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SUMMARY : A new class of Pulse Frequency Modulated Systems

is presented in this paper. These systems referred to here as ZPFM

have many advantages over previously used schemes such as Integral

PFM. Most significant advantages are improved stability and simpler

physical implementation of the modulator.

The major part of this paper is concerned with the study of sus

tained oscillations using a specially developed quasi-describing func

tion. One important feature of this kind of PFM systems is that they

often present a limit annulus and not a limit cycle, a feature which is

common in most nonlinear discrete feedback systems. Few examples

with experimental verification are presented and the limitations of the

method are discussed.
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I. INTRODUCTION

The application of pulse frequency modulation to communication

systems and control problems is becoming an important factor in
1-3 ...present day technology. In this work, the analysis and stability

study of a certain class of these systems will be attempted. For

the most part the analysis is based on the quasi-describing function

developed for such systems. To acquaint the reader with the basic

operation of such systems the basic definitions and concepts used in

this connection will be first introduced.

In pulse frequency modulation, the information carrier is the

time between the emission of two pulses with identical shape and

amplitude. In most practical cases the shape of the pulses is of

minor significance and thus for their mathematical study, they are

usually approximated by impulses. A common feature of all pulse

frequency modulated schemes (or coding procedures) is that their

input has to be observed for a finite time before the emission of a

pulse is decided. The simplest way to implement this is to inte

grate the input and decide on the emission of a pulse by observing

the value of the integral at certain times [6-modulation ] or when

it reaches a certain level [integral Pulse Frequency Modulation,

1PFM] These two schemes have been studied and certain methods
4-5

for their analysis have been developed,

A more general scheme, and to the authors1 knowledge reported

for the first time in this paper, is to feed the signal to a higher-order

low-pass filter (possibly nonlinear or time varying) and decide on the

emission of a pulse when its output reaches a certain level.

This class of systems is referred to in this paper as Sigma (2)

pulse frequency modulation (ZPFM) in order to indicate the summing

up properties of the encoder used.

The ZPFM systems present many advantages over the IPFM

systems. Most important among them is improved stability and ease
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of physical implementation (see Appendix I). Because PFM presents

a high degree of noise immunity it can be used in control systems where

certain parts are contaminated by strong noise. Further applications
3

of PFM lie in the uses of adaptive control and of attitude control of

space crafts because of convenience of implementation.

Finally, another motivation for the study of such systems lies

in their potential promise in providing a model for a number of func

tions of the nervous systems of animals. This is because neurons

also use pulse frequency modulation for the transmission of information.

Although extensive work has been done on PAM (or Sampled-data

Systems), comparatively little work was done on IPFM and practically

none on ZPFM, discussed in this paper. The mathematical difficulty

lies in the fact that in PFM systems the pulses are emitted at intervals

of time computed by the system (a nonlinear operation) and not fixed

a priori. Hence, the application of the difference equation approach

does not offer much insight except in a few limited cases.

The emphasis of this paper lies in presenting some general mathe

matical tools for the study of such systems, Though the emphasis is on

ZPFM systems, however the method developed is also applicable to the

previously studied IPFM system. This will be shown in the few examples

discussed in this paper.

II. DEFINITION AND DESCRIPTION OF A ZPFM MODULATOR

An integral Pulse Frequency Modulator (IPFM) has been previously

defined as a device which emits an impulse whenever the absolute value

of the integral of its input reaches a level r and then it resets the inte-
4

gral to zero. If x denotes the input, y the output and p the value of

the integral, the following two equations describe its behavior:

_d^
dt

= x - rsgn(p) 6(1
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y = 6(1 p| - r] 2)

where sgn(p) = + 1 depending on the sign of p and 6 is a unit

impulse. (There is no loss of generality in assuming unit area of

the emitted impulses).

The case where the modulator emits-pulses of only one sign

can be studied by direct extension of the methods developed here,

therefore it will not be considered in this paper.

The second term of the RHS of Eq. (1) represents the resetting

of p to the zero value. Indeed if t is the time of emission of an
1 o

impulse (i„ e. , j p(t )| = r) and if both sides of Eq. (1) are integrated
from t to t we obtain

o o

P(tQ ) - p(tQ") = - rsgnp(tQ) 3)

By definition p(t ) = rsgnp(t ), therefore

p(tQ+) =0. (4)

A generalization of the above scheme of PFM is to add an

extra term in the left hand side of Eq. (1). Then a modulator described

by the following equations is obtained:

dp
dt

+ g(p) = x - r sgn(p) 6(1 pi - r)

y = 6(1 pi - r).

(5:

(6:

The present discussion will be limited to the case where g(p)

is a nondecreasing, continuous, odd function of p (note that these

constraints imply p g(p)>0). This kind of modulation will be called

Sigma Pulse Frequency Modulation (ZPFM). The IPFM is obviously
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a special case of this for g(p) = 0.

If x = x = const. , it is easy to compute the time t of the

emission of an impulse which will be generally" referred to as

firing time, Indeed,

dp

X0I " g(P)
a t

O
7)

Eq, (7) will have no solution, i e. , the modulator will never fire if

x <T g(ro1 ^BV

For this reason g(r) will be called the input threshold of the system

and will be denoted by R.

When g(p) = c p (linear) we have

t = I in
o c

X

x - cr
o'

and the input threshold is R = cr.

Systems with linear g(p) have been previously defined as Neural

NPFM because they were used in models of neural nets * . Although

the choice of this name is not a very successful one it is kept for the

time being.

!!

III. FREQUENCY RESPONSE OF A ZPF MODULATOR

(9

If the input to the modulator is a pulse of duration t and amp

litude x then obviously no firing will occur if

T<V (10)
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The equation

dp
T = (n:

> I XQI " g(p)

represents a curve in the (x0, t) plane which separates the points

which cause a response from those which do not. If the input is a

square wave with amplitude x 0 and frequency co = Ztt/t (where t/2

is the duration of a half wave), Eq (11) can be rewritten as

co =
2tt TT

12'

The curve represented by Eq. (12) will be called the (square wave)

frequency cut off curve of the modulator. One can easily see from

Eq. (12) that the larger is "x " the larger is "co11. Hence the band

width of the modulator depends on the amplitude of the input. If an

input of different wave shape is used then the computation becomes

extremely involved but the results will be essentially the same,

For g(p) = cp one can substitute from Eq. (9) and then Eq. (12]

yields

and

co =

In

ire

x

x - c r
o1

By defining normalized variables

CO

TTC
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X

X =
c r

15

Eq. (13) is written

0 =

In
x

for x>l .

x-1

(i6:

Obviously 0=0 for x^L (subthreshold input). A plot of Eq. (16)

is shown in Fig. 1. It is easy to verify that the equation of the asymptote

of the curve represented by Eq. (16) is

1

= X" 2 • ,17)

IV. FEEDBACK SYSTEMS USING ZPFM

Consider a feedback system with input u and output z. Then a

ZPF Modulator can be used as controller if its input x is the error,

i. e. (u-z) Such a case is shown in Fig. 2. Due to the constant amp

litude of the pulses a memoryless nonlinearity following the modulator

will not add any complexity to the system.

One can write in general the state equations of this system as

2 <

x = Ax + a 6 (| p| - r) (18)

P = - g(p) + u - z - r sgn 6 (| p| - r) (19)

(20)- olz = e' x

where the first equation represents the controlled plant, the second one

the modulator and the last one the output. The quantities, x. a and e

are n-dim. column vectors and A a n x n matrix.

By using Laplace transform and noticing that the output of the

modulator will have a transform

-7-



Y(s) = ^[Y(t)] = <[6(|p(t )| - r)]

one can combine the first and third equation into

Z(s) = KF(s)-Y(s). 21'

It is very simple to check that the poles of F(s) are the same

as the eigenvalues of _A_ if no cancellations had occurred. This will

be always true for simple plants.

Because of the peculiar behavior of ZPFM systems we have first

to define the concept of equilibrium. In the case of IPFM systems the
position of equilibrium has been previously defined as the one where

pulses are emitted in fixed pattern. However, it may be entirely

undesirable from a technological point of view to have the modulator

firing all the time. Hence we define as equilibrium the condition

where no firing occurs and moreover x = 0, p = 0,

In terms of Eq. (21) the following reasoning holds. If we have

a constant input u we want z to have also a constant value after

the emission of a finite number of pulses. In other words we want

the limit

z = lim sZ(s) = lim KsF(s)Y(s). (22)
s—>0 s—>0

to exist and be a constant. This will obviously be satisfied if F(s)

has one pole at the origin and all its other poles have negative real
parts

We therefore have to check also that

u - z <g(r)
o o' 6V

23

otherwise the emission of pulses will not stop as one can see from

Eq. (19). Let f(t) be the impulse response of the linear plant (i.e. ,
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f(t) =^0~ [F(s)s]). and let fQ = lim f(t) (it will always exist under

the above mentioned conditions). Then if the number of positive pulses

emitted is n and the number of negative pulses is n we define the
p & r n

net number of emitted pulses as

Then we will have

In general we will have

n = n - n

P n

z = nKf
o o

u = (n+v) Kf
o o

where - 1/2 <Cv $1/2. Then inequality (23) can be written as

vKfJ <g(r)

or

2g(r)>Kf

24)

(25)

26

27)

(28)

In this way the following theorem has been proved.

Theorem: A ZPFM unity feedback system with a linear plant

having transfer function F(s) and a gain element K (as in Fig. 2)

has an equilibrium position defined by no pulse firing, constant out

put and constant value of p(t) if and only if the limit for s—)0 of

s F(s) exists, it is different than zero and satisfies the inequality

2g(r)>K lim s F(s) .
s—X)

28a)

An alternative expression and derivation of the theorem in terms
of the state equations only can be found elsewhere.
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Note that in an IPFM system condition (28) can never be satisfied,

hence, firing will never stop. This indicates one of the main advantages

of ZPFM over IPFM. Figs. 3 and 4 give the comparison of the step

responses of two such systems.

V. SUSTAINED OSCILLATIONS IN ZPFM FEEDBACK SYSTEMS

In reference to Fig. 2, one would expect steady-state oscillations

for this nonlinear system. It is observed that such systems exhibit

what is called a "limit annulus". A typical form of these oscillations

for a second-order system is shown in Fig. 5. It is of interest to

note that such kind of oscillations are also common in IPFM and in

certain types of nonlinear discrete systems, in particular in relay
8 9 Isampled-data systems ' . This peculiar behavior of oscillations

is due to the quantized nature of PFM systems. When the number of

pulses per half-period required for sustained oscillations (periodic)

is not an integer then the system moves in a range of various values

of pulses per half period. It may, however, happen (although rarely)

that solutions with integer number of pulses exist and in the case that

the system exhibits a true limit cycle. For practical applications the

determination of the outer and inner boundaries of the "limit annulus"

shown in Fig. 5, is essential. The quasi-describing function method

to be presented in the next section will determine these boundaries.

We may note in passing that this kind of oscillation indicates

"pseudo-random" behavior because no regular oscillatory pattern

can be found by inspection of the system's output. Thus a certain

relationship could be possibly found between a random process and

the output of a ZPFM System, as it has been already for nonlinear
o

sampled data systems, This equivalence would be an interesting

topic for a future research problem.

-10-



VI. DEFINITION AND DERIVATION OF THE QUASI-

DESCRIBING FUNCTION FOR ZPFM SYSTEMS

The usual definition of the describing function of a nonlinearity

is the ratio of the complex amplitude of the fundamental Fourier harmonic

of the output to the amplitude of a sinusoidal input. The Quasi-describing

function will be defined similarly by taking the ratio to the fundamental

component of any periodic input. In the derivation of the quasi-describing

function of ZPFM systems, it will be assumed that the input to the modulator

is a square wave. The reason for the latter choice is the fact that only for

such a wave form one can determine the output of the modulator in closed

form.

However, because the modulator acts as a low pass filter (Fig. 1)

the error introduced by neglecting all the higher harmonics of the input

will not be too large. In a later section, we will discuss the limitations

of the obtained results because of such a choice of the quasi-describing

function and its effect in determining the system stability and response

behaviors.

To derive the quasi-describing function of a ZPFM Modulator we

will apply to the input modulator a square wave of amplitude S and

period T. The output of the modulator will exhibit the same number of

n-pulses for both half periods, as one can verify by an elementary com-
, .• 7putation.

Let t be the firing times in one period (k = 1, 2, . . . , 2n). Then

the output of the modulator y(t) will be given by

n 2n

y(t) = 2 6 (t -t.) - 2 6
k=l k=n+l

t-tk), t2n<T. (29

This will be a complex number if there is a phase difference between the
two.
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The Fourier series expansion of y(t) can be found in the distrib

ution sense as +00

y(t)= S BmeJmwt. (30)
m=-co

The computation of the coefficients B is given in Appendix II.

if we define

n+l o 2

where t is the firing time of the modulator for S computed from

Eq. (7) and
T

then the following result is obtained for n = +1.

Bl =i (l +e-JWT)(l+eJUT')
1

Jwto .
e -1

B_1 =i (l +e^^d +e-^')
jut

0 1e -1

(31>

(32)

(33)

The significance of t and t' is also shown in Fig. 6. In an

IPFM system it is always t = t' and for any ZPFM system t = 0

if and only if t' = 0 and moreover one is a monotonic function of the

other. Therefore one can make the simplifying approximation, t = t'.

Then the fundamental component (B. e^T + B ,e~^T) of the output will
be

2 1 + COS U)T . , . o
sin(cot =-

T #-"--! *

*(•*-)
OJ

-)•

The fundamental component of the input can easily be found as:

4 S

IT
sin cot.

-12-
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Then the quasi-describing function Q(S , co, t) of a 2PF Modulator

with firing time t will be given by:

Q(S co t>- w i+^o^jor -j(wto/2)U(5o, co, T)--gg— — - e
o sin(cot /2)

The above relation is valid only for

co t <Cir
o

(36)

(37)

(see Eq. (12) in Sec. III). Otherwise Q(S , co, t) = 0. For an IPFM system
E<1- (7) gives tQ = r/SQ. Substituting into (32) and defining an auxiliary
variable £ one obtains:

IPFM; Q(g, T)=l t+2CO.»t __|_ e-j6 .f g<„
Q(g, t)= o

£ =
co r

2S„

otherwise

This polar plot of - l/Q (£, T) is shown in Fig.

For a NPFM system (i. e., g(p) = cp) substitute t from Eq. (9) and

use the same normalized variables as in Sec. Ill (Eqs. (14) and (15)) to
obtain.

7*.

(38)

NPFM: Q(x, 6, T)=iI + C°S "T lg
r 2 2x

i exP[-j(^)einJL-]
**(t°^)

if e ln-i- <1
x-1 ^

Q(x, 0, t) = 0 otherwise.

(39)

In both cases the factor l/r (1 + cos cot/2) has been left out to be included
with the Nyquist locus of the linear plant.
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The polar plot of -1/Q(x, 0, t ) is shown in Fig. 8.

By a simple computation and under the assumption of square-wave

oscillations one can prove that the angle at which the above plots are

intersected by the Nyquist plot of the linear plant can give the number
7

of pulses per half period. This is indicated -with the sectors of Figs.

7 and 8.

VII. LIMITATIONS ON THE APPLICATION OF

THE QUASI-DESCRIBING FUNCTION

In view of the assumptions introduced in the derivation of the

quasi-describing function, one would expect that in certain cases the

method might yield false conclusions. These limitations appear under

two conditions.

1. One can notice from Fig. 8 that wherever the linear plant con

tains an integrator, the describing function method yields that sustained

oscillations exists. However, we know that when the gain is very small,

such oscillations cannot exist. Hence, the conclusion from the describ

ing function is false. A sinnple analysis shows that the following test can

be used for remedy.

"If the amplitude S and frequency co of the oscillations indicated

by the Q. D. function are "small", we compute the quantity 1/2 g(ir/co).

If S is less than this quantity no oscillations can exist. "

The failure of the Q. D. function in this case is due to the quan

tized nature of the system.

2. When the wave shape of the oscillations differs much from a

square wave, the Q. D. function may yield erroneous results. A correc

tion may be made by estimating the waveform from the number of pulses

per half period. A check should be made to verify that the amplitude

indicated by the Q. D. function is close to the mean value of the waveforms

obtained by the impulse response. This check is necessary wherever the

See note page 13.
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frequency of oscillations is high in comparison to the characteristic

frequencies of the system.

VIII. EXAMPLES OF APPLICATION OF THE Q. D. FUNCTION

According to the well-known technic the points of oscillations will

be determined from the intersection of the negative inverse of the Q. D.

Function and the Nyquist plot of the linear plant. In this work the factor

(1+coscot/2) will be included also with the Nyquist plot as it was indicated

in the footnote of Sec. VI. Also because of the use of normalized variables

for the Q. D. in NPFM similar variables should be also used for the Nyquist
plot.

In the application of this method it is not necessary to check for all

values of t. Usually a check for t=0 and cor=ir/2 will be enough because

it gives the boundaries shown in Fig. 5.

The radius of the Nyquist plot for gain K and t = 0 will be denoted
K Kby S1 , and by SQ the same quantity for cot = tt/2. Note also the identity

S0K = SLK/2 . (40)

1st Example: IPFM with plant 20/s(s+l): In Fig. 7 the points of

intersection are shown. From them the values of co and £ are deter

mined and therefore the amplitude SQ. The results of the analog computer
simulation are shown in Fig. 9, and a comparison of the predicted and

observed values at the Table I.

2nd Example: NPFM with plant K/s(s+l): For K = 20 both bound

aries exist as it is shown in Fig. 8 (S. and Sft ). For K = 10 only
10one point is found because the intersection of Sfi fails to satisfy the

criterion proposed in Sec. VII. Indeed the result is 6 = 0. 2 and x less

than 1.03, i.e., T=20 and SQ<2. 6. But l/2g(T/2) =1/2 10(1 - e"10)
= 5 > Sq. In this case one expects that the system may present a true
limit cycle. This is verified by the analog computer simulation (Figs. 10

and 11) is shown.
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TABLE I (1st Example)

Q. D. Function Analog Computer

outer

boundary

Vl 10 10

Tl 3.3 3.6

nl 2-3 2

inner

boundary

V2 5.1 6

T2 4.8 4.6

n2 1-2 1

TABLE II (2nd Example)

Q-D Function Analog Computer

6/T x/V
Number

of

pulses
T V

Numbe r

of

pulses

c20
51

1.15 / 3.5 /

/8. 8
2 2. 0 13 2

Q20
so

0> 74y.
/^4

2. 2 /
1 3.6 4 1 .

c10
bl

0. 74 .' 2. 2 /

1 3. 5 5 1

s10b0
- - 0 - - 0
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CONCLUSION

In this paper, the basic operation and use of SPFM feedback

systems has been introduced and studied. The main emphasis of this

work is based on stability and sustained oscillations of such systems.

The concept of limit annulus is discussed in detail and examined. This

phenomenon is not only characteristic of SPFM system but also appears
8 9

in most nonlinear discrete systems. ' Hence, this study will shed a

light on the general periodic and aperiodic behavior of nonlinear discrete

systems.

Few examples with their experimental verification have been intro

duced which clarify justification of the use and importance of the quasi-

describing function. The limitation of this method has been critically

examined and some of the modifications required for obtaining the

correct results have been indicated. While the stability problem has

been examined using the quasi-de scribing function, the application of

Lyapunov stability method is also possible. The detailed study of such

a method which represents an alternate approach has been achieved and

will be presented in a forthcoming work. Other problems connected with

statistical and optimal control of such SPFM systems are of significance

and definitely warrant future investigation.
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APPENDIX I

Hardware Implementation of a ZPF Modulator

There are several ways of implementing a 2PF Modulator, one of

them is shown in Fig. 12. The break voltage of the gas tube V plays
6

the role of r. The relays A and B are used to provide pulses of the
7

regular rectangular wave shape. More examples can be found elsewhere.

APPENDIX II

Computation of Fourier Series Coefficients of the Output of a SPF Modulator

Starting from Eqs. (29) and (30) we have:

T

B
m

if y(t) e"Jmwt dt =* S e-J^ - S e-imwtk (41)
Jo l k=l k=n+l

where co = 2ir/T. Furthermore we note from Fig. 6 that

L =ktQ for k = 1, 2, ... n

and

Tt^. = -y- + t +(k - n) tQ for k =n +1, ... 2n

where r has been defined in Section VI. Then Eq. (41) yields

I - (-l)m e"jmwTBm =T
n

S e-J^^O * (42)
k=l

The finite sum in the above equation is a geometric progression, hence

we have
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B = 4r-m T
m ^-jmcoT e-Jn^tQ *i-(-ir" e

By including t1 as defined in Section VI we obtain:

-jmcontQ
-1

-jmcotQ

Bm-T" 1- (-iPe
m -jmcoT l-(-l)rnejm(0T'

jmcot.

(43)

(44)

-1

Substituting m = + 1 in the above equation we obtain eht relations

(32) and (33). Using the simplifying assumption t = t1 then Eqs.
(32) and (33) become:

Bi=4 (i +c°s"t) -^l
0 ie -1

B_1 =-|(1 +coscot)^t
0

e -1

(45)

(46)

Hence the fundamental component B, e^w + B .e"^M will be given by:

(1 + cos cot)
jcot -jcote + e

jcotQ -jcotQ
L e -1 e -1 «.

cos co(t - t~) - cos cot
= -^-(1 + cos cot) pi

cos cot,

2 sin (cot —•£-)
-^(1 + cos cot) ^ Mt0

sin-

This result has been used in Eq. (34).

-19-
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Fig. 1. Frequency cut-off curve,

u +

-9H
linear plant

y z

S-PF K F(s)
modulate r

Fig. 2. A SPFM feedback system.



f
o

o

I
CD

I
9>

•

1)



i•-IU•:rrt••- . i • I ..!•:• i- | _L 1 1 1 b 1—• i: ,,l

Fig. 4 Step response of NPFM System (traces as in Fig. 3



Fig. 5. Analog computer recordings of trajectories of a SPFM system
under conditions of sustained oscillations.
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Fig. 7

1. 57

Determining the characteristics of steady-state
oscillations in an IPFM feedback system with
linear plant transfer function 20/s(s+l). Points
of oscillation A and B.
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Fig. 8. Determining the characteristics of steady
state oscillations in a NPFM feedback sys
tern with linear plant transfer function
K/s(s+l). Points of oscillation A and B.
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