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ABSTRACT

The linear and nonlinear responses of a crystalline dielectric to

external fields are derived using a self-consistent field formulation.

Local field effects arising from the rapidly varying charge density in a

lattice are built into the analysis in order to identify properly the effect

of the lattice on the macroscopic dielectric tensors. Formal solutions

are obtained for a general lattice; standard results are deduced for

special cases ranging from point dipoles to a free electron gas. The

nonlinear terms, to second order, are then used as a basis to solve the

dual problem of optical harmonic and subharmonic generation.
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I. INTRODUCTION

In this paper we formulate the linear and nonlinear dielectric

properties of a crystal by the self-consistent field (SCF) technique. The

SCF theory was developed by Nozieres and Pines and Ehrenreich and
2

Cohen to study electron-electron interactions via a dielectric formalism.

The latter paper discusses some of the consequences of a lattice, par

ticularly the use of Bloch, instead of free, electrons in the matrix ele-
3 4

ments. More recently, Adler and Wiser have shown that the Bloch

representation leads to a local field theory— one in which the fields vary

appreciably over a lattice constant. Their results for the linear response

of nonuniform systems evolve from a coulomb interaction. Adler gen

eralizes the gauge to include the electromagnetic fields directly and, in

the nonlocal field limit, extends the Ehrenreich and Cohen results to ob

tain transverse effects. Herein we find this gauge convenient and natural

to describe the reaction of nonuniform media to impressed electric fields.

The theory is made gauge invariant so that we do not lose the collective

electron behavior. Further we carry the results to nonlinear terms.
5

Nonlinear susceptibilities have been studied by Armstrong et al., but

the local field effects have been handled in an ad hoc manner; our des

cription includes the lattice in a more consistent way.

The electron motion is treated by applying the density matrix to

a one-electron, periodic-plus-self-consistent potential Hamiltonian, The

SCF is contributed by the external field and all the dipoles in the lattice.

Fields that enter Maxwell's equations are then obtained from the SCF by

suitably averaging the local fields over a unit cell. From these macro

scopic fields, we define linear and nonlinear dielectric tensors which give

the appropriate macroscopic behavior of the crystal.
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In this paper we attempt to strike a balance between formal solu

tions and familiar results. For this reason we dwell at length on the

limits of the free electron gas, the point dipole, and the nonlocal field

approximation. The free electron limit yields the plasma oscillation and

an indication that this plasma-dependent term vanishes at low temperatures

for all but extremely long wavelengths. Conductivity in the anomalous skin

effect region is also correctly given by this derivation. The nonlocal field

limit exhibits a quasi-free "effective mass" plasma oscillation plus the

usual result for polarizability in a Bloch representation. The point dipole

limit predicts a generalized Lorenz-Lorentz law which reduces to the

familiar law for cubic symmetry.

We then proceed to solve a sample nonlinear problem by the method

of Green's functions. The generality of this method for solving coupled

mode problems is emphasized.

II. NOTATION

We consider a rigid crystal lattice of volume ft and unit cell

volume A. Direct lattice vectors are denoted x. where the origin is

set at a particular lattice site and i is some other site; reciprocal lattice

vectors are denoted G where G • x = 2tt x integer.

The one-electron, SCF Hamiltonian consists of an unperturbed

part, H , and a perturbation caused by the self-consistent potential

H(x, t) = HQ(x) + V(x, t) (1)

2
where H = (p /2m) + V (x), the periodic Bloch Hamiltonian. The per

turbation in an applied electromagnetic field is given by

2

V(x, t) = -^-_(A(x, t)'p +p-A(x, t)) + -£—2 A(x, t). A(x, t) (2)
2mc

where we cannot arbitrarily assume that A, the vector potential, is
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transverse. We have chosen a gauge in which the scalar potential, ev(x),

vanishes; however, longitudinal effects are retained as shown in Appendix A

by a gauge-invariant choice of current density defined in Section IV.

Quantities such as V(x, t) are defined as the local (microscopic)

values for any point x in the lattice. The corresponding macroscopic

quantities are obtained by averaging over a unit cell. If we denote the

macroscopic position variable of a certain cell as X and the macroscopic

function as V(X, t) for example, and if we expand the local function in a

"reduced zone" Fourier series (|q| < any nonzero |G|) such as

V(x, t) = „ V(q, G, go) exp [i((q + G)-x - cot)] , then we have by
**• 9iGco ~ ~ "~ ~

averaging over the cell at X and assuming |aj « |g|

V( X, t) = X V(q, G, t) A"1 J exp [i(3 +G)- xd3x]
AX

= V(g, 0,. t) exp icj-X. (3)

We have factored out the slowly varying exp i cj- x from the integrand

leaving only the G = 0 term to contribute A upon integration. The

subscript on the integral indicates the volume over which we integrate.

Therefore we may equate the Fourier expansion coefficients of the macro

scopic function with the G = 0 coefficients of the microscopic function's

expansion. The Fourier series employed above presumes periodic boundary

conditions on the lattice and periodic time variations. Neither of these

assumptions is essential, but it is more convenient to write sums instead

of Fourier integrals. The inverse transform is, of course,

V($, G, co) =(2TTft)_1 I d3x / dt V(x, t) exp[-i((q +G)-x - cot)] .
Jft ^-oo

Fourier transforms, inverses, and macroscopic-microscopic relations

are defined similarly for all quantities of interest.
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The exact and unperturbed Hamiltonians have sets of complete

orthonormal eigenfunctions designated as | m] and jkvy> = <p, (x) respec
tively. H|m] = e | m] and H | kvy = €, | kvN. <p, stands for the
Bloch wavefunctions in the reduced zone scheme, that is <p, (x) =

-1/2 -^
ft exp (i k-x) u, (x) where k is defined over the first Brillouin zone

~ " M ~ ~ -H2\
and v is a band index, u, (x), which we symbolize as A |!SY)> i-s

periodic in the lattice and forms a complete orthonormal set of functions

defined over the unit cell. In addition e . = € , , ~. and u, , -, (x) =
/ ky £ + Qv 55 + Gv~

exp (-iQ-x)u, (x) as shown by Kittel, Chapter 9.
~^ -111We next define a density operator p (x, t) = 2 | mj P [ m | where

P is the ensemble average probability of state | m] being occupied.

This operator obeys the Liouville equation i-frp = [H, p] and consists of

the sum of an equilibrium part, p , and a perturbed part, p-i(x, t). p is

diagonal in the Bloch representation; its eigenvalue is the statistical

distribution function which we take to be the Fermi-Dirac function,

fo(6kv)= texP«€kv -«f>/kT) +l] -\

III. THE LORENTZ TENSOR

As is the rule when discussing the dielectric behavior of a medium

we treat the electromagnetic field classically and the lattice quantum

mechanically. The classical relation between the electric field and induced

polarization, P(x, t),is characterized by the Lorentz tensor as denoted by
7 ~ ~ 8

Born and Born and Wolf. The polarization is obtained in terms of the SCF

by quantum methods in the next section.

The electric field, E(x, t), measured at any point in the lattice is

the sum of 1) the incident vacuum field, E (k ) exp (i(k • x -cot)), where

k = co/c, 2) the contribution from the polarization field of the medium

over a volume bounded by the outer surface of the lattice, 2, and the surface,
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4>«

cr, of a small sphere of radius b surrounding the point x, and 3) the

depolarization field of the polarized material within the sphere. The

depolarization field, E fe, t), is the familiar -(4tt/3)P(x, t) when b

becomes smaller than any nonuniformity in the polarization. Since we

eventually allow b^-^0, this case is always obtained except if a point di

pole exists at x, in which circumstance one must subtract off the reaction

field of the point dipole in question. For the present we take the polariza

tion as continuous, and in the section on point dipoles we consider the

complication in detail.

The field contributed at x by the polarization density in a volume
3 3d x' about the point x' is given by V * V X{P(x', t - R/c )d x'/R} where

R = |x - x'| and the operator V acts on the coordinate x. Thus the
total field is

S (4)

E(x, t) =E(l)(k )exp(i(k -x - cot) - 4^P(x, t) +\ d3x' ^<Vx{P(x', t - R/c )/R} .

We consider the time dependence of all fields to be exp(-icot) so that the

retardation factor in the integral yields the function F(R) = exp(ia>R/c )/R.

The time dependence can now be factored out, and we state (with reference to
Q

Bom and Wolf, Appendix 5) that as b—^0,

|d3x'VxYx{P(x', co)F(R)}—>-(8ir/3)P(x, co) +VxVX / d3x' P(x', co)F(R).
J or ~ ^or

The first term on the right combines with the depolarization field to give

-4tt P(x, co). We now expand the field and polarization in the reduced zone

Fourier series

G(E(g, G, co) +4tt P(q, G, to)) exp i(g +G)* x=E^(k ) exp ikQ- x
S

+ qV^VX J d3x" P(q, G, co)F(R) exp i(q +G)'x' . (5)
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If we note that \TF(R) + (to/c) F(R) = -4tt6(R) ( = 0 over the range

of integration) and that [ v + (q + G) ] exp i(q + Q)«x = 0, we may use

Green's theorem to convert the integral in (5) to a surface integral. That

is, since

_• [exp i(q+ Q-x'V^R) - F(R) V^exp i(q + G)-x')]
F(R) exp i(q + G)- x' = =—= - ,

[ (q+ G)2 - (co/c)2]

we integrate by parts to obtain

7. (E(q, G, go) + 4ir P(q, G, go)) exp i(q + G)- x = Ev '(k ) exp ik •x
q(j -.«.«. „ „ ~ M ~ ~ ~ «o ~o~

2;

+ ?. VxVXP(q, G, go) f ds1'
2§ J, "

- F(R) 8(exp i(q +G)-x')/8n» 1 / [(q +G)2 - (<o/c)2] (6)

where ds1 is a surface element on cr or 2 and 8/8n' represents the

outward gradient at that element. The surface integral at cr when b—>0
2 2yields only 4ir exp i(q + G)«x/[(q + G) - (co/c) ] because of the singu

larities in the functions F(R) and 8F(R)/8n' as R—>0. At the outer

surface, 2, these latter functions propagate with the vacuum speed of

light and must combine with the incident field E (k ) to produce extinc

tion. In other words, for (6) to be true at all points of space-time we

require

S

E(i)(k ) exp ik -x= - ?. VxVxP(q, G, co) I ds' • J ••• i /[(q +G)2- (co/c)2]
o ^ ~o ~ qG ~ ~ ~ ~ ~ Jo- ~ I J

Eliminating the incident-extinction field combination and noting

VXVX= Y(y* ) " v , we evaluate (6) as b—>0, and obtain upon inverse

-6-
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transforming . .

E(9, G, co) =47r[(co/c)2P(q, G, co) - (q +G)(q +G)-P(q, G, co)] /[ (a +G)2- (co/c)2].

Now if we identify as macroscopic fields the G = 0 term in the

expansion as discussed in Section II, and if we introduce the index of re-
2 o 2 — 2 —-fraction, n= q /(co/c) , we get E(cj, co) = (4tt/(n - l))[P(ci, co) - n §§*P(c;, co)]

where § is the unit (j vector. The dot product of this equation with §
gives §• E(q, co) + 4tt^- P(q, co) = 0. But we recognize in this the displacement

vector D(<j, co) = E(<j, co) + 4irP(q, co); so the above is simply V* D(x, co) = 0,

and our equation is consistent with Maxwell's in a medium with no net charge.

If we then let E(q, G, co) = E(q, co) 6 nr, + L(q, G, co)« P(q, G, co), we have

from (7) the definition of the Lorentz tensor, L, in component form.

(8)

[L(g, G, c^v= 4ir(l- 60g)[(co/c)26jiv - (q +G)^ (q +G)J / [(9 +G)2 - (co/c)2] .

Obviously the Lorentz tensor is symmetric and vanishes altogether for

G = 0.

IV. QUANTUM FORMULATION

From Maxwell's equation VxH = c (E + 4ir P + 4ir J) we note that

if we define a complex current density j(x, t) = ^(x, t) + P(x> t) and take the Fourier

transforms, we may identify P(q, G, co) = co Im{j(q, G, co)} . The complex

current density operator may be defined in terms of the exact states, or

equivalently, in terms of the unperturbed states with an appropriate density

matrix basis.

j(x, t) = ^ P^
~ mm

2

k3YY!

efi — i -. . r i i -. . _r i .. e" . . i t r i I^((VM )[m| - |m] (V[m|)) -^ A(x, t) |m] [ m|j
2

en / • *** \ e '

ZmiKv^k+SY^ " (y<PkY^k+37')- m^(*'^k/k+cj

X<k+ qv'|p(x, t)|kv> . (9)
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We demonstrate in Appendix A that this definition is gauge invariant to

terms linear in A including all the highly local fields. Our entire theory

is then invariant under infinitesimal gauge transformations, hence under

arbitrary transformations. Thus full longitudinal and transverse effects

are recovered without manifestly including a scalar potential.

Equation (9) may be expressed in terms of the Bloch functions

described in Section II. If we make use of the periodicity of u, (x) and

Vu, (x), by expanding such terms in a Fourier series involving only re-

ciprocal lattice vectors, then we obtain the transform of j(x, t) in terms
ii -i f 3 V

of the reduced matrix elements (kY|B|k'Y') =A d xutcV ^ut<-i i
defined over the unit cell. This transform is

f (10)j(q, G, co)=ft _1 ^ ,J[~^(kY |(p+*(k+(9+G) /2))e"i(5,x|k+qY 'Kk+SY 'IP(x> "> IkV>]
2 .r,

q '̂co' ^4(9-3' Q-G'̂ 'JdSYle"- •~|k+q'Y,)<k+q'Y,|p(x^-co»)|kY>

The Liouville equation provides us with the density matrix elements

needed in (10). Splitting p and H into equilibrium and perturbed parts,

we have

(€k+9Y' -€kY-^K^'IPl<x>^

+J<k+qv'|[ Pl(x, co'), V(x, go-go')] |k7>. (11)

We have kept the commutator of p, and V in order to go beyond the usual

linear approximation. The zeroth order term in the current density,

independent of A or t is given by

(12)

Jo(q, G)^"1^, 4(kY|p+*(k+(q+G)/2))e-i^ .

This equilibrium contribution to the current density has the periodicity

of the lattice and vanishes identi<

metry as we show in Appendix B.

of the lattice and vanishes identically when H has time-reversal sym-
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Contributions to j(q, G, co) to first and higher order in A are

obtained by substituting (2) and (11) in (10). For expediency we define

k'-k =[fo(ekV> "fo(eky)]
•y 'Y» w

[,k,Y'"il5v"*"]
We now may write down the linear and second order terms by expanding

(10) and (11) to the proper order.

j^q, G,co) =-(e2/mcfi) SG,[fo(c )A(q, G', co)(kY |e"i(Q"?,)' ~|kY )

+ v<<Fv'v (il/m)(kY|(p+1i(k+(q + G)/2))e — ~|k + 9y ')-iG* x

iG,# xX(k+ aY'le1^ 'xA(q, G',co).(p+-h(k + (q + G')/2))|kY)] (13)
and

h^' ?' W^e ^2m C^^kYY^' '
q'G'G'

r q'F~ , w(kY |e"i(5-G")' *1 k+q'Y ')A(q-q», G", go-go')

X(k+q'Y ' | e1-'* ~A(q', G', go')- (2p +H(q' + G») | kV )

(kV | (p +-K(k +(q +G)/2))e"i(5' ~|k + qV ') [F~
~ ~ ~ y y, w

X(k +q7 ' | ei(<5,+?,,)' ~A(q', G', co)- A(q-q', G", co-go') |kY)

t ( 3' ^-3' \
+ ,f (F . ,. ,-F~f. ,)/2m(€lJL , - €, - Hco)

X(k+ qY'le1-''- A(q', G', w»)- f2p +li(q» +G')) |k+ q- 3'y")

X(k +c; -q' y"Ie1-"' ~A(q-q', G", co-co») •(2g +H(q-q»+G")) |kY )]
(14)

Higher order terms may be similarly iterated,
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This time we have reduced the Bloch matrix elements to their

periodic form in order to best exhibit the local field nature of the inter

action. That is, Fourier components of the field at all reciprocal lattice

vectors contribute to the current or polarization density at any particular

G. Thus we may have an Umklapp process in which the wavevectors q

are additive only up to a reciprocal lattice vector. Our choice of Bloch

functions is appropriate to all periodic structures, but, as we will see in

the sections on free electrons and point dipoles, other choices enormously

simplify equations (13) and (14).

In our gauge we note that A(q, G, co) = -(ic/co)E(q, G, co), and we make

the connection between polarization and complex current density as pre

viously mentioned. This enables us to express the first and second order

polarizations in terms of the electric fields by

P^q, G, co) = ^, aGG,(q, co).E(q, G',co), (15)

P2(q, G, co) =q5G'G" &GG'G"(2' "' 3'' w'>:5(q'. 5'' w,)?(s-2'> 5"' "-"'>• (16>

In what follows we drop the Re and Im notation keeping in mind that the

imaginary part of the polarization is related to the real current density.

The linear and second order polarizability tensors, a and |3, are obtained

easily from (13) and (14). In cartesian component form then

[?GG'(9'w)Vv= -(e2/mw2ri)kYY,[fo(€kY)(~7'e"l(?"q,) ~llSY)6YY,6M-v
+(F C0/4m)(kY |(2p +^i(2k +q+G))^ e_i<5'5|k +qY')

X(k + qY'|e1~''X(2p +*(2k +q + G1)) |kY)] (17)

and
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^GG'G"^3' U' 9'' w'̂ \llv =*e /2mfiww'(w- w'))kYVi <
>

X(kY |e"i(<5+<5M)'X|k +q«Y')(k +q'Y'|ei<5,'X(2B +"h(q' +G'))^ |kY)6Ky

(kY |2g +*(2k +9+G))xe_i?,X|k +qY«) (F*,^ Jl)
/i , .1 i(G'+G")-xh vc

q' q-q

q

Y'y» <*>

"*" vM I' i/l-v/lt ..1 ~ * », tt
Y Y » <*>

~ ,)/2m(€ , , , - €, - ftco)
Y Y» <*>-g)" k+qY kY

(18)

X(k+3YI|e1~l'5(2p+-h(q»+G')) |k+g-q' Yu)(k+q-q' Y"|e1^ '~(2p+ti(q-q,+G"))

The defining relations (15) and (16) explicitly illustrate conservation of

energy (frequency) and wavevector (up to a reciprocal lattice vector) for

the electron polarization wave interacting with the true fields in the lattice.

It is our next task to show how the macroscopic constitutive properties of

a crystal are developed from these true polarizabilities.

V. FORMAL RESULTS

With the Lorentz tensor of Section III and the polarizabilities of

the previous section, we have the information necessary to compute the

macroscopic linear and nonlinear dielectric behavior of the crystal. In

order to simplify the formal manipulations though, we assume that the

nonlinear polarization is much smaller than the linear. This allows us

to write

E(c[, G, co) = E(q, w)5qg + ^9> ^' ^' G' ~GG'^' w^ ^3' ^' °^' (19)

If we define a matrix S(q, co) whose rows and columns are labelled

by the reciprocal lattice vectors and each of whose elements is a second

rank tensor given by [S(q, co)] p~, = L(q, G, co)'0pp,(cj, co), we may put (19)

-11-
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in the form

G,[l - S(cj, to)]GG,* ?(q, G', co) = E(q, co) 6Q Q (20)

Here 1 is the unit matrix of unit second rank tensors. Formally inverting

this equation, we have

2 _iE(c;, G', co) = G[l - S(q, <o)]G,G- E(q, u)6QG

= [l - S(q, co)]GI()-E(q, co). (21)

The process of taking the inverse of this infinite dimensional matrix

is not a well-defined mathematical operation. In practice however, a and

L are rapidly converging functions of reciprocal lattice vectors. The

first is because the reduced matrix elements, (kY | exp iCrxIk'Y1), are
an "average" of exp iG* x over the unit cell even for the tightly bound lower

bands y • Thus at large G the matrix elements become vanishingly

small. For this reason one may assume a cutoff G for the S((j, co) matrix

without losing much of the physics. The inverse of a matrix of the form

B 0

0 1

where B is finite and 1^ is infinite is simply B"1 0
0 1

The matrix B is just 1 - S(cj, co) for G, G1 < G cutoff.

In one important case this argument completely breaks down -

that of point dipoles. For then the wavefunctions are so tightly bound that

the "averaging" only takes place at the lattice site rather than over the

whole unit cell. Therefore, there is no particular predominance of the

low G terms. All is not lost in this case though, as we see in the section

on point dipoles, because we effectively evaluate the sum (20) before we

have to invert.

Now substituting (21) into (15) and (16) and setting G = 0, we solve

for the macroscopic polarizations.
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Px(q, go) = G, a0G,(q, co)- [ 1 - S(q, w)]^ ' E(q, co) (22)

?2(3' w) =3 '̂G'G" £og'G"(3' w; 3'' w'): ([i *5(3'J "'̂ G'O "^(3'» "^
{[1 - S(q-q',co-co')]GM0.E(c3-q', co-go')} . (23)

The macroscopic linear dielectric tensor is defined in the usual way

U(q, co) - 1] •E(q, co) = 4irP (g, co), (24)

and the macroscopic, second order polarization susceptibility is defined

P?(q, co) = ? ,*(<!» co; q1, co'): E(q\ co') E(q-q', co-co»), (25)
c ~ qcO/>^~ ~ ~~ ^ ~ ~

through which we obtain our central results quite simply

X -1U(q> co) - 1,] =4ir G«oG(q, co)* [1 - S(q, co)]^ ^^

2 -1^(q, co; 9'»co')=GGI gQGG,(q, co; q', w'):[l - S(q'co')] GQ

[1 " §(a-q', w-w')]G,0 . (27)

The tensor quantities a, (3, L, and S are given in equations (17),

(18), (8), and (20). Now we have a complete formalism which may be

applied classically to Maxwell's equations; our only approximations have

been in assuming a rigid periodic lattice, in using the one-electron, SCF

approach to the many-body problem, and in taking the nonlinear polariza

tion to be much smaller than the linear. Our remaining task is to apply

the formalism to problems of interest - namely, free electrons, quasi-

free crystal electrons, point dipoles, and nonlinear effects.
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VI. FREE ELECTRON GAS

The simplest application of the results of Section V is to the linear

dielectric tensor in a free electron gas. The Bloch functions are taken

over to the plane wave representation, |kY/—HlS/=& exp ik* x and
? ? ~

€, —>e, = ft k I'2m. Thus the functions | kY) are just constants so that

the reduced matrix elements give only (kY | exp iG-x|k'Y') = 6 ~« and

(kY | (exp iG-x)p|k'Y') = 0. We see then from (17) and (26) that qQQ is
the only surviving term since [l - S(q, co)]0~ = 1 because L(q,0,co) = 0.
The dielectric tensor is easily written in component form

[c (q, co) - l] = 4tt [anr.{q, co)]
~ ~ ' ~j[jlv -00 2 fiv

= -(4ire /mftco ), _o k uv my e^+q " €k "*"

X(k +q/2)|i(k +q/2)v (28)

The sum over all k of the distribution function f (€, ) is the number
- ov k'

of electrons, N. Defining the plasma frequency co = 4ir e^^N'/m^ , we
•? 2

see that the first term on the right is merely -(co^/co )6 . This is the
P r^

only contributing term if q—»0 as co 4 0. Due to the spherical symmetry

of the electron gas, the off-diagonal components of the tensor (28) vanish

leaving only two independent components - the longitudinal along q and

the transverse. We write these with a convenient notation

[e (q, co) - 11 , = - coL~x3' ' ~Jrlong. 1 p
I trans. /

2, 2
/go

4.e2 S -2 ^W "W f(b'3 +(q2/2))2
mflco2 ~ (k-q +(q2/2)-(mcoM)) [ (kXq)

-14-
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The longitudinal component may be expressed in a more familiar

form if we note the following identities:

(k-q+ q2/2)2/(k-q +(q2/2) - (mco/ft)) =(k-'q +(q2/2) +(mGo/ft)j

(mco/ft) 2/(k-q +(q2/2) - (mco/ft)

f f (€,, ) - f (e, ) = 0,
k o k+q ° £

= -N.k (y«k+9) - fQM ft-s+ q2/2)A2 =-1w =-
The last identity is proved by making the substitution k + cj—* -k and

using f (e , ) = f (€, ), the evenness of f in k, and the oddness of k* q
& o -k' os k' o ~ ~

in k. There results then

[«<9>u> - I! lo„g
4tt e m 2

20.2 k
q £2ft

o k+q' o k'

(k-g +(q^/2)-(mco/-ft))
(30)

This equation is typically derived from a coulomb interaction, but we

have obtained it using a gauge-invariant vector potential.

The dielectric components have interesting properties at low tem-
A

peratures and at low q. In this region f (e, ) - f (e, ) = - 6 (k -k.)k-q

for Fermi-Dirac statistics. kf is the Fermi wavevector. In addition we
1 -1

take the sums over to integrals according to the prescription Q Z),—>

2(2ir) J d k and we define (3 = ((q /2)-(mco/ft) j/kfq and fj. = £• q.
Making these substitutions in (29) and (30) and integrating trivially over

the magnitude of k and the azimuthal angle about q, we have

[i(q,co) - l] long

a 2
4tt e m

*,2 2
ft q

4-rrk,

(2tt) L * [x+ P + it* (31)

-15-



[t(q, co) - 1]
trans

2 7
CO A c

p , 4tt e
2 * 2

2Trkf

_(2tt)3 *
P+1 2
/ . ^ a + p + ia

co mco J-1 n r

(32)

The quantity ia is added to the denominator to insure convergence when

| p [ < 1. It may be thought of as arising from an adiabatic switching-on

of the vector potential or from a relaxation time, t , in which case

a = m/"hkfqT . In cases of interest to us we consider ex to be very small,

and we will take the limit as a—^0. No confusion should arise from the

new definitions of a, p , and fj. in this section since there is no overlap

with previous definitions.

The integrals in (31) and (32) are evaluated, setting a to zero
2 2 2

afterwards. With k = 4e mk^/irft , the "screening" wavevector, then
si

U(q,co) "l]long.= (ks2/q2)[l-pin|(p+l)/(p- 1)|1/2] . (33) .

U(q,Go) - Utrans =-(cop2/co2)[(3/2)(p2+ p(l - p2)in| (p +l)/(p -1) |1/2)] .
(34)

We see strictly for nonzero q neither longitudinal nor transverse com

ponents exhibit a pure plasma oscillation. In fact for the longitudinal
. 2, 2

dielectric constant we have recovered the Fermi-Thomas result, k /q ,
s

with a correction due to finite frequency and the Fermi surface. The

apparent singularity in the dielectric constants at co = 0 and q = 2k,.

never occurs because the results (33) and (34) depend on small wavevectors,

that is q « kf.

The plasmon limit is asymptotically approached when | p | » 1 for
which we expand in|(P +1)/(P - 1)|1/2 = P'1 +(l/3)p"3 +(l/5)p"5 + . . . .
In this domain p = -mco/1ikfq and we have approximately

[€(q, co) - 1] =-(cop2/co2) [1 +(3/5)(ftkfq/mco)2] , (35)

[£(q, co) - l]trans<= "(up2/co2) [1 +(l/5)(ilkfq/mco)2] . (36)

-16-



The conductivity tensor of the free electron gas is related to the

dielectric tensor by cr(q, co) = -(co/4iT)Im[£(q, co) - l] . In the low tem
perature, low q region we then find the transverse conductivity from (32).

Consider | p | < 1 and a—>0 so the integration is carried out using
Cauchy's principal value formula and we obtain

[<l(q>co)]trans =-(3cop2/l6co)P(l - p2). (37)
3 3

As in equation (34) we have used N/fi = 87rk,. /3(2tt) , the result of counting

plane wave modes in a Fermi gas. When (q /2) « (mco/li), we have the

conditions appropriate to the anomalous skin effect for which (37) becomes

[ff(q. co)]trans_ =(3ire2N/4ftkfq^) [1 - (moo/-ftkfq)2] . (38)

We have obtained the standard result in the first term on the right plus a

correction which needs to be less than one but not at all infinitesimal.

VII. NONLOCAL FIELD APPROXIMATION

We have seen in the previous section that the uniform free electron

gas rigorously has no local field corrections. It is possible, though not
3

always valid, to ignore such corrections for lattice electrons. Adler and
2

Ehrenreich and Cohen point out many salient features of this approxima

tion. Thus we treat this problem briefly, demonstrating how the free

electron plasma and acceleration terms are replaced by "effective mass"

plasma oscillations and quasi-atomic polarizability contributed by the

core electrons in the long-wavelength limit.

Neglect of the Umklapp processes by setting all G = 0 is what

characterizes this approximation. The contributing term in the dielectric

tensor is just 4Troron(q,a>). Passing to the dipole limit, q—>0, we have
from (17)

-17-



4ir[<*nn(0, co)] = -4Tr(e2/mco2fi)1 S , [f (€, )6 ,6 +(f (e, t)-f(€, ))
~00% /Jav £YY ° JSY YY M-v ° iSY o* ky"

»

X((kY|pjJL|kY,)(kY,|PvllSY)/m(€^l - €^ -ftco))] . (39)

We have used the orthonormality of the |kY) so that (kY | k| ISY ') = k& i*
The first term under the sum is simply the total number of electrons N,

2 2
so we again have the plasma term -(co /co ).

Let us now assume that we have an insulator or a semiconductor

at low temperatures such that f (c, ) = 1 for all Y —^ an<^ 0 ^or a^

Y > r. That is, all bands up to T are completely filled and all higher

are empty. Taking the real part of (39), we have

2 2 2
Re[ 4-n-o'An(0, co)] = -(co /co) + (4-rre /mfico )

~00 [IV P
(40)

XkY*Y'[l" H(r-*)1(€kY"ekY')
Y'<r

(IsyIp.. llSY'XlSY '|p,JiSV> + c.c
fci_

«<kv -«kY,)2-^)2)m

where H is the unit step function and (kYlP I^Y1) = (kY'lP Iky)*- We
now take advantage of the f-sum rule for Bloch states as given by Wilson,

p. 47.

(m/ft^lB^./Ok^k,] =6^

- v^v, ((kvlpJkY'Hkv'IpJkYt +c.c.J/mf,^-,^,).

Inserting the sum rule in (40) we have finally

Re [4ir<*nn(0, co)] = -(4tt e2/ft2flco2), ^T,[32c1 ,/8k 9k]l ~Q0X /Jfiv ' ky <r L *SY fi. vJ
(41)

4ire 2

+ 20 2 kY^Y'
m^w Y'<r

(-ftco)' -H(r-y)(^y-%r)
MpiJkY^)(kY,|P1JlSY)+c.c

ISY ^Y (e
_ kY kY

- €, ,)2 - (ftco)2
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The free electron plasma oscillation has been cancelled, and we

have instead an "effective mass" plasma oscillation indicated by the first

term on the right. For the tightly bound lower states e, , is relatively

independent of k and the upper states have balancing contributions from

positive and negative effective masses, thus filled bands produce negligible

plasma response. In a metal we would sum the intraband term over the

conduction band electrons as well, obtaining a quasi-free effective mass

plasma oscillation. The second sum on the right hand side of (41) is the

interband contribution and is usually cited as the optical polarizability in

a Bloch representation. The optical designation is our dipole approximation.

VIII. POINT DIPOLES

The complicated matrix formulation in Section V may be greatly

simplified when the lattice consists of an array of point dipoles. We

assume that the charge of the medium is completely localized at the lat

tice sites. This limit is pertinent to the usual derivation of the Lor em -

Lorentz law and takes full account of the local field effects.

For the purpose of evaluating the linear and nonlinear polarizability

tensors we return to the general complex current density, equation (9),

and propose, in place of the Bloch functions, a more appropriate represen

tation for the unperturbed wavefunctions. For the tight binding case the

functions with the required symmetry are given by

-1/2 S<p, = Q, (exp ik'xjd (x - xj
^kY x. v * ~ ~l V - ~l

The function d (x - x„) is suitably centralized about lattice site i; de-
Y ~i

pending on the degree of binding, we may think of it as a Wannier function

(a superposition of Bloch functions within band y) or an atomic eigenfunc-

tion designated by the state label y. In our case, however, we think of

d (x - x.) as zero everywhere but at x = x.. This 6-function character
Y ~l } ~l

of the d , together with their orthonormality in the unit cell, allows us to

evaluate the relevant matrix elements quite simply.
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<!5Y|V(x)|kV>= (A/S2) * (expi(k- - k)-x )V(x ) 6
£• n Y Y •

^YlVf^plk'Y^^ (A A3) ^ (exp i(k' - k)-xi)V(xjf) p.
YY

-1 * 3
P i = A d (x - xjpd ,(x - x„)d x = p ,
i-YY Ja Y -i *• Y ~* ~Y Y

If we note the property of the crystal Kronecker delta, 6 (k - G') =

(A/£2)x (exp ik«x.), that is k must be a reciprocal lattice vector to

survive the lattice sum, we may calculate the various orders of the cur

rent density transform similarly to (13) and (14). Using the above matrix

elements we have

j^q, G,w) =-(e2N/mcn)(?r A(q, G\ co ) ;42)

^'/-^kYVG'^'Y.« L\y,^(5'5,'-)-(Py'y+(11/2)(5+Q')6y'y
and

j2(q, G,co)=(e /m c V)^yy^, iFY3'Y>"'\Y'( '̂ ^W,)'(eY'Y+(h/2)(5,+<5,)6Y'v)
q'G'G'

XA(q-3', G",co-co')] +(Fyv,OJ6VY.{PVY./2>^<q,> G',«')-A(9-q', G».W-u _

q-q'
Z ((F9
YM I Y'YM> w '

F~ ~ , )p ,/m(€, , , - e, -ftco)
Y,'y»oj"oj -YY £S+qY £Y y

XU(q', G',co ')-(py1y„ +(ft/2)(q' +GI)6Y,Yfl)j

X(a(9 -q\ G",co -o)')-(pY„Y +(ft/2)(q- q' +G-)6 ^^Jj I

-20-
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A further consequence of the point dipole model is that the energy

is relatively independent of the wavevector, and we will take in what fol

lows the limits e. >€ , F~. = (f (e, , .) - f (e, ))/(€, . , ,-e, -ftco)-

(fo(€Y?) " ^Sv/^y'^y'^^ =FY'Y»W • Therefore all terms in (42) and
(43) involving 6 |f ?>y,yw and6v.»v disappear since FY iY, w6Y Yi =°
etc. That the cross product term in the last square brackets in (43) van

ishes is easily seen by exchanging the dummy indices co l<—?co -co ' and

q'+G'^-^g-q'+G". The remaining sums over k produce N , the number
of unit cells. Identifying as before the electric field with the vector poten

tial and the polarization with the current density, we have the polarizability

relations

P^q, G,co)= g(co)-^, E(q, G',co) (44)

P2(q, G.co )= *, |3(co,co '): qI^,G„ E(q', G',co ')E(q-3', G",co-co ') (45)

where

[a(co)] = -(e2/mco2fi) [N6 +(N/m) S ,F , (p ,) (p , ) ] (46)
L~v /j(jlv x ' L [iv c YY Y Y» w ~Y Y V Y Y v

[3(co, co')L =(e3N /m3ncoco'(co-Go')) ? „ [(F , „ ,-F „ ,)
*~ \uv c "yy Y Y Y »w Y Y» to-co'

x(PYY')\(PY,Y,,V(?Y,,Y)v/Sl " S "*w)1 ' (4?)

A comparison with equations (15) through (18) illustrates the reduction of

complexity which this model affords. In contrast to the general lattice

polarizability tensors, there is now no dependence on reciprocal lattice

vectors. We will see shortly how this is a necessary consequence of the

point dipole assumption.
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The plasma oscillation, indicated by the first term on the right

in (46), is cancelled exactly by the use of a sum rule. This sum rule

exists since we take the d to be a complete set of states within the
Y

unit cell of eigenvalue € when operated on by the periodic Hamiltonian.

By a simple calculation, exactly analogous to the f-sum rule for free atom

states, we can show 6 = 5, , ( (p .) (p . ) + c. c. ) /mU - € .).
[i-v Y^Y \ ~YY V ~Y Y v ' Y Y

The plasma contribution is eliminated when we include this in (46). For

this case there would be no residual effective mass plasma oscillation

because energies do not depend on k.

Inversion symmetry in the lattice requires the wavefunctions to

have a definite parity. In such a circumstance J3 must vanish since it

involves an odd number of parity changes between the same initial and

final state. Again, this is a particular of the model since in our general

form, (18), higher order multipole moments in the expansion of exp iq«x

would not violate parity and (3 need not vanish.

We have obtained the true polarization in terms of the local field.

Now we must make the field self-consistent as we did in Section III by a

modification of the Lorentz tensor. This modification is the removal of

the reaction field of a particular dipole when considering the effective

field acting on that dipole.

Let us consider a classical wave of oscillating point dipoles in

the lattice

np# Hq, G, co) exp i((q+G)-x-cot) =^ (p /A) 6(x-x )exp i(q.-x -cot). (48)
qvjco ~ ~ ~ qx.co ~u x

Here p is the dipole moment at each lattice site; we assume only one

species of dipole for convenience. From the property of the lattice sum

6(x-xJ = „ exp iG« x, we have that P(q, G, co) = P(q, co) = (p /A); indeed
X. jKLi~~ ~~~ ~~ ~0

the Fourier coefficients of P(x, t) are independent of G as we found

quantum mechanically in (44) and (45).
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The electric field from the wave (48) may be found in terms of

the Hertz potential, n, which in turn satisfies the wave equation. The

field is

e(x, t) =y(y-n(x, t)) - c'2 a2n(x, t)/at2. (49)

Two alternative solutions may be obtained for the Hertz vector. From
7

Born, Section 75, we have

S „ -^n(x, t) = ± 4irP(q, go) exp i((q+G)-x - cot)/ [(q+G)^ - (go/c) ] ,
~ qsjw ~ ~ ~ ~

(50)

8
and from the retarded potential formulation in Born and Wolf, Chapter 2,

we see

n(x, t) = wap(cj, w) exP its*^- "(H*-^ I/c))/ Is-^ (51)

The solution (50) when inserted in (49) leads identically to the

result we have already obtained in equation (7) if we remove the G de

pendence from P(q, G, co). Thus it is seen from (51) that our earlier

results contain a singularity if x is at any lattice site. This singularity

is just the reaction field of the dipole which we want to remove. Let us

take the origin at some arbitrary lattice site; this is allowed by trans-

lational symmetry in the lattice. Then we subtract the dipole at x = 0

from (51) denoting this by a prime on the sum over x.. Now we insert

(51) into (49) performing the indicated operations, Fourier analyze the

field, inverse time transform, and set x = 0; we obtain

qGE(q, G, go) = qx Aexp i(q. x^ +co^ | /c)
2~4

3 3ico/c (go/c)
X

UX.SjJ
T ^ x^P(9-")

1-3 - i^-2 - i^ZsL )p(q, u)
LMX| 5i

X

-23-
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Now (52) is fully equivalent to (7) with the singularity properly handled.

This is the total effective SCF acting on the dipole at x = 0 with the

incident-extinction fields already eliminated.

If we make the same identification of the macroscopic terms as

we did in equation (7), we see that we may write (52) as

3, E(q, G, co) =^E(q, co) +* L(d)(q, co)-P(q, co)
q(j~~ q q~ ~ ~~

which results in the dipole Lorentz tensor

[L(d)(q,co)]^ =4TT(qfjqv - (co/c)2)/(q2 - (co/c)2)

+ x A exp i(q-Xg + cox^/c) 5 4 2 3 2 \(3/x^ )-(3ico/xi c)-(co /xj? c ))(xi)„(xi)v

(1/x^ )-(ico/xj? c)-(co /x^c )j 6
fiv

(53)

Again we assume that the nonlinear polarization is small compared to the

linear. With the dipole Lorentz tensor and the polarizabilities as given

in (46) and (47), we may easily obtain the macroscopic constitutive tensors

according to the definitions (24) and (25).

[€J3, co) - I) =4™(co)-[], - L(d)(q, co)-a(co)] _1 (54)

£(q, co; q', co«)=g(Go, co'):[l - L(d)(q', co')' a(co')] _1

[I - L(d)(3 - q', co - co')-a(co - co')] -1
(55)

The infinite matrix inversion encountered in Section V is completely

avoided; we have only to invert a three dimensional tensor. These are

the central results for the point dipole lattice at arbitrary wavevector

and frequency.
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The long wavelength, low frequency limits of (54) are referred

to as the generalized Lorentz-Lorenz law. From (53) we see that the

dipole Lorentz tensor in this case is simply

[L(d)(0, 0)] = (4tt6 /3) + Z'a
/J|JLV flV Xfl 3(xJ (x.) /x,5)- (6 fx03)

~i u ~i v S. ) [iv Jt
(56)

2
The first term on the right is the limit of q q /q as q—>0, a condition

of uniform spherical symmetry. This equation is applicable to a crystal
2'of any symmetry where the lattice enters the calculation through the sumx..

Such a sum is a well known and often calculated quantity. In particular,

if the lattice site has tetrahedral symmetry, the sum vanishes identically

as demonstrated by Born and Huang, Chapter II §9. This condition

obtains for a simple cubic lattice and L (0, 0) = (4ir/3) 1.

Cubic symmetry also permits the polarizability tensor (46) to be

a multiple of the unit tensor. Therefore the linear dielectric tensor reduces

to a scalar given by [e (0, 0) - l] = 4ira{0)/{l - 4-rra(0)/3). This is the

usual statement of the Lorentz-Lorenz law for isotropic media.

Before proceeding, we say a few words about the appropriateness

of the local field correction. We have seen that the criterion for the local

field is the degree to which charge is localizable within the medium. For

the perfectly uniform distribution as in a free electron gas there is no

correction. It is absolutely wrong to apply a density-of-dipoles criterion

to determine whether or not local field effects actually exist. In a rarefied

medium such as an atomic or molecular gas, the correction is fully appro

priate; it is, however, unimportant since a is so small. The polarizabil

ity is small because our definition of a involves Natoms /Q, the density

of the gas.
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IX. NONLINEAR EFFECTS; GREEN'S FUNCTIONS APPLIED TO
COUPLED MODE THEORY

In Section V we obtained a second order polarization in a macro

scopic frame for which Maxwell's equations apply. We will now drop the

bar notation for macroscopic quantities since we will stay entirely in that

realm. Maxwell's equations in a nonmagnetic medium (|± = 1) are

VxE(x, t) = c"1 H(x, t) (57)

VXH(x,t)=c"1[E(x,t) +4Tr(P1(x,t)+ P2{x,t))] (58)

to terms second order in the fields. From these we obtain the wave

equation in a nonlinear medium

VX VXE(x, t) =-c*2 [E(x, t) +4tt(P1(x, t) +P2(x, t))] . (59)

If we expand the field and polarizations in a Fourier series in
2 2exp i(c[-x - cot), perform the 3 /8t operation, and use the definitions

of the macroscopic constitutive tensors in (24) and (25), we may write

after inverse time transforming

0(x, q, co)' E(q, co) exp iq* x = A(q, co) exp iq« x. (60)

Here we have taken the "unperturbed" operator as

0(x, q, co) = [(VX VX ) -(co/c)2 zjq, co)] , (61)

and the "perturbation" as

A(q, co) = 4tt(co/c)2 f X(q, co; q», co»):E(q', co') E(q-q», co-co»). (62)
M tU ~ ~ „, ~ n.
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The operator O describes the propagation of light in a linear, anisotropic

dielectric, and the operator A may be considered as a coupling by a non

linear susceptibility between the various normal modes of the linear medium.

We now introduce the Green's function in second rank tensor form

and its Fourier transform according to

-3 I 3
G(x - x', co) = (2tt) I d T|G(r), co) exp ir|. (x - x'). (63)

J_oo

Multiplying on the right by a unit vector u in an arbitrary direction and

then operating on the left with O, we have

0(x, q, co)-G(x - x',co)-u = (64)

+oo

(2-tt )~ I d n[n ±-r\(r\> )-(co/c) ejq, co)] • G(t), go) •u exp in • (x-x1).
J_oo

We see that if we take

[G(T), co)] _1 = [<n2l - 13(3 • ) - (co/c)\(q, co)] , (65)

we would have

+co

0(x, q, co)- G(x-x', co)-u = (2ir)~ I d T) exp in-(x-x')u = u 6(x-x') (66)
-oo

which, of course, is the desired property of a Green's function. It is our

basic objective to invert equation (65) and obtain the Fourier transform

of the Green's function. Assuming that we can do this and defining a

solution to the homogeneous equation by

0(x, q, co)-ET '{q, co) exp iq-x = 0, (67)

we see that a solution to the general equation (60) is E(q, co) exp iq-x

where
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E(q, co) exp iq-x - E (q, co) exp iq*x

p+oo
=(2tt)'3 / d3n d3x« G(n, co)- f Xi<b co; g«, co'):E(q', co'JEtfl-q1, co-go»)

J-oo ~ qco ~ ~ *

X 4ir(co/c) exp i(n • (x-x1) + q* x'). (68)

That this equation is true is easily proved by operating on the left with

Q(x, q, co) and summing over q.

This solution is exact and it couples exact waves in modes (q1, co')

and (q-q1, go-go') to (q, co). However we have just turned the differential

equation (60) into an integral equation. The real advance made is that

the equation now lends itself to an iterative solution. This is accom

plished by entering the homogeneous solution into the integral, thus obtain

ing a first order correction which one may reinsert etc. The complete

form (68) is also useful in the event that only a few modes have significant

amplitude. In the next section we work a particular case by the iterative

procedure.

X. OPTICAL HARMONIC AND SUBHARMONIC GENERATION

We wish to solve equation (68) by iteration for the simple case of

optical harmonic and subharmonic generation. Two zeroth order waves

are assumed to be present initially at frequencies co and 2co; in first order

these give rise to waves at 4co, 3co, 2co, co, 0. We are going to consider

only the waves resulting at co and 2co; as we will see later one can sup

press the other waves relative to the desired ones by a phase matching

technique.

Since the electric fields must be real, we have E(q, co) = E*(-q, -co).

The homogeneous solution at co has wavevector q. and the wave at 2co

has wavevector q?. Then to first order equation (68) yields
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-r^(l), X • -r-,(0),
E '(q, go) exp iq« x - E (q,, co) exp iq, •x

=(27r)"3| d3n fd3x'G(n,co).^ ^(q, go; q?, 2co):E(0)(q?, 2co)E(0)*(q?-9, co)

X 4tt(co/c) exp i(n« (x - x') + q« x'), (69)

E (q, 2co) exp ig* x - E (q?> 2co) exp iq7*x

=(2ir)"3 / d3n d3x'G(T), 2co). S^(q, 2co; qr co):E(°)(q1, co)E(0)(q-qr co)

7
X16tt(co/c) exp i(T).(x - x') + q«x*). (70)

These equations are still replete with tensor component summa

tions; so it pays to specialize to a particular geometry and material to

reduce the algebra. As an illustrative choice we take the material to be
o

KH?P04(KDP); we take co to correspond to ruby laser radiation at 6943 A;
and we take a flat slab of the crystal of length SL in the z direction and

infinite in the x and y directions. The crystal axes (designated by
(c) (c)

superscript ) are oriented such that the optic axis, z , is located

in the x - z plane at an angle i|j from the z-axis and the angle between
(c) °

x and y is <p . Figure 1 gives the geometry.

We arbitrarily assume that there is propagation only along the

z-axis, that is q, and q? have only z components. Such collinear

propagation is only a mathematical convenience; physically the wave nor

mals need not be so highly restricted. We are aided by this restriction

in that the sums over q' disappear in (68) since for a given direction of

propagation there are at most two possible wavevectors in such a negative

uniaxial crystal. In order to reduce complication further, we choose our

zeroth order field polarizations to be pure ordinary for the wave at co

and pure extraordinary for the wave at 2co. From Figure 1 -we see that
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E (q-,, co) is along the y axis and E (q->> 2co) is confined to the x - z

plane; the latter will generally not be transverse to the wavevector but

will incline at an angle, a, from the x-axis.

Since, by edict, all q are z-directed, we will drop the vector

notation and write q for the z-component. The only x1 and y' depen

dence in the integrals (69) and (70) thus arises from the term exp ir|«(x-x')

which may be integrated over dx'dy' to give 6 (n )6(n ). Then integrating

these out we are left with r\ only, which we will denote n. We have
z

remaining

E (q, co) exp iqz - E (q, co) exp iq,z

= (2V)J dT1J dz,(^(r1, w)' ^(q' w; q2' 2w):?(0)(q2' 2^)E(0)*(q2-q, co)
'-co

X 4tt(co/c) exp i(n(z - z') + qz'), (71)

E (q, 2co) exp iqz - E (q^' ^co) exp iq2z

=(^tt)'1/ dnJdz'G(n, 2co)-^(q, 2co; qr co):E(0)(qi, co)E(0)(q-qi, co)

X 16tt(go/c) exp i(r)(z - z') + qz'). (72)

The Green's function tensor is given by its inverse, equation (65), for

this case

[G(n, co)]
-1

2 t i \ZT] - (CO/C) €

"(co/c) €

"(GO/C) €

yx

zx

2 2
-(GO/C) € "(CO/C) €

xx xy xz

T) "(co/c) € "(co/c) €
yy yz

-(co/c) € "(co/c) €
v ' zy zz

J

-31-
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In principle the dielectric tensor, ^, and the nonlinear suscepti

bility, X,, may be calculated according to the results in Section V. How

ever a lack of knowledge of the unperturbed states of the crystal makes

a complete solution impossible. We can apply overall symmetry relations,

though, which considerably simplify these tensors. In the long wavelength

limit, KDP, which has tetragonal scalenohedral symmetry (D., ,), has but

two independent components for either ^ or ^ in the crystal coordinate

system. These are given in Appendix C together with the transformations

to the coordinate system which we are using in this problem. For the

optical conditions this symmetry is effectively reduced, but the long wave

length case represents an upper bound on the symmetry and yields all the

physical properties of interest.

In Appendix D we compute the Green's function tensor from its

inverse (73). There are singularities in G("n, co) when n is a wavevector

that satisfies the homogeneous equation (67) for a particular frequency.

The resulting relations of the phase velocity to the dielectric tensor com

ponents and propagation direction at these singularities are known as

Fresnel's equations. The Green's function thus yields information about

the fields in a linear, anisotropic medium as well as in the nonlinear

domain.

We now make use of the nonlinear susceptibility tensor in our

frame, given in Appendix C, and G(n, co), given in equation (D6), to put

(71) and (72) in full component form. For notational brevity we define
2 2

X = X-, sin a cos <p sin ib and e = e , sin ib + € -> cos ib . Thus
/vo 1 o o xo o 1 xo 2 To

we generate the following first order field components,

E (q, co) exp iqz - E (q, co) exp iq.z

-1 P+0° f 2 2 2-1= (2ir) I dn Idz' 4ir(co/c) exp i(n(z-z') + qz')(n - q^ )

><E (0)*(q2-q, co) [4XoEx(0)(q2, 2co) +4XQ cot ^ Ez(0)(q2, 2co)]> (74)
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E (q, 2co) exp iqz - E (q?> 2co) exp iq?z

2,-1
an /dz' loTT^co/c) exp HTflz-z") + qz'^n -q2

•co

XE (0)(qrco)E (0)(q-qi,co)[2>ro+ ZXQXZ cos2 cbQ(€ z^ f UQX^> (75)

-1 P+0° P 2 2 2= (2ir) I dn (dz1 l6ir(co/c) exp i(r|(z-z') + qz')(n -q2 )

E (q, 2co) exp iqz - E (q7, 2co) exp iq?z
Z Jit L* C*

2.-1
an I az' lbir(co/c) exp i{r\(z-z') + qz'Kn -q2

co

XE (0)(qr co)E (0)(q-qi, co)[2X0(€2-€1) sin ^ cos ^/^

-1 P +0° P 2 2 2= (2tt) I dn J dz' 16tt(co/c) exp i(n(z-z') + qz')(n -q2 )

+ZXQXZ cot cbo(r,2(c/co)2 - V€2+€o)/€o] • (76)

In each of these equations the integral over dn has a singularity

whenever r\ = ±_q _. If we want to examine the waves at z > i, that is,

the transmitted waves, during the whole of the integration of dz' from

0 < z' <. i we have z-z' > 0. For this case the integral may be computed

along a closed contour in the complex r\ plane along the real axis and

an infinite semicircle in the upper half plane. Figure 2 gives the appro

priate contour. The way we encircle the poles is a statement of the

boundary conditions. We assume that to the right of the crystal only waves

traveling to the right are present; so the correct pole to enclose is r\ = +q. _

This presumes that the incident waves are all coming from the left.

Integrating out the dn over this contour in the latter three equations, we

obtain in each case the factor 2-rri X. Residue at r\ = +q This leaves
1, c.

only the integral defined by

Ji= J dz'exp ^q"qi, 2^z'= (2 exp(^q"qi, 2^2))

X̂sin((q-q1>2)i/2^/(q-qlj2). (77)
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Fig. 2. Contour of integration.
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This integral is known as the coherence integral in the theory of traveling

wave parametric amplifiers.

The coherence integral indicates the importance of conservation

of wavevector for the nonlinear interaction. Since Jt » (q, ?) the inte

gral practically vanishes for all q except q - q. ?. For perfect match

ing, a condition called "synchronism, " we have q = q, ? and I. = i.
(or

In order that this condition be met, we must have E (q?-q-,» go) as a

possible zeroth order wave in the crystal since this term appears in the

integrals (74) - (76). We interpret this condition diagrammatically in

Figure 3 where we draw the solutions to Fresnel's equations in wavevector

space on the isofrequency surfaces co and 2co.

Clearly the line BC must equal AB if we confine ourselves to

collinear propagation so that 2q1 = q?. This may alternatively be stated

that the phase velocity of the 2go wave is equal to the phase velocity of

the co wave. In terms of the Fresnel equations and notation in Appendix D,

we see that

v 2(co) = (co/q )2 =v 2(co) (78)
IT] X U

v (2co) = (2co/q2) = v (2co) cos cb + v (2co) sin ib (79)

are equal when

ibQ =arc sin , Ivq (co) - vq (2co)j/(ve (2co) - vq (2co)j
1/2

(80)

Here v and ve are the ordinary and extraordinary velocities defined
° -1/2 -1/2by v = c(e,) and v = c{e-) . Equation (80) has been given by

o i e t.

Giordmainell; it has a real solution when the square rooted quantity is
2 2between zero and one. Thus the anisotropy at 2co, (v (2co) - v (2co))

must be greater than the dispersion between the two frequencies
2 2

(v (co) - v (2co)). KDP is such a crystal and, for the values of v and
o o ' o

v given in (D7), we obtain the phase matching angle cb = 50°.
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to

(normal to
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Fig. 3. Fresnel equation solutions in negative uniaxial crystals
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We may evaluate the fields (74) - (76) by means of the contour

integration and the coherence integral. For the purposes of numerical

calculation, we take the phase matching condition, I. = £., to hold and

neglect terms of the order of the crystal anisotropy, (c 2 - e,)/e ~ 3%.

To the same order we may neglect the nontransverse field E (q2, 2co)

since it is proportional to sin a which in turn is proportional to (c -,- €,)/€

Equations (74) and (75) then give

Ey(1)(qr co) - Ey(0)(qr co) =Ey(0)*(qr co)Ex(0)(q2, 2co)
2 2X(8tt iico /c q^) X-^q^, co; q2> 2co) sin <p cos <p q sin ibQ, (81)

Ex(1)(q2, 2co) - Ex(0)(q2, 2co) =Ey(0)(qr goJE^0^, co)
2 2/.(16tt iilco /c q~) XAq7, 2co; q,, co) sin <p cos <p sin ib . (82)

We have restored the definition of X and added the frequency and wave

vector dependent argument for X-, which we dropped explicitly in Appen

dix C because of our static approximation.

Sin ib has been fixed by the synchronism condition (80) but we
° 12

may still maximize the interaction by setting <p = 45°. Maker et al

demonstrate the validity of the angular dependence in (82) for harmonic

generation in KDP. Returning to the definition of X and ignoring any

dispersion in the nonlinear susceptibility, we introduce two gain param

eters - T ,~ for harmonic generation and its reverse Tn for
co—7>Zco ° 2co—>co

subharmonic generation. From equations (82) and (81) then, we define

Tco->2co =(EJV> 2"> "Ex(0)<*2' *"))/(Ey(0V ^
=(16-rr i ico2/c2q2) XQ Ev(0)(qr ")> (83)
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=(8tt iico2/c2qi) XQ Ex(0)(q2, 2co) . (84)

Let us assume that the first order waves are in phase with the

zeroth order waves; this is the condition of maximum conversion efficiency,

With 9, the phase of the wave at frequency go and 9-, at 2co, we see

from (82) that 29, - 92 + (W2) = 0 or integer multiples of 2ir (assuming
X to be real) and similarly from (81) we have that 29, - 92 - (tt/2) = 0
or integer multiples of 2-nr . These phase conditions determine which way

the nonlinear frequency conversion will proceed. Such phase relations

are well known in the coupled mode theory of parametric amplifiers (o.g.,
13

Louisell, Chapter 4).

Suppose now we have only a single wave incident on the crystal at

frequency co, and we start to generate the 2co field with the proper phase

as just discussed. The power generated in the 2co wave divided by the

incident power at co is given by

=<l6irX0i<*2/c2q2) |Ey(0)(qi, <o) |2. (85)

This power ratio thus depends on the "coherence length" x. of the crystal

and the magnitude of the incident radiation. We designate I as the

coherence length now to remind us that we have matched phase velocities

throughout the medium. In practice it is difficult to have synchronism

throughout the crystal because of lattice inhomogeneities and incoherence
12of the light source. Maker et al were able to achieve power conversion

ratios of > 10 with ruby laser light reasonably matched in a 1. 5 mm

plate of KDP.

outv"w// A invw/ ' 'Lco-»2co'
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Suppose now that the incident wave at co is intended to produce
(0)*the subharmonic co/2. According to equation (81), if E (q,, co/2) were

absent, there would be no such conversion. Therefore we must artificially

introduce a small amount of subharmonic to start the process; we could

externally supply it or rely on the noise level. This triggering process is

fundamental to all down-conversion problems, but in the optical range the

noise level is low at normal temperatures, reducing the reliability of

starting such a device. However, assuming that the subharmonic is present

to some degree and that the phases are optimized, the quantity |T ,-,[

gives the first order gain per pass of the subharmonic wave amplitude.

From (84) we see IT v /-, I = (2irico /c q,)X IE V '(q0, co) I; so since q,
1 co—>co/2' 1 o ' x ^2 ' 1

of the subharmonic problem is q7/4 of the harmonic case and if we have

equal incident powers, |e (q->,to)lo v, = |E (Qi»w)|tt^ * ' x v^2 '' Subharmonic case ' y nr '' Harmo
we see that T ,-, is equivalent to the previously calculated

1 co—?co/2' n sr j

|T - I /2. Taking the experimental harmonic conversion ratio to be
CO PCibi -j

10 we find that the amplitude gain per pass should then be 0.5 X 10
-3

This would be a power gain per pass of ~ 10

This minute gain per pass could be increased in a regenerative

amplifier scheme, such as using mirrors to increase the number of passes.

The mirrors need have losses of less than 0.1% both in reflection and

diffraction. This is quite a critical requirement, but with increased fluxes

available and better matching techniques, subharmonic optical generation
14

should become possible. Kingston has proposed this device in a short

communication.

nic case,

-39-



APPENDIX A

We wish to show that the complex current density, as defined in

equation (9), is gauge invariant to infinitesimal gauge transformations.

Thus we need only to show that the part linear in the fields is so invariant.

It is first necessary to generalize the gauge to include a scalar potential,

ev(x, t), in the perturbation energy, V(x, t), of equation (2). Rederiving

the Fourier transform of the linear current density, we see that we must
IiCr' • X I
e ~ ~(-mc)v(q, G', go) Iky) to the last matrix element in

equation (13) in the general gauge. Here v(q, G, co) is the expansion co

efficient of the Fourier analyzed scalar potential.

A gauge transformation characterized by the scalar function cb(x, t)

such that A(q, G, co) —"-^(q, G, co) + (q + G)cb(q, G, co) and v(<j, G, co)—>

v(q, G, co) + (co/c)cb(q, G, co) is performed on the current density. The por

tion of ji(q» G, co) that depends on ib is written

il (9'?'w)= ~<e /mcf2*kvG'

q

fo(€kY)(q+G')(kY|e"i(^"Q,)"5|kY)ib(q, G', co)

+Y,(F7,Y,co /m)<^l (p +n:>+ (q+ G)/2)) e"1^ x| k+qv «)
iG'-xX(k+qY'|e~ '~ ((q+Q').fp+ii(k+(q+G,)/2)j -mcol |kY)ib(q, G', co)

It is an elementary result of k-p perturbation theory that

(Js+qv'l ei?'*X(q+ G')Mp+n(k +(q +G')/2n |kv)

(Al)

iG'-x=(m^)(€fe+qY, - € )(k +qY'| e1^ ~|kY). (A2)

Inserting this into j. (q, G, co), we obtain
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i/^tq, G,co) =-(e2/mcn)^g, G',00) ^, [fQ(e ^y)^yy,

X(q+G')(kV|e-i(?-5')-?|kY)] +|((f0(«k+ ,) -fj^))/*)
-iG- x iG'-xX(kY| p+*(k+(3+G)/2) e"1 '̂X|k+9Y)(k+qY'|e1^ ~|kY) (A3)

Now we exchange dummy indices Y *-» Y ' and k+q^—»-k under the sum

mation for the f (e, , ,) term, and we note that f (e , ) = f (c, ) and
° fe+9Y ° ~£Y ° £Y

|kY) = I -kY)* when the Hamiltonian is invariant under time reversal
and independent of spin. This allows us to write

j j '(q, G, co) = -(e /mcft )G, ib(q, G', co) kY Y ' o kY ' Y Y

(2V6kY>/f0X(q+G')(kY|e-i(^^,)^|kY)]

X(kY| (g+ii(k+(q+G)/2)) e~i(5'~|k+qY')(k+qY'|e1<5''X|kY)

=-(e2/mcn)^,ib(q, G', co) fQ(€ feY)(q+G')(kY |e"1^ '̂)' x| kY)

-(2fQ(ck )/*)(kY| (p+nfc-Hq+G)/2))e-i(^"5,)-x|kY)|
= 0

In the next to last step we have used the completeness relation

2

y

(kY j f p+"n(k-G' /2) J e'~ ~|kY) under reversal of k.

t|kY')(kY'| = 1, and finally we take advantage of the oddness of

iG'-x

(A4)

Thus we see ji(q, G, co) is invariant under gauge transformation;

so we choose a gauge such that ib = icv to eliminate the scalar potential

entirely from the equations in the text.
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APPENDIX B

The equilibrium part of the complex current density given by (12)

is seen to be

io^S) =(e/mn)^(kY| (p+n(k+G/2)) e'^lkv) iQ(^y)?>q0, (Bl)

since p is diagonal in the Bloch representation. Thus j is periodic

in the lattice as it has nonvanishing coefficients only when q = 0. In

fact if H is invariant under time reversal, then, as in appendix A,

f (€, ) is even and (kY | (p+H(k+G/2) j e ~ ~|kY) is odd under reversal
of k. In this widely applicable circumstance there is no equilibrium

current.

-42-



APPENDIX C

We give in this appendix the dielectric and nonlinear susceptibility

tensors for KDP.

KH?PO. has tetragonal scalenohedral symmetry (Schoenflies

D?j(Vd), International 42 m). The only second and third rank tensors
15

compatible with this symmetry are (Mason, Chapter 3)

(c)

and

X (c) _

€1
0 0

0 €1 0

0 0 €2_

0 0 0 *1 0 0 *1 0 0

0 0 0 0 *i 0 0 *1 0

0 0 0 0 0 x7 0 0 X

(CI)

(C2)

where we are in the crystallographic coordinate system. We must

transform these tensors to the coordinate system illustrated in Figure 1.
(c)

First we rotate about zv ' by (tt/2) - <p and then about y by ib .

The transformation of axes is

where

and

(c)x= [+ibQ] [(tt/2) - <PQ] x

[(tt/2) - <pQ]
sin <p -cos q> 0

^o o

0

1

COS (0

0

sin <p

0

-43-
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[++J =

cos ib

0

sin ib

-sin ipc~]
0

cos ib

Thus in the transformed coordinate system

c=[+i|io] [(tt/2) - cpj t(c)[ -(tt/2) +<pQ] [-lPJ

2 2
€,005 11; +€?sinib 0 (e ^ - €,) sin ib cos ib

o ' '2

0

(e ->-e )sinib cos ib
2 ' xo ^o

1

2 r 'o 'o

0

2 2
0 e, cos ib + e 0 cos ib

1 ^o 2 ^o

(C5)

(C6)

To compute the components of £, we use the general tensor transformation

law with the usual summation over repeated indices

x.
3x. 3x 9x

A. [L V

X^v ' 3x (C) 3x (C) 9x (C) "p(rT
p cr t

X,
(c) (C7)

We obtain the differentials from (C3). The middle column is multiplied

by X-i and the right hand column by X?•
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I

'XXX

bxyy

xzz

X_„. =X,'xyz xzy

^VV-7 ~ A..
•xxz xzx

X =Y
xxy xyx

X yxx

Xyyy

X̂•yzz

^yyz
y
yxz

= x yzy

= V,yzx

x_„ = X,yxy yyx

zxx

•zyy

'ZZZ

X„„ = X
zyz zzy

X„_ =Xzxz zzx

*„„., = x„'zxy zyx

X

-4 sine? cosfl) sinib cos ib
^o ^o ^o Yo

2 sine? cosfl) sinib
^ o ^ o xo

2 3
2 sine? cosffl (sinib cos ib - sin ib )

o To To Yo To

2 2 2
(sin a? - cos <p ) cos ib

^o ^o' To

2 2 3
2 sine? cosa? (sin ib cos ib - cos ib )

o To xo Yo Yo

/ • 2 2 \ • .(sin <p - cos <p ) sinib cosib
o ^o ^o To

o/ • 2 2 , .
<£(sin <p - cos o> ) sinib cosib

^o ^o' To To

0

o/ • 2 2 % .
-£(sm <p - cos <» ) sinib cosib

^o ^o' Yo Yo

2 sine? cosip cosib
To ^o Yo

/ • 2 2 w • 2, 2, %-sin a? - cos <p )(sm ib - cos ib )
o To xo Yo

2 sin<p cose? sinijj
o ^o ^o

A • .2
4 sm<» cose? sm ib cosib

o ^o Yo To

-4 sm<p cos<p sm ib cosib
o ^o ^o To

/ • 2 2 x . ,
-(sin a> - cos <p ) siniii cosib

o To ^o To

2 3
2 sin<p cose? (sinib cos ib - sin ib )

o o To ^o ro

, . 2 2 . . 2,
-(sin <p - cos <p ) sin ib

^ o ^o' Yo

x:

-2 sine) cosip sinib cos ib
^o ^o Yo Yo

2^,

sine? cose? sinib cos ib
xo ^o ^o Yo

.2 2 2
-(sin <p - cos <p ) sin ib

o ^o To

-> . 2
Z sina> cose) Sin ib cosib

o ^o ^o To

/ • 2 2 , . ,
(sin a> - cos <p ) sinib cosib

o ^o' Yo Yo

0

0

0

0

• 0

0

-c. sine) cos<p cos ib
^o ^o ^o

2 sine) cose? cosib
^o ^o Yo

9 • . 2,
-<£ sin<» cosw sin dj cosib

o ^o ^o Yo
/ • 2 2 . . .

-(sm <p - cos o> ) sinib cosib
o ^o To To

22 sin«> cose? sinib cos ib
o ^o ^o To

/ • 2 2 . 2,
(sin <p - cos <p ) cos ib

^o ^o' Yo

(C8)



APPENDIX D

We would now like to compute the Fourier transform of the Green's

function tensor. Its inverse is given in (73) and the dielectric tensor ap

pears in (C6). We have

2 2 2
(nc/co) -(e,cos ib +€ ..sin ib ) 0 -(e 0-e ,)sinib cosib

1 ^o 2 To' x 2 1' ^o ^c

G(n, co)
-1 co

0

"(« ->~e i)sinib cosib
2 r ^o ^o

The inverse of (Dl) is

[G(t],w)L = [G(n, co)"1] VM7 iG(n.co)"1
JJ.V

(r)c/co) -€ 0

2 2
0 -(€,sin ib +€->cos ib )

v 1 Nd 2 ^o'

where the numerator is the signed cofactor and the denominator is the

determinant. The determinant may be evaluated simply

-1 7 2 2|G(n, co)" | = -(co/c) (ejSin ibQ + €2cos ibQ)

X((nc/co) -€l) f(nc/co) - (€l€2/(€1sin ibQ+e 2cos ibo))1 .

The roots of this determinant have the important property that they are

singularities in the Green's function integral (63). These poles enable us

to evaluate that integral by contour integration in the complex r\ plane.

The roots give precisely the Fresnel equations for light propagation in a

uniaxial crystal, so the poles are found at wavevectors that are solutions

to the homogeneous linear wave equation. We may immediately factor

equation (D3) to obtain the two roots when r\ = q or q~ and

/ / \2 Z 2("/qj) = v = vo [ordinary wave]

(co/q-J = v = v cos ib + v sin ib [extraordinary wave]
v ^2' p., o ^o e Yo

-46-
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2 2,
V = C /€

2 ?
From Section X we restate three definitions: v = c /e ,;
? ? o o ' 1'2. 2

tions indicated in (D2), we find that the Green's function tensor is

e • 2' €o ~ €1 sin ^o + €2 COS ^o" ^hen ky performing the opera-

G(n, co) =

1

/ Z 2.(Tl - q2 )
0

(e 0-e ,)sinib cosib
2 r To To

/ 2 2.€0(T1 - q2 )

/ 2 2,("H - ql )

(e -,-e ,) sinib cosib
2 r ^o N:

/ 2 2\
€o(T1 " ^2 >

0

(nc/co) - €]L -€2+€Q
~2 z:

€o(T1 " q2 }

(D6)

In general €, and € ? are functions of frequency as are q, and
,„ . . _ ,„15 -1 , , ... ,. nU5 -1 ,.

For KDP at co =2. 72x10 sec and 2co=5.44\10 sec which

corresponds to the fundamental and second harmonic ruby laser light

(6943A), we list the quantities as given by Giordmaine for reference

/TTcoj = c/v (co) = 1. 506
s/ 1 o

J € (2co) = c/vq(2co) = 1. 534

JTJuS) = c/ve(co) = 1.466

7c7(2co) = c/v_(2co) = 1.487

-47-
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