where (j, is an integer, where only one periodic
2

solution is obtained. These boundaries start from the points r\ = m

= 1, 4, 9,16, . . . on the r\ axis. Two curves u = m start from each

of these points: one curve yields the function Ce , the other Se .
r J m m

On each curve there is an additional aperiodic solution. Outside

the boundaries corresponding to jj. = integer, as shown, the Mathieu

equation has no periodic solutions. There |x = at + i|3, (3^0; a may

be zero.

-5-
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There are no periodic solutions for any value of rj < - y. We

can make the following statements about the character of the solutions:

(1) T| <- Y no periodic solutions, (x complex or imaginary;

(2) - Y < f| <+ Y [narrow bands of periodic solutions,
[broad bands without periodic solutions;

(3) *1 > Y J.broad bands of periodic solutions,

without periodic solutions.

{.broad bands of

narrow bands v

The bands with periodic solutions all become straight lines
parallel to r\ = - y at infinity. These lines intersect a line parallel
to the n-axis at the points

n=- y+(2n +1) ,^2^ (n =0,1, 2, .. . ), (23)
2

if y is greater than 2n .

IV. ENERGY LEVELS

We are now in a position to discuss the behavior of the space

charge p =-ev|i \\j. From Eq. (12) it is clear that

p =-e v|i \\i =-e $ <j> . (24)

Thus, from the discussion on the behavior of <|> in the previous section,
we find:

(1) r\ < - y, that is,

| m(v2 - v2) +lico q> 2eVr (25)

In this case no periodic propagation is possible.
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(2) - y < ti < + y, that is,

•2eVl<Im<V vo> +*wo <2 eVl • <26)

In this case there are narrow bands of periodic propagation and broad
bands where no periodic propagation is possible.

(3) n > + y, that is,

im (v2- v2)+ttoo<- 2eV1. (27)

In this case there are broad bands of periodic propagation and narrow
bands where no periodic propagation is possible.

We shall not take up the discussion of the reaction of the electron
wave on the voltage wave. Instead, we shall draw a general conclusion
about the periodic propagation in case (2) where

-2 eV1 <\ m(v2 - v2) +*<oo <2eV^ (28)

which will be the case for a strong interaction voltage 2V. (see Eq. (37)),
We recall that the momentum operator is -in" dId z. If we differ

entiate Eq. (12) for ^(z, t) with respect to z and multiply by - rft, we
obtain

•* *P •* ^o* " k~z)
" * Tz =* e °Z) [*0*<e>+7kaf] * {29)

Substituting Eq. (15) for kQ and putting k = co/v , we find |k /k| =
m vp /(Kw). For a practical case, v is of the order of one-tenth
of the velocity of light, co is of the order of 10l° sec"1. Then, Ik /kl is

- 9 o '
of the order of 10 . Considering that <j> is a smooth function of g, 7 we
find that the term 1/2 kd<|>/dg in Eq. (29) is, to excellent approximation,
negligible compared to the term ikQ <|>(g). Eq. (29) then becomes

-7-



. ^11 =-irko4) =mvp4i. (30)

Thus, the momentum of the electron is

p = m v ; (31)
r P

which means that the electron travels at the phase velocity of the voltage

wave.

Similarly, the energy operator is ift dty/Bt. If we differentiate
Eq. (12) for vj;(z, t) with respect to t and multiply by iK, we obtain

i(u t • k z) f i AA~~\

Ifx'we neglect the term 1/2 cod<j>/dg, we find

that is, the total energy of the electron is given by

W = - * co . <34)
o

We shall find that (see Eq. (37)), in the case of a strong interaction
voltage, a measure for W is 2eVr Taking co of the order of 10
sec"1, we find that coQ/co is of the order of 105 Vr Vx may be of the
order of 103 Volt, so neglecting the term 1/2 co dcj>/dg in Eq. (32)
compared to the term ico <|>(g) is, again to excellent approximation,

justified.

The bands of periodic propagation in the region - Y <n < Y

are given approximately by

r\ = - y + Un +1)/»/2y (n = 0,1, 2, . .. ) (35)
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which approximation is the better the higher the value of y. According
toEq. (18), Y=16eV mvp2/(iico)2. For the practical values quoted,
Yis of the order of 10 . The approximation made in Eq. (35) is, therefore,
utterly justified. Thus, the bands of periodic propagation are given by

(lm«vo2-v,8 m 1,2 2,
2 2 17 m *v~ " v ) - *nco

k^ I 2 ° P °

16m eV1 ^ /32meVi *k__+(2n +1)^_,( <36)

or,

i-^-v^.^-.z.y^^ kfi/j^L. . (37)
We may define a velocity Vj in terms of the potential V. defined in
Eq. (9): l

a

1 2 o ,r2 mvi = 2 eV! • (38)

Then, writing k = co/v , we obtain
P

Im(vo2-vp2)-^o=.4mVi2 +2n^ ^ _
2/^2 p

The total energy of the electron, W= - *co , then becomes

(39)

W^m^-v^-vf)^1 ^co(n =0,l,2,...). (40)
The term 1/2 mvp represents the kinetic energy of the electron, the
term - 1/2 mvQ is the dc potential energy. The term - l/2mv 2 =
- 2eVl indicates that, in the state of lowest energy (n =0), the
electron travels in a minimum of the interaction voltage 2V cos
(cot - kz). From Eqs. (31) and (40) we conclude that the electrons

-9-



travel along with the voltage wave at selected levels of total energy,

W .
n

The sharpness of the energy levels gradually decreases as n

increases, and finally disappears as \r\\ becomes larger than y; in
which case we enter the region of broad bands of periodic propagation.

. V. SATURATION POWER AND ELECTRONIC EFFICIENCY OF THE

LARGE-SIGNAL O-TYPE TRAVELING-WAVE AMPLIFIER

We assume that the electrons leave the cathode with zero

velocity, that is, we neglect thermal velocities. Then the total

energy W in the final stage of interaction (Eq. (40)) is the energy

gained from the field by an electron if W is positive, or the energy

given up to the field if W is negative. In the case of the traveling-wave

tube we are interested in the case W < 0. Let I = + Ne be the dc
o

cathode current, where N is the total number of electrons leaving

the cathode per second. Then, because of the conservation of

charge, N electrons pass the exit plane of the tube per second.

In the final stage of interaction the electrons travel in bunches

centered at the potential minima in the voltage wave. The number of

bunches passing the exit plane per second is co/2tr, so that the number

of electrons per wavelength is 2irN/co. Because we have neglected

This is not the same result as that obtained by Brillouin (Ref. 4),
who found that the energy in the interaction fields is quantized. Not
only does the present analysis show that one might more conveniently
consider the energy of the electrons to be quantized, but in addition,
the energy levels depend (unlike in Brillouin1 s analysis) on the phase
velocity v and on the interaction potential V,.

-10-



thermal velocities these 2-irN/co electrons per wavelength occupy

the energy levels given by Eq. (40) in such a way that each energy

level is occupied by two electrons from the lowest possible energy

up to some maximum energy, so as to accomodate all electrons.

(The Pauli exclusion principle states that each possible state may be

occupied by one electron; because the electron has spin 1/2 each

energy level corresponds to two possible states, so that each energy

level may be occupied by two electrons.)

Thus we find that the total energy given up to the field by the

electrons passing the exit plane per second is given by

p>-2Ji ["i!-2-i m(v 2-v 2-v.2)+4--K<oJ- I(2j +l)l ,2ir [_<o 2 2 p o 1' 2/T vp j J

where j extends from 0 to [(2ir/co) (N/2) - 1 J .

The sum in this expression can be evaluated immediately

2(2j+1)= (& N) \ (42)

Then we obtain

P=-"H2-Vo2-T1Z,-n2Jv <43)
Now P is the power propagating in the tube in the final stage of

interaction. The amplitude of the voltage wave is 2V,, so we may

introduce a coupling impedance K by

K=4Vx2/ (2P) . (44)

-11-
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Then we may write

vi =V2 PK . (45)

From the definition of vx (Eq. (38)) we then have

•=• m v. = e .J 2 P K , (46)

and

*!*& <2PK>1/4 (47)

Substituting Eqs. (43) and (47), and putting N =IQ/e, we obtain

*4k*%2- vp2> +e(2PK)1/2 ->^Jr ${2PK)1M]' <48)
From Eq. (10) we have 1/2 mv 2=eVQ, so that we may write

P = I V
o o

rr. 2/^\ (iP^2.\ H^T(2pK)1/4
\ v 2 / V„ o 4e v 1

, (49)

where we have substituted 2irft =Ji..

We define the dc beam power PQ by

P si V
o o o

and the dc beam resistance RQ by

o o o

Then Eq. (49) becomes

-12-
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2\ / \l/2 / \l/4

i * / l ^^^ ^ r^ ©I p ro V 2 / \ o o / 2mev v ^2 \ o o

We define the electronic efficiency r\ by
e

the coupling parameter "K, by

1es¥T-. (53)
o

*

%4 =2K/R , (54)
o

the synchronism parameter (3

P =1 - (v 2/v 2), (55)
P o

and the parameter q

h I

q =- —=. . (56)
2mev v 'V?

O D»

Then we obtain the following equation

% -%2%1/2 +q-K,ne1/4- (3 =0, (57)

1/4
or, in terms of a new variable V = n

'e

V4 -K2V2 +qK,V - p =o (58)

*
We note that "K, is simply related to Pierce's gain parameter G,

by K4 =(2C)3 .

-13-



This is an equation of the fourth degree in rj1. For fixed tube

parameters the electronic efficiency r\ may be computed immediately.
For I = 10 ma and v and v of the order of one-tenth of the velocity

o op

of light, q is of the order of 0. 02. We see, therefore, that under
ordinary conditions, the quantum effects are negligible, so that we may

write Eq. (58) as

V4 - K2n'2 - p =0 . (59)

The coefficients in this equation are entirely determined by

Pierce's parameters C and QC.

Table I. (v - v )/fcv ) versus QC for maximum amplification of
o p v o/ £

the linearly operated traveling-wave tube.

QC (vo - v )<Cvo)

0,00 0.50
0.003 0.50
0.010 0.52
0.023 0.55
0. 041 0.59
0.065 0.64
0.081 0.67
0.099 0.71
0.121 0.76
0.147 0.82
0.181 0.89
0.228 0.98
0. 295 1.10
0.412 1. 29
0.490 1.40
0.608 L56
0. 814 1. 81
0.995 2-0°
1.32 2-30

* K. Mouthaan, Master's Thesis, Technological University Delft,
1963; Appendix A.
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Table I gives (v - v / (Cv ) as a function of QC for maximum
° o p o

amplification of the linearly operated traveling-wave tube. Table II

shows a comparison between measured and theoretical results obtained
Q

by Cutler and efficiencies calculated from Eq. (59). The results
obtained by the present method are at least as close as those obtained

by the more laborious methods utilized by Cutler. The present results

have not been corrected for circuit attenuation, a correction that
2 2

would tend to lower them. On the other hand, values of v - v

used in the present computation were calculated from the given values

of C and QC for maximum gain; if these values were obtained for

maximum efficiency rather than maximum gain the results tabulated

in the last column would need to be increased. Using the wrong value

of v might also account for the numerical discrepancies shown in
P

Table II.
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I—'

TABLE II. Efficiency, %

C QC

Cutler

Tube Intrinsic Corrected for circuit

attenuation

Measured From Eq. (59)

McDowell 0.078 0.27 26.0 21.6 19.5 18.0

McDowell 0.058 0.29 16.2 12.5 13.2 13.7

Brangaccio
and Cutler

0.041 0.61 6.0 6.0 11.0 13.5

Daniels on

and Watson

0.05 0. 35 7.0 4.8 6.6 12.7

R. Warnecke 0.125 0.32 33.0 33.0 27.0 30.8

W. Kleen
and W. Friz

0.05 0.5 11.5 5.7 7.8 15.6

W. Kleen 0.10 0.20 26.0 22.0 20.0 21.3

L. Bruck 0.065 0.19 23.0 18.5 15.0 13.1

Hughes
Aircraft Co.

0.12 0.19 31.0 29.0 39.0 26.7

Hughes
Aircraft Co.

0.11 0.15 15.5 12.7 25.0 22. 3



VI. CONCLUSION

The major assumption in our calculation of the electronic

efficiency of nonlinearly operated traveling-wave tubes is that saturation

has been reached; that is to say, a stable periodic situation prevails

in the final stage of interaction.

Our theory may be summarized as follows. The transformation

described by Eqs. (12), (13) and (15) physically means the transformation

to the case where the electron moves in the static potential well
2 2

eV = 1/2 m(v - v ) + 2eV, cos 2£. We have calculated the energy
o p 1 '

levels for the electron, assuming that V, is high enough to prevent

the electron from escaping the well. Assuming a stable periodic

situation in the final stage of interaction, there are 2ir/c»>N electrons

per potential well. We have calculated the total energy given up to

the field by these 2ir/a>N electrons. Then we have taken the sum

over the w/2ir potential wells, passing the exit plane of the tube per

second, to obtain the saturated output power; which in turn gives

the electronic efficiency.

The most important result of the present theory is that the

electrons, in passing through the tube, not only loose the amount of
2 2kinetic energy 1/2 m(v - v ), but, in addition, the amount of

OJ op
potential energy 2eV.. The latter contribution is decisive in obtaining
the correct result for the efficiency of the tube.
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APPENDIX

Schrodinger Equation of Motion

Consider the one-dimensional motion of a particle of mass m

in a conservative field of force. Let V be the potential energy of

the particle in this field of force.

We have

2
Pz
2m-+V =W'

where p is the momentum and W the total energy of the particle.
* z

The Schr8dinger equation of motion is obtained by introducing

operators

^z 2iri dz

w > 2wi dt

and operating on the wave function ty:

__hf_ efife +v +.. h M
»«2« 8z2 2m 8t

Where h denotes Planck's constant.

In this formalism the quantity

\\t \\i dz

is interpreted as the probability that the particle has position between
z and z + dz; whence the normalization condition

p+co

^co
\\i i|i dz = 1 ,

-18-



that is, the probability that the particle will be found somewhere in

the range -oo<z< + oo is equal to unity.

For an electron moving in the field derived from an electric

potential V we have

9 z

where -eV is the potential energy of the particle (negative) and where

we have written "ft = h/2tr . In the case of an electron "beam" we

normalize the wave function \\t such that

+ co

• e i^ \\i dz = Q t
- CD
X

where Q is the total charge in the beam, and interpret then the

density-e \\t ty as the charge density

- e ty \\i < > p .

Probability Current

Let i|j* 4> dz be the probability of finding the particle in the
range z to z + dz at the instant t and let i|> be normalized to

unity

J-oo

S
- co

\\i \\t dz = 1 .

The probability of finding the particle somewhere at the left of a
point z at the instant t is

I 4» \\i dz , (1)

-19-



and the time rate of change of this probability is

z

ip* + dz . (2)
- oo

at J^

The function ty is normalized at all instants t; therefore, a decrease

in the quantity (1) is accompanied by an equal increase in the probability

of finding the particle at the right of the point z, and vice versa.

So whenever the quantity (2) is negative the probability flows

from left to right past the point z and vice versa.

We define the probability current at the point z at the instant

t to mean the time rate at which the probability flows from left to right

past the point z at the instant t. This rate, denoted by J(z, t) is then

given by

J(z,t) =-|r J fi|idz. (3)
-00

In the case of an electron beam we define the current density J = J(z, t)

in a similar way as

kf **

- co

J(z, t) = - -£r | e ip \\> dz.

Note that the current density J and the charge density p so

defined satisfy the continuity equation

9J + |P = 0.
dz at

We can obtain an expression for the probability current (3)

that is more suitable for use by differentiating the right-hand side

of (3) under the integral sign and making use of the equation of

motion

-20-



Thus,

-K2
2m 8z2 8t

2m

2 *

^—J-y + V \\> = - l-K
az*

J(z, t) =- -|f J ^* +dz
- 00

dz

B--=XD[+**,,-++*,]d»
f I r

=1ST 1+**' " 1 **' +' dz +I I- oo *J- oo

- 4/%' +J i|j« \\>*< dz >
1- 00 - oo J

-4= [♦+*-+•+].

because the integrals cancel and the integrated parts are zero at the

lower limit. So

Similarly for the case of an electron beam

J(z't) ='ltk e\J,^*\ "Wj •

-21-



3 J -rfte

at 2m

-rKe

2m

.-m"e
2m

Evaluation of -^ | J(z, t) dz

Let us look at the quantity 3 J/at.

[(+*Vf.) !*♦(+£-+•)-!**]

[(+*--+*f.i(^-*"^*i+

+

where we have made use of the equation of motion,

-rKe Ti^K i*i hi eV ,*, . i-n" ,* IMI xeV,* ,, ,!taT [l5T + + W+ +"2m" + +' +tfT* * +

i«*T . . *IM eV . .*. , i-tt ,, , *,, eV ., .*|

-L*. 4j*' ip" + i)j' ijj*" - 4j* 4j,m - ^ 4j*,m .
2m

We write this in the form

a J -K2e
9t 4m2

(qj*« i|j')' - (i|j*4i" + \\i ijj*")' + (ip*1 vji" + ip1 vjJ*")

Then we have

-22-



JL
at

fj(z,t) dz= f|i dz

4nx L
1d/ - (dj*dj" + \\t dj*") + v|j*f 0/ +

- j di*" dj' dz +Jd/ dj*» dz ,

where we have integrated the term d; f d/' by parts,

fc2n e

4m

The final result is

^-[2 dj*' dj» - (dj* dj" +dj ill*") j

9 Pj(z, t) dz =-^4- (i|i 0;*" - 2di' d,*' +dj* d/«)
2

9t ' ' 4m2
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