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ABSTRACT

This paper is a study of decision making in a discrete-state

discrete-time system whose state transitions constitute a Markov

chain with unknown stationary transition matrix P. The states of

the system cannot be observed. The decision at each stage is based
on observables whose conditional probability distribution given the
state of the system is known.

We consider a class of problems in which the successive ob

servations can be employed to form estimates of P, with the esti

mate at time n, n = 0, 1, 2, . . . , then used as a basis for making
a decision at time n. The estimates and the corresponding decisions
must have the property that as n->co, the decision based on the esti

mate of P tends to the optimal decision rule which would be used
throughout if P were known.

The results presented in this paper were obtained in the course of research
sponsored in part by the National Science Foundation under Grant GP-2413
and G-15965.



&, DECISION MAKING IN INCOMPLETELY KNOWN STOCHASTIC SYSTEMS*
35? J. Raviv

University of California, Berkeley, U.S.A.

INTRODUCTION AND SUMMARY

This paper is a study of decision making in a discrete-state

discrete-time system whose state transitions constitute a Markov

chain with unknown stationary transition matrix P^ The states of

the system cannot be observed. The decision at each stage is based

on observables whose conditional probability distribution given the

state of the system is known.

We consider a class of problems in which the successive ob

servations can be employed to form estimates of P, with the esti

mate at time n, n = 0, 1, 2, . . . , then used as a basis for making

a decision at time n. The estimates and the corresponding decisions

must have the property that as n—^00, the decision based on the esti

mate of jP_ tends to the optimal decision rule which would be used

throughout if P were known.

In Sec. I, the formulation of the problem is presented, in detail,

and the optimal decision procedure that would be adopted if one knew

the transition matrix P_ is given. In Sec. II, sequences of estimates

are derived. These estimates are based at each stage on the observ

ations up to that point, and they converge almost surely, when n—ko,

to the unique stationary distribution, and to the transition probabilities

of the Markov chain (when it is regular). More generally, if the chain

is a k-th order multiple Markov chain, a sequence of estimates which

converges to any k-th order distribution can be obtained. A necessary

and sufficient condition for the existence of such estimates is given.

In Sec. Ill, using these estimates, an "adaptive" decision procedure

is developed which does as well asymptotically, in a well defined sense,

as the optimal procedure that one would adopt if one knew the transition

matrix .P. Finally, an example is worked out. This example demon-

*
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strates that the well-studied problem (when F^ is known) of decision

making on a Markov signal with additive gaussian noise is a special
case of the theory developed above.

This paper is a generalization, to the Markov dependence case,
of some of the ideas presented in H. Robbins' paper.1 As in the Robbins
paper, the decision rule is not Bayesian, since no assumptions are made

concerning an a priori probability distribution on the space of all possible
transition matrices P, or more generally, on the space of couples (S, P)
where S is the initial probability distribution on the state space of the
Markov chain.
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I. FORMULATION OF THE PROBLEM

A. NOTATION AND TERMINOLOGY

Let us consider a discrete state discrete time system S whose

state transitions constitute a regular Markov chain with stationary

transition matrix P. If we denote by _/\= {1, . . ., r} the state space
of system S then,

Pll ' ' ' Plr
P =

rl rrr

where the P-'s denote the one step transition probabilities, i. e. , if
•I

at any step (time) the system is in state i, then it moves on the next

step to state j with probability p... For this reason, in the following

discussion we shall use the state of S and the state of the Markov

chain interchangeably.

For simplicity we shall restrict ourselves to finite state simple

Markov chains. However, all our results can be applied, as we shall

indicate later, to k-th order multiple Markov chains and to Markov
sjesje

chains with a countable number of states. The state transitions of

S are assumed to occur at times n = 1, 2 We suppose that we

cannot observe the state of the system, however we observe at each

time n, a real-valued random variable x, whose probability distrib

ution depends on the state of S at time n. We further suppose that

the conditional probability distribution of the observable random vari

able x given the state of S is known to us. Thus, at each time nf the

A regular Markov chain is one that has no transient states, has only
one ergodic class, and this class contains no cyclically moving sub
classes. See Doob Ref. 3, page 182.

Ibid., page 185. \
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observable random variable x is known to have one of a finite

number of specified probability distributions P., . . ., P , with

P. being the distribution in question if S is in state

i, i = 1, . . ., r.

In what follows, subscripts will denote "state" and super

scripts will denote "time of observation. " The model introduced

above is illustrated in Fig. 1. Let P(\n =i) denote the probab
ility that the Markov chain is in state i at time n. By

P(X = i/x , . . . , x ) we shall denote the conditional probability
that the Markov chain is in state i at time n. given that the values
In n

x , . .., x have been observed. Finally let x denote the vector
#ln.
\X , ..., x j.

1 2We are observing a sequence x , x , ..., of random variables,

Without loss of generality let us define these random variables on

the sample space Q=n^ z11 where z11 =R1 (the real line) for
all n, and denote by &_ the Borel or-field on this space. Thus

the sample space 8 is the coordinate space of all sequences of
1 2

real numbers £ = (£ , £ , ...), the random variable x11 is

defined as the n-th coordinate variable of 0, so that xn(£) = |n.
1 2We assume that the random variables x , x , ... are conditionally

independent given the states of S. To simplify the notation we
12

shall use x , x , .. . to indicate both the random variables and

the values which they take, and it shall always be clear from the

context which one we mean.

"5 ~~ it
This condition implies for example that P(xn€A, x11 €B/X.n =i,
Xn+1 =j) =P(xn€A/\n =i).p(xn+1€B/\n =j) where A, B are
Borel sets and P(xncA/\n =i) denotes the conditional probability
of the set {£/xn(€)€A} given \n =i.
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Let us now suppose that we have a finite action space A = {a , . . ., a },
a typical action a. might be to guess that \n, the state of S at time n.
is 1. Let a loss function L be defined on AxA. such that L(a., \) > 0
for all i =1, . . ., r and all \«A, L(ait j) representing the loss we incur
in taking action a. when the state of the system is j.

Since we cannot observe the state of the system, our problem is to
choose, at each time n, a decision function tn which depends on x1, ..., xn,
the observations up to this point, such that when we observe xn we shall
take the action tn(xn). More precisely if Rn =R^x. . .xR1 (n times) and

3 is the Borel o--field on Rn then we shall denote by tn any Borel
Measurable function from the measureable space (Rn©n) to the action
space A, and by Tn the class of all such tn.

In choosing t (xn)€ A at time n, we incur the loss L(tn(xn), \n). We
want to choose a sequence of decision functions tn for all n = 1,2, . .. in
such a way as to minimize the expected loss, i. e., choose tn such that
E[L(t (x ), \ )] is a minimum, where E denotes the expectation with
respect to all the random variables x1, x2 Xn, \n. When no con
fusion can arise, the superscript n will be omitted; i. e. , t(xn) should
be interpreted as tn(xn).

B. THE CASE WHERE P IS KNOWN

Suppose we are faced with the above problem and we know the trans
ition matrix JP of the system S. Let us further suppose that the initial
probability distribution on the state space of S is the unique stationary
probability distribution. Then the sequence of optimal decision functions
{t } will be chosen as follows.

If we denote by Rn(tn F) the expected loss at time n when we use
the decision function tn and the transition matrix is P, then we have

*

Npte that the number of actions is not necessarily equal to the number
of states, see example page 31.

**

We shall not consider randomized decisions.
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Rn<tr\?) =E[L(t(xn), \a)] =E {E [L(t(xn), Xn)/xn] } (1)
and if we set

r

0p(a. xn) =E [L(a, \n)/xn] = I L(a, i) P(\n =i/x11) (2)
— - - i=l •"

then we get

Rn(tn,P) =E[0p(t(xn), x11)] . (3)

Let us choose tp(x ) such that for almost every (n)x11, where |i
is the measure definecTon ft, we have

0p(tp(xn), xn) = min 0p(a x11)*. (4)
a.«A —

Then for any decision function tn

Rn(tP' Z> = E t min ^p^x11)] < R (tn, P) (5)
— a.cA —

i

so that, defining

Rn© MRn(tP' D " Et «>p(tp(xn). xn)] (6)

we have

Rn(P) = min R (t(xn), P) . (7)
tncTn

Let us now consider the question of how well we can hope to do in
the case where the transition matrix P is not known to us.

Since we have assumed that the initial probability distribution on
the state space of S is the stationary probability distribution, the Markov
chain is a stationary process. By Lemma 2. 3, page (18)it follows that
the process {x } is also stationary. It is well known that if x , x , ...

is a stationary sequence of random variables, there exists a stationary
-10 1 12

sequence ...y ,y,y,... such that the laws of (y , y , .. .) and of

tp(x )=ak where k is any integer 0<k<s such that 0p(a,,xn)

** =min tMv xI1>' •••• Mv £n)] •

Ibic^, page 456, Loeve, M., Ref. 5, page 452.
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1 2(x , x , .. .) are the same. (Take, for every finite subfamily of y's,

• • k. k ., k.+h k +h

pf(y \ .... y m)= ^M*1 ,./.,. m )

where h is so large that the superscripts of the x's are positive, and

apply the consistency theorem).

Thus, if only questions involving the distributions of x , . .., x11

are to be considered, we can use the {y11} process instead of the {x11}
process.

Lemma 1.1: The sequence of real numbers {R (P)} is monotonically
non-increasing, i.e., R (P) > R ,,(P)> ....

Proof: By hypothesis, as stated above, the initial probability distri

bution of the Markov chain is the stationary one; therefore the Markov chain

is a stationary process. Now

Ra+1(E) = min E [Lftfx1, . .., x11, xn+1), \n+1)]
.n+1 „n+l
t € T

min EtLWy1,... , yn, yn+1), \n+1)] •
tn+lfTn+l

By stationarity we have

Rn+1(P) = min E[ L(t(yu, y\ . . ., y11), \n)] (9)
tn+lf Tn+1

(8)

Rn® = nmini Et L&(y •••••yn)> ^n)] • (10)
t € Tn

Let

7Tn+l _ , n+1, n+1. 0 1 n, , , 1 n^
1 - \t /t (y , y , . . . , y ) depends only on y , . . ., y }

* x
M. Loeve, Ref. 5, page 93, see also Sec. 3 of this paper, page 23.
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and denote each member of Tn+I by'tn+1. Then for any tn«Tn, we have

t (y , . .., y.) = t (y , y , . .., y ) Vy . (11)

Therefore, we finally get

Rn+i® " min .. EC L(t(y°. y1-... vn). x11)]tn+l€ Tn+1

< min E [L(t(yw, y\ ..., y11), \n)]
tn+L-n+l

min E[Ut(yl, ..., y?), Xn) ] =Rn(P)
,n _n
t c T

and we conclude that

1 .-%© ^ Rn+1® Q.E.D.

The sequence {Rn(P)} is bounded by zero, since we have assumed
L(a, \) > 0 ^a; V \, so it is convergent. ,

Let us denote '

Note that by stationarity

Lim Rn(P) = R(P) (12)
n—•co

R(P) =min E[LWy"00, . .., y°,..., y11), \n)] = min E[L(t(x\, . ., x00, Xnfl

(13)

t^cT00 t^cT00
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Let us now consider the case when at each stage n we make

our decision on the basis of a finite number, say m<n, of x's in

the past, i. e., on the basis of x , . . ., x

Let us denote

Rn m(P> = min E [Mt(xn"m, . . . , Xn), \n) ] (14)
n m— mfi mu

t «T

this definition makes sense only for n > m.

We notice that by stationarity R (P) does not depend on n, so

we shall denote

W = R (P) (15)
m n-m—' x '

Lemma 1. 2: The sequence of real numbers {W } is monotonically

noninc r eas ing,

Proof:

n-m n-m+1 n% „ n.
Wm =Rn-m<£> = min E ^^ •Y >••••Y >• * >1m+i mj-i

t cT

Wm+1 =Rn-m-l® = min E^My*'1*-1. y*'^. .., y\ x") ]
mi n m l m*-2 mj.2

t € T

By the same argument as in the proof of Lemma 1.1 we have

This sequence is also bounded and thus convergent and we have

lim W= min E[L(t(y"°° y°, . . .y\ \n) ]
m—>co co _co
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min EtLftfx1, ....x°°), X00) ] =R(P) . a6)
CO _oo

t cT

Therefore we see that

lim W = lim R (P). (17)
v m n*—'

m—»co n—>oo

C. THE CASE WHERE P IS UNKNOWN

We shall consider now the same problem of decision making as

above but in the case where P is unknown. If in this case we use, at

time n, a decision function t other than the optimal tp, our expected
loss will be

Rn(t 'P) =Rn(£)+ [Rn(tn'^ " Rn®] ^

and the term [Rn(t , P) - Rn(E)] > 0 will be that part of the expected
loss due to our ignorance of the true value of P. Clearly the observed

In "~"
values x , .... x contain "information11 about P. We hope for large n
to be able to extract some information about P from the values x11

which have been observed. And we further hope to be able to make deci

sions at each stage, based on the information about P, which was extrac-

ted in such a way that t (x ), the decision rule which we would adopt in
this case, is in some sense close to the optimal but unknown tp(xn) which
we would use throughout if we knew P. ~"

If such a sequence of functions exists, then we shall refer to the

sequence \t } as an adaptive decision procedure. Correspondingly,

V%l'£>- =[Mt*^,).Xa)] (19)

and we know from (7) that

-10-



Rn(t ,P)> Rn(P) . (20)

Definition 1: If limn_>oo RJt*11, P) =Hrn^^ RJP) =R(P) we say
that t is asymptotically optimal relative to P, i. e. , if the expected
loss in using an adaptive decision procedure, when P is unknown, con

verges as n—>co to the same limit as the expected loss when P_ is known
and the optimal decision procedure is used, then this adaptive procedure
is called asymptotically optimal.

Definition 2: If lim^^ Rn(t*n, P) <R(P) +€ we say that t* is
c -asymptotically optimal relative to P.

Since limm__^co'Wm= R(P) then given any € there exists an mQ such
that W_ -R(P)<c or W < R(P)+.€.

m0 ~ m0"" ""
sic

Thus we see that if the expected loss in using t n converges when
n—*co to the expected loss when P is known and we use an optimal de
cision procedure which is based on a large, but finite, number m of

. #n o
observation in the past, then t is €-asymptotically optimal.
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II. THE ESTIMATION PROBLEM

A. DERIVATION OF ESTIMATES

Let us denote the probability that at time n the Markov chain is
in state i by

P(xn =0 =g*

Thus we have at each time n a probability distribution on the state
space_A= {1, ...,r}.

£n=(g^...,grn) gn> 0 ViYn (22)

and
r

IgNl Vn.
i=l l

Since our system is described by a regular Markov chain we have

g[ =tt. (i =1, ...,r) (23)lim

n—•co

(21)

where tt =(^ . . . , t^) is the unique stationary probability distribution.
We are observing a sequence x1, x2, . . . of random variables.

Denote

P{xn€B/Xn =j} =P.(B). (24)

Bc&. the o--field of events.
The global distribution of x11 is

r

P{*n«B}= I g» P(B).J j-' • (25)
j=l

-12-



We want to construct functions

An /\n .1 n. #->/»g. = g. (x , ...,x ) (26)

such that
r

An ^ a ^ An _ ,
g. > 0» z_ g. = 1
6i — . , 6i

i=l

and whatever be it

P [ lim g* = ir.(i = 1, . . . , r)] = 1 (27)
n—jco

and functions

such that

and whatever be P

Ah An / 1 n» /-5o\
gij =gij(x ' ,,,,X ) ( *

r *

An . n S" An t
g.. > 0 z. g.. - 1

P [lim £n = p (i, j = l r)] =1. (29)
n—*» LJ lJ

In general if the Markov chain is a k-th order multiple Markov chain

we want a sequence of estimates that will converge almost surely to the k-th

order distribution of the Markov chain. .

Theorem 2.1: A necessary and sufficient condition for the existence

of such sequences is the following

(A) \ If G = {gy .... gr) and G' = {gj, . . ., g^} are any two prob
ability vectors such that

r r

I g.P.(B) = X g!P.(B) VB€<2}
i=l i=l

then G = G\

The proof given on page 14 parallels the proof in Ref. 1. The condi-
. tion of Theorem 1 is equivalent to the condition for identifiability of finite
mixtures given in Ref. 6.
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Proof: It is clear that the above condition is necessary since sup
pose that jt^ and r^ were different stationary probability distribution but
the global distribution of our observable random variable x would be the

same under the two for all Be (2. We could not hope to be able to distinguish
between them and find two different sequences which would converge to the
true stationary probability. The sufficiency proof is going to be constructive,
before proceeding with the proof let us restate condition (A), the necessary
and sufficient conditions of the theorem.

Denote by jj, any o*-finite measure on R with respect to which all

the Pi are absolutely continuous and such that their densities f. = dP./djx
are square integrable:

2
(x) dja(x) < co (i = 1, . . ., r). (30)S<

H9r.example if we set ji = Px + . .. + P we have 0"<"f.(x)<ljLnd[ hence

i\(x) < f.(x)

J ff Mdp.(x) < / ft(x) d|x(x) =Kco . (31)
R1 R1

The functions i^ are elements of the Hilbert space H over the
measure space (R , jj,). The proof of the following Lemma can be found
in Ref. 2.

Lemma 2.2: Condition (A) is equivalent to the following condition
(B) iy . . ,,i are linearly independent.

We shall now proceed with the sufficiency proof of the theorem.
If iy . . . , f^ are linearly independent we shall show how to construct the
sequences (estimates) desired.

Let Lj, denote the linear manifold spanned by the r-1 functions
ty . . ., *-^y £^+y •• •» *r' Then we can write uniquely

with

ft = V + f»' (i = 1, . . . , r) . (32)

i[ € Lt and f'» X^ (33)
and f '̂ ^ 0 because of linear independence.

If we now set

-14-



*[' (x)
hi(x) ="7v—TT2 (34)/ [f» <x)]* dp.(x)

R1

we have

hy . . ., h^ are a reciprocal basis.
Notice now that

' h.(x) f (x) dnt(x) = 6 = <l lfl"J <(35)
R1 J J I 0 if i jt j

[h.(xk)] =I gk fh (xk)f <xk)d,x(xk) =£ gk6 =gk .(361
j=i J r1 •> j=i j y i

and limk^oo Si = »i

Also

X , / k+1,E [h.(x*) h (xKTi)] =

L g«k- P™ Ahi(xk>hj(xk+1)fs(xk>fm<xk+1>d^-k>^(xk+1)
R*xR

2mgskpsm jfh^yxV^) Jh.(xk+1)fj

-15-
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= Z g P 6. 6. =gkp ..
s,m s sm ls Jm l lJ

thus we have

E[hi(xk) hj(xk+1)] =gk p.. ,(38)

kX gkpij ="iPij (39)

In general for any finite w

E[h. (xk) h.(xk+1). . .h^x1^"1)] =PUk =i, X*+1> =j X(k+w-D=c]

Now let us set

__ n

#i _ 1 5" , / k.
g- = — Z h. (x )

k=l

An LAJ

(40)

'-,T <4"' M
where [ar denotes max (a, 0).

We shall prove that

P [lim gj1 =it. (i =1 r) ] =1.
n—*.co

It is clear that this implies that Eq. (27) holds, i. e. ,

-16-
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P [ lim g* = ir. (i = 1 r) ] = 1
n—)go

but g? has the desired properties (26) ][ ._,.^ =1and $? >0
(i = 1, . . . , r). Also set

we shall prove

An - 1 r ri. / k, , , k+1. i
gij " n 1 [hi(x >hj<X >]

k=l

n

An k=l

n

e I V*k> V"k+1>
n

n" I ^(-k)^-(xk+1)
j=lu k=l

+

(43)

(44)

[lim I I [h (xk) h (xk+1)]= re. p (i, j=l, . . ., r)] =1 (45)
n—>co k=l l J l lJ

which clearly implies that Eq. (29) holds, i. e.,

P[ lim &n = P (i,j = l,...,r)]
n—^co J J

= 1

and gn has the desired properties (28) e.n > 0 and Z. a11 = lij r &ij — j=i ©ij

The generalization to k-th order multiple Markov chain is clear. In

order to prove (42) and (45) we shall study the stochastic process {xn}.

-17-



Lemma 2.3: The process {xn} can be represented as
n - .. n TTn.

x = 0(\ , U )

where U is a sequence of uniformly distributed random variables on the

unit interval, and the sequences {Un} and {\n> are independent.
Proof: {x } is a sequence of random variables whose conditional

distribution given \ = i is F.(a).
i '

Let

U11 =Fxn(xI1). (46)
Then we have

x" =Fx„(Un) (47)
where ^

F(x) = inf {y/F(y)>x}.

We want to show that {Un} is a sequence of uniformly distributed random
variables on the unit interval, and the sequences {U*1} and {\n} are
independent.

Since .

PfU1 <ar . . ., Un <an/ \X= i, \Z =j, . . . , \n =i)

=P(Fxl(xX) <ax *\n(xn) <an/ \l=i, \2= j, ... , \n= i)

=Pfx^F.fa^, ....x11^ (aJ/X^i, \2= j, ..., \n= i)
=Pfx1 <F.(ai)/ \X= i). .. P(xn <?i(an)/ Xn= i)
= ara2,...,an

we can conclude that the U1's are uniformly distributed and that the sequences
{U A} and {\ } are independent.

Therefore we get the desired result

xn =Fxn<un) =0(\n, Un) Q. E. D. (48)

-18-



B. CONVERGENCE OF ESTIMATES

Lemma 2.4: The process { (\n, Un) } is a Markov process
• e~" ^ %satisfying Doeblin's hypothesis.

-he proof of this lemma can be found in Ref. 2.
1 2

.jemma 2. 5: If \ , X. , . . . is

with arbitrary initial distribution then

1 2Lemma 2. 5: If \ , \ , . . . is a finite state ergodic Markov chain

11 1
lim I I h (xk) =tt. (i =!,..., r)i =1

n—rco k=l X >J
(49)

and an exponential bound can be obtained for

n -.

— Z. h^x ) - tt.| > € for some n>m j . (50)
1C=JL —J

Proof: If it is assumed that the initial probability distribution on
the state space of the Markov chain is the unique stationary one, then the
Markov chain is a stationary process which is ergodic (metrically trans
itive). It is well known that under this condition {(\n, U11)} is also a
stationary and ergodic process, and since a function of an ergodic process
is ergodic, we can conclude that {x11} is a stationary and ergodic process.
Using Birkhoff's ergodic theorem *'and noting that E[h.(xk)] =v. Via we
get (49). Or equivalently, since (\n, Un) is a Markov process which satis
fies Doeblin's hypothesis (by Lemma 2.4) we get (49) by a theorem In
Doob.

Ref. 3, page 192.

Ref. 3, page 465.

Ibid. , 3, Th. 6.1, page 219.
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If it is a Markov chain with an arbitrary initial distribution

then (49)still holds by another theorem in Doob.

Now we want to find an exponential bound foi (50). We shall

use a result of M. Katz, Jr. , and A. J. Thomasian?" They have
kproved the following theorem. Let {Y :k = 1, 2, . . . } be a discrete

parameter Markov process satisfying Doeblin's condition, f a

bounded, real-valued, measurable function. Denote S = Z,n, f(Yk)
r n *-k=l v ''

and p. =/ 1f(x) Tr(dx) where tt is the unique stationary measure. Then
for every c>0 there exists two constants, c and Y<1. such that for
all m and any initial distribution

P ]~S - |i| > c for some nj>m ^ m
<c y .

Using Lemma 2. 3 and noting that h<>0 is a bounded function, we can use

the above theorem to obtain the desired exponential bound for (50)
1 2 'Lemma 2. 6: If X. , \ , , . . is a finite state ergodic Markov chain

with arbitrary initial distribution, then

n

lim I I h.(xk)h.(xk+l)Fir. p.,(i, j=l r)
k—hco k=l J J-n—^co

and an exponential bound can be obtained for

P U» - hi^X *VX ^" ui Pij I- € for s°me n>mj. (52)

"Proof: The following is a well known theorem: The process {x11}
is a stationary and ergodic process if and only if

f(x1, . . . xm) +f(x2 xm+1) +-...+ ,f(xn x^"1-1!
n

* E(f(xX xm)) Vf, Vm.
n—^>co

Ibid. 3 Th, 6.2, page 220.
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From this theorem we conclude that if {xn} is a stationary and
ergodic process, i. e. , if the initial distribution of the Markov chain is
tl>e unique stationary one, then

n

lim I I 0. (Xk, xk+l) =E[ 0- (xk xk+1)]. (53)
n—^oo k=l

Now, (51) follows from (53), (38), and (30).

Consider now the process {Yn =(\n, Un)}. Let Y be a space of
points £=(\,U). Replace Y by the space Y of points J : (g1, g2),|l€ Y,
replace ^y by the product cr.fiaid ^y = ^y x^, and replace th'e
space of points (£ , £2, .. . ), £^Y by the space of points Z(£l, V", ...).
£ ;€ Y. Let Y be the new j-th coordinate function, so that Y^{Z) =g^.
Define Y , Y , . . . ,Z probabilities to be the same as Y1, Y2, . . . , Q
probabilities where YJ is the 2-tuple (Yj, Yj+1). Then {Yj} process
isa Markov process satisfying Dpeblin's hypothesis if the {Yn} process
is such a process and we know>y Lemma 2. 4 that it is. The function
i of (£ , £ )defines a function .7 of :?, and t*ie w random variables

rm „m+l,
{f(Y ,Y ), m> 1} have the pame joint distributions as the Z random
variables {fC?11), m>l}.*

Thus we have reduced the problem of convergence of the sequence

i I h.(xk,h(xk+1)4:i0(xk. xk«)
k=l •> . n k=I

i 2 0'<0(Xk,Uk), 0(Xk+1.Uk+1))=I 2 f(Yk.Yk+1)

^~ n

to the corresponding problem of convergence of 1/n 2. _ 7(Yk). We
get (51) for the non stationary case and the bound for (52) exactly by
the same arguments given in the proof of Lemma 2.5.
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III. ADAPTIVE DECISION MAKING

A. ADAPTIVE DECISION PROCEDURES

Using the estimates derived in Sec. II, we shall construct an

"adaptive" decision procedure t which is €-asymptotically optimal

relative to P_ (Definition 2, Sec. I).

Define

r

0|f (a, xn) = ^ [Ma. i)P(\n =i/x11. ..xn"m)] (54)
— i=l * v '

m+1

where

A/\ n i / n n-m.P(\ = a/x . . .x )

r r r

Y . . . S y AnAn An t . n-m. . , n.
r, ., ., gisij---gk,i fi<x >---fi<*>k=l j=l i=l J *

r r r r

I I ••• I !£&...&. f,.(xn-m).. .£Mn)
i=l k=l «=i s=i l lJ K, i 1 I

(m+1) sums

By (27) and (29) it is clear that for a fixed m

(55)

P [ lim | P(\n=i/xn. . . xn-m)-P(\n=i/xn. .. xn"m)| =0(i =1, . . ., r)Vm finite] =1.
n—^co

(56)

Let A = {aQ, . . . , a } be a finite set, choose tA (x " ) such that
for almost every (jx)x

0|? *(t£ (xn~m),xn) = min 0£ (a., x11) for n<m (57)
— — a.cA — l
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*$ (t^(xn-m),xn) =min 02l(a..xn) for n >m
a.e A —

i

thus for n < m

, * # n-m. _
rp^x ) - ak where k is any integer 0<k<s such that

0^(ak, xn) =min [0£(aQ, x11), .... 0^(as>xn)]

forn>m t£(xn-m) =ak where k is any integer 0<k<s such that

0^ (ak. xn) =min [0^ frQ, xn), ..., 0™^, J>) ] . (58)

In what follows it is assumed that the Markov chain is started
with the unique stationary probability distribution. The {x11} process
then, is a stationary and ergodic process.

-1 -2LetY= {(y ,y , ) =£>. We define the following prob
ability for every finite subfamily of y's.

PV1* A ...,y'n€ A)=P(xn€ A xn€ A).
"in

This probability is consistent since

PV1* Ar ...,y"n€ 0) =P(xne Ar ...,xX€ 0)

=P(xn€ Ar ...,x26 Aa-1) =P(xn"1€ Ay ..., x\A )

=P(y-1€A1,...,y-n+1€An-i).
%*Then by applying the consistency ' theorem, we obtain a law defined

for (y"\. ..).

* Ref. 5 page 92.

Ibid. , page 93.
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Define the following transformation T (y~ ,...) = (y"n, . . . , y~ ).
/*—-7n <-<..- In n In

Let ^7' =v^'(x , . . . , x ) the smallest (r-field for which (x , . . . x ) are
measurable.

Then

P"(Tn_1 (A)) =P(A) VAc?n

and define

*nU. (y"1. •••)) =P(Xn =i/Tny). (59)
-1 ? ' *Lemma 3.1: ^n^» & Y* ~ )) *s a martingale sequence.

Proof: Let B be an n-dim Borel set and & 1-dim space.

Then

/ fn+1(i>y)dP- = / P(Xn+1=i/Tn+1y)dP
Tnl-1<^B> Tn'+\^B)

= J P(\n+1=i/x1...xn+1)dP =P(Xn+1=i>(x2...xn+1)€B)
QxB

.n= i, (x1. . .xn)€ B) = J P(Xn= i/x1. . . n,= P(\ = i, (x\ . . x")€ B) = J P(X"= i/x\ . . x")dP
B

J P(Xn/T y)dP = J f (i,y)dP .
-1 -1 ""

T B T B
n n

* nFor T = (1, 2, . . . ) a stochastic process {x , ne T} is called a martingale
if E {| x | } <co for all n and if

i. e. , if Ac3^n

Ei n+1 / *~-f n. nr (x / J* ) =x a. s. ,

J xn+1dP= JxndP.
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moTheorem 3. 2: There exists an mQ such that tA (xn) is
€ -asymptotically optimal relative to P .

Proof: We want to show that

n-m.

n^co Vm/f<i 0)' 3 =Rn-m0 &±R© +« (60)

n-m,°* Vm/f^T °> 9 - R„-m0© W«">

n-m.°^R„-m0^ °>'£) " \.mQ © (61):

=E[0p(t£(xn-mO),xn) - 0p(tp(xn-mO), xn)]

=E[0p(tp(xn-mO), x"). 0p°(t|(xn-mO), xn)

mn m.

+0p°(t£(xn-mO). xn) - 0A °(tp(xn-m0), xn)

m
0/^ /..n-m+ 0pvu(tp(xn-mO), xn - 0 (t (xn-m0), xn)]

m,

= E[0p(tp(xn-mO), xn) - 0 U(tA(xn-m0), xn)

+0p°(tA(xn-mO>, xn) - 0p° (t^(xn-m0), xn)

+0^°(tA(xn-mO), x11)- 0A°(tp(xn-™O), xn)

ni. rn

+^°(tp(xn-m0), xn) - 0p°(tp(xn-mO), xn)
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•VI,

+0p°(tp(xn-mO). xn) - 0?(tp(xn-mO), x")]

Note that

0A°(tA(xn-^O). xn) - 0A°(tp(xn-mO), xn)<0

Then we have

n-m,R (t£(x" x"0), P) - R (P)n-mQl 3?v ' —' n-mQ—'

n-m«. n,
m,

<E[0p(tA(x"-"AO), x") - 0p°(tA(xn-mO), xn) ]

mA mn
0/. A , n-mrt, n, ,* A 0 n-mrt. n,+ E[ 0p "(tp(x " "'0), x") - 0p"(tp(x" "'OX x") ]

mA mA
0/, / n-mrtl n» * 0 n-m~, n,+ E [0p"(tp(x" "'0), x") - 0p"(tp(x" "'0). x")]

m.

+E{0 ° (tp(xn-m0), xn) - 0p(tp(xn-mO), xn)]

Let us look at each of the terms above

= E

m.

E [0p(tp(xn-mO). xn) - 0p ° (t^(xn"m0). xn) ]

(— r

I L(t^ (xn"m0), i)PU =i/x1, . . . , xn)
L i=l £. n

> t /j.a./ n-inn\ '\i-k/\ n • / n n-mZ_ L(t£(x 0), i)P(X = i/x , . . ., x
i=i z

o)

-26-
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By the construction above, (59), and the fact that P(\n =i/(xn xn~mQ)=x)
mAfl mo+1

= P( X - i/(x , . . . , x ) = x), we have

r- r

= E -it L(ti(T-0+1-'i)fn(i,I>" i?i L(ti(Tm0+^)'i)fm0+l<i'D.
r r

= E -ill L(ti(Tm0+lI)> l) W'YJ -£m0+l«'I>»_ •
Since f^(i, y) is a martingale sequence we can choose mn so large that

*n '̂ Y) - *m +1 '̂ Y)! ~ (€i/2r L) ^y the martingale convergencelim
n—>co

theorem, where L = max. . L(a., i) <co.

Since

-S ^^V^1 °[fn(i'X> -'n^l'1' I)!. < rL <co

##
using the Dominated Convergence Theorem, we get

n—>oo

< lim E

n—)oo

< 1L
~ 2

C mA "I
lim E 0 (tA(xn"m0), xa) - 0 °(tA(xn-m0), xn)J
L ^OO L — — — —

-i?i L(tP(T-0+ll)'l> tfn(i'X)-fm0+l^I»

By the same argument we get

Ref. 3, page 319.

Ref. 5, page 125.
**
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m_ €,
i- 1-. f r* ^ * / .n"*mA« n\ tk i*. i n-mAV nv-» ^ 1lim E [_0p v-p(x 0), x ) - 0p(tp(x 0), x )] < -y

n—*-co — — — —

and

lim E [0p °(tp(xn-m0), xn) - 0p° (tp(xn-m0), xn) ]
n-*co

= lim E

n—^oo

£ L(tp(xn-m0), xn) [(P(Xn =i/x11. .. xn"m0)

- P(\ = i/x ... x 0)J = 0

by (56), and using the dominated convergence theorem.

Similarly

_ mA m_

lim E [ 0a ° (tp(xn-m0), xn) - 0 °(tp(xn-m0), x11)] =0.
n-*oo — — — —

Finally we have

lim R (t*(xn~m0), P) - R (P) <-I + _L =€
n-^co n_m0 £- - n"m0 _ 2 2 l

For this value of mQ we have by (17) R (P) <R(P) +*

therefore limn-MX) R-n_m (t£(xn~m0), P) < R(P) +€ . Thus,

tA(x 0) is €-asymptotically optimal relative to P. This completes

the proof of the theorem.

Consider the following decision rule t . Let e be any sequence

of constants tending to zero. Use t&(x. ) for n, steps until for n > n.

we have

|P(\ =i/x x ) - P(X. =i/x x )| <e^ .

Then start using t*(x x " ) for additional n~ steps until for

n > n~ + n. we have

I -A,, n _ . , n n-1 n-2. n/. n . , n n-1 n-2. i ^|P(\ = i/x xx ) - P(\ = i/x x x )| <

then start using tp(x ,xn~ , x11" ), and so on. In general use t^x11"1*1©)
for n j, steps until for n > n, + n~ + . . . + n , ,•itiq+1 — 1 2 mA+1

|P(\n =i/xn"m0) - P(\n =i/xn-m0) | <« ..
m^T*i,

then start using t£(xn~(m0+1)).
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62



We ijee that in thi.-. rule wc keep increasing mft the number of steps
that we look back for our decision. Referring to the proof of Theorem 3.2

we see that in the expression R(P) + € increasing mQ will decrease c
and in the limit we shall converge to R(P). So we have the following theorem.

Theorem 3. 3: Rule t is asymptotically optimal relative to P.

B. REMARKS

It would be interesting to settle the question of whether or not the

following convergence holds

i •, n—-*co

I^M/x1 xn) - P(\n=i/xX xn)| >0 (i=l, ...,r) (63)

almost surely or in probability.

If the convergence holds,almost surely or in probability, the following
decision rule t is asymptotically optimal. For, if

r

0A(a,xn)= I [L(a,i)£(\n= i/x1. . .x11)]
— i=l

then choose t^(xn) such that for almost every (|x)xn

0£(tA(xn), xn) =min 0£(a.,xn)
— — a.cA —

i

or

t^(x ) =a^ where k is any integer 0 <k <r such that

0£(ak'̂ n) = min [0A(aAlxn),...,0A(ar>xn)] .

The proof that t is asymptotically optimal if (63) holds proceeds as
follows:

0< [Rn(t| (xn), P) - Rn(P)] (64)

= E[0p(t| (xn), xn) - 0p(tp(xn), x11)]

now

* , n. n, w . , n. n0 < [0p(t£(xn), x11) - 0p(tp(xn), xn)] (65)
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=[0p(tp(xn),xn) - 0p(tp*(xn), xn)]

+[0p(t|(xn), xn) - 0p(tp(x"), /)]n. n,

+ [0p(tp(xn), xn) - 0p(tp(xn),xn) ] .

Since 0>[0£(t£(xn), xn) - 0A(tp(xn), xn)] we have

[0p(tp(xn, xn) - 0p(tp(x"), x")]n. n,

< [*p<4<*n>. xn) - 0£<tp(x"), x")]n. n,

+ [0^(tp(xn), xn) - 0p(tp(xn), xn)]
" r r

X L(t&(xn), i)P(\n= i/x1. . .xn) - 1 L(t| (xn), i)
P~ i=i P-

. P(Xn= i/x1. . . xn)

Li=l —

2 L(tp(xn), i)P(\n =i/x1. . .xn) - 1 L(tp(xn), i)
"i=l — i=l —

n ., 1 nv=i/x . . ,x )JP(^

^1 L(t|(xn), i) [P(Xn =i/x1. ..xn) - £(\n=i/x1. ..xn) ]

1 L(t„(xn),i)[P(Xn =i/x1...xn) - P(\n =i/x1...x11)]
u 1=1 —
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If (63) holds we have

P Tlim [0p4(x«,x»,-0p(tp(x»).x»)] =ol =l
L n—*x> — — — — J

(or convergence in probability if this is the convergence in (64)).

Using the dominated convergence theorem our proof is complete,

since from lim R (P) = R(P) we deduce that lim R (tA(x"), P)

= R(P) and hence that t* is asymptotically optimal.

Note that the rule t is the same type as the rule given in Theorem

3. 3, the difference being that rnfl+l = n and we increase mfi at every step.

This amounts to always basing our decision at the n-th step on all the observ

ations up to this point.

C. EXAMPLE:

Let us consider a discrete state discrete time system S whose state

transitions constitute an ergodic Markov chain with two possible states y.,

and (i-. Denote the state space of S by .A_= {fx., H-,}. It is known that when

S is in state p,. the distribution of the observable random variable x is
2

gaussian with mean \i. and variance or , and when S is in state u.-

distribution is gaussian with mean |ju and the same variance <r .

Thus, the two possible densities of x are

n,

and

f.(x) =—==- exp - \ -r-fx-ji.) \
1 (tV2tT {Zv l J

f9(x) =——- exp - J y~ (x-^?) \ .

the

Let the action space consist of three possible actions, A = {a,, a~, a.} .

The action a, is "guess that S is in state p.,." The action a? is "guess
that S is in state (a^* " and the action a. is "guess that S is in state

ja-. " Three possible actions were chosen to demonstrate the fact that

the number of elements in the action space does not necessarily have to
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Thus we have

0p(a3,xn) =(lx1-li3)2 P(\n =i^/x11) +(|i2-H.3)2 P(Xn =H.2/xn)

0p(a2,xn) =(^-Ji2) p(^n =H-!^11)

Mar£n) =^2-^)2 P(^n =Ht2/xn)

where

P(\n =^./xn)

2 2 2

I "•• I I \P'ii-.- Pku. ^...Ux^Vu(xn)
- k=l j=l i=l l 1J K>Ai -1 K ^i
~ "2 2 2 2

2. I ... I I ^Pir-'Pic* Mx1)...*k(xn~1)fi(x?a)
i=l k=l j=l i=l l 1J Ki. * K £

and i, j, .. ., I can take on the values jjl. and (i-.

Suppose we are faced with the same problem but the transition

matrix ]? is unknown. The first question which arises is, can we

solve the problem in this case? By Theorem 2.1 and Lemma 2. 2 we

can find the sequences of estimates, which we shall use for our

decisions, if and only if f,(x) and f2(x) are linearly independent.
Notice that p, as defined on page 14, is Lebesque measure in this

case, and it is clear that the f.'s are square integrable. Using

Gram's criterion for'linear dependence of vectors it can be easily

verified that if the |A.'s are distinct, f, and f2 are linearly independent.
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equal the number of states oi S. From the derivation on page 42 it
is clear that when using the loss function defined below, a might
be used in the optimal decision rule even though S cannot be in
state |i

The loss function L is the square of the difference between
the state guessed and the true state of S. Thus

L<al^l> =0 L(ai,n2) =(^-fil)2

L(*2»^ =<fVH2)2 L(a2,u2) =0
L<a3> »*!> =(Hrn2)2 Ma3, n2) =(|x2-u3)2 .

Based on the observations x1, . .., Xn, we are required to take
one of the three possible actions ar a2> zy Let us notice that the
process {x } can be represented as the following sum,

xn= Xn+N

where {X } is the Markov chain with state space_/Y , and N is a
gaussian random variable with zero mean and variance <r2. This is
illustrated in Fig. 2.

If the transition matrix P is known then by (4) the optimal
decision rule tn is as follows.

P
If we observe x then

tp(x ) =ak where k is any integer 0 <k <3 such that

0p(ak, xn) =min [0p(ar xn), 0p(a2> x11), 0p(a3, x11) ]

where, as defined in (2)

2

0p(a, xn) =E[L(a, Xn)/xn] = I L(a, u.) P(\n =K./xn).
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We shall now derive h, and h-. Let us remember that the h.'s
12 l

are defined by (35) as (h.,f.) = 6... h., h7 are then a reciprocal basis to
i j ij k c

the basis vectors f,, f^.
Thelfollowing form for the h.'s is easily arrived at using the

Schmidt orthagonalization process.

exp -J —=- (x-jx.)
hi(x) .

exp - •

*• 2(T

a 2 .2
4(T TT 4(T IT

_^exp
4(T TT

/ fty^*2 \ i f i , ,;
*• 2 cr -* orv 2 it ^ 2 a-

(^-K2)
exp - j 7"

1 2<r
. 2 —^^
4cr it 4<r ir

^r^2 1 f i , .21-Jz exp - | —L-fx-^)2 7— exp - \ % Uxp - I-i^fx-u^
I 2ff J orV2ir I 2 o* J 12or

•J(|1rfX2)

, / » > 2 c J orV 2 it —«h (x) = -- ~z

1 - exp -

-34-
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vT exp - ^-(x-u2)2 - --i== exp - -j —^ fexp -]—-^^^ 1-- -U^^tf
h2(x) = 2(T rVSrr 2<T >2<r

By (^5i-we have

n

S - £ £n _ h.(xk) =
n k=l l

1 - exp
f([V^2) 1

n

n 1 V , , k.
. = — 2. h. (x ) ;
1 n k=l l

n

Z. V2 exp - < —*• (x -ft,)'
k=lL ;; L2(T2 Xi^-^y

nll-exp - ^
\ . I 2<r

1 Jexp - ^
dV^TT

7 2
2 or

.j-.-u^vD
Similarly we get an expression for g2. Using _(41)_we get

ByJ43)"we have

An-

An [8jl
Si T T"

[£] +[g2]

n

&4 J- ^M-^

--35".

i s 1,2



In =
12

exp -
(^-|A2)4

exp v<^4(2„P.{.i
2cr'

, k+1 .21 1_ exp- toL^. Jl^l^'

Similarly we find the expressions for fj, f£r f^. Using (44) we get

Bij
[fci*

i^++ c^]+

By ( 51) and Theorem 3.2 we shall adopt the following decision rule:

t£(x ) =ak where k is any integer 0 < k < 3 such that

for n < mn

0^(ak,xn) =min [0£(arxn), 0£(a2,xn), 0£(a3,xn)].
for n > mQ

t£(x 0) =ak where k is any integer 0 < k < 3 such that

mn « mn mrt m„0P (ak' 2>=»«» t#|° (<V i"). «>|° (a2. xn), 0A° (a3, xn) ] .
as defined in (55)

mO A«>£ (a, xn) = [L(a. ^) P(\n =̂ /xn-m0) +L(a, K2) P(\n =n,/xn-m0) ]
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and

0p(a,xn) =[Ua.^ P(Xn =̂1**) +̂.Ha) ^* =*Zf^
where

2 2 2

t=l 3=1 i=1 — • ~

I I ••: I 2 H? ft- ••ft, ^Cn-m°)- ••̂ '\^)]
!=1 k=l 3=1 i=1i

The above procedure is illustrated in Fig. 3, where i* denotes the gues
about Xn, and can take on the values j^, n2. H3-
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