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ABSTRACT

In the past ten years, a class of recursive estimation methods,

referred to as Stochastic Approximation methods, has been developed

to handle problems where the observations without errors are nonlinear

functions of the parameters to be estimated [1-3] . Recently, such a

method has been developed to yield asymptotically efficient estimates

in the type of estimation problems encountered in radar and radio

astronomy [4] . The basic method used is also applicable to some

of the estimation problems arising in space navigation. Our purpose

here is to apply this method to navigation and carry out the required

modifications in the analysis. This method has the following inter

esting features: (1) it is recursive and thus it allows real time com

putation without extensive computing facilities; (2) it is applicable

to a broad class of problems where the observables are nonlinear

functions of the parameters to be estimated.
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A Nonlinear Recursive Estimation Procedure and

Its Application to Certain Navigation Problems^

D. J. SAKRISON

I. INTRODUCTION

We consider here problems best typified by the problem of

trying to estimate the six orbital elements of a satellite or space

vehicle in orbit. We assume that the orbit is sufficiently high that,

for the number of orbits over which observations are to be carried

out, atmospheric drag can be neglected and perturbations due to

departures of the gravitational field from shperical are minor

enough that they can be satisfactorily computed from the nominal

orbit. Thus, during the observation interval, the orbit can be

satisfactorily represented by an ellipse plus a known gravitational

perturbating term. Our objective is to estimate the six elements

of this ellipse from a sequence of observations such as ground

radar sightings, on board radar beacon sightings, star tracker

observations, etc.

The method we consider here has the following advantages:

(1) since it is recursive, it allows real time computation

and requires only minimal computer storage; it also requires

inversion of only low-order matrices;

(2) it directly and exactly handles the case in which the

observations are nonlinear functions of the parameters to be

estimated.

This method has the disadvantage of being useful only when the

number of observations made is large, for the error associated

The research herein was supported by National Aeronautics and
Space Administration under Grant NsG-354 (S-1).
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with the estimate computed at the end of a small number of obser

vations is unduly large. However, under certain conditions, this

method is asymptotically efficient; that is, the estimation error

approaches the bound given by the Cramer-Rao inequality as the

number of observations becomes large. Thus, we will focus our

analysis on the asymptotic behavior of the estimate.

Let the observations be made at times t = 1, 2, 3, . . . ,

and denote the reading of the i-th of Q instruments at tinae t by

z* = f* (v) + b1 + e* i = 1, 2, . . . , Q t = 1, 2, 3. . .

in which f (v) is a known function of the orbital elements (denoted

by the six-dimensional vector v); b is the bias associated with

the i-th instrument, and e is a zero-mean gaussian random

variable whose variance depends on the instrument and also pos

sibly on the time t. We assume that observations made at dif

ferent times, either from the same or different instruments,

are uncorrelated.

In addition to the orbital elements, v, we may wish to

estimate some or all of the bias terms. Let the total number of

quantities to be estimated be R, 6 < R< 6 + Q. We will denote

an arbitrary set of values of these R quantities by the R-dimen

sional vector x and the true value of these quantities by the

vector 9.

For reasons that will be apparent later, we will group

together the QK observations made from all Q instruments

at the times

t = nK + 1, nK + 2, . . . , (n + 1)K.

We pick K to be the smallest integer such that the mean values

of these QK measurements uniquely determine x. (If not all the
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bias terms are included in x, this unique determination will be in

error). We denote this collection of observations made from time

t = nK to t = (n + 1)K by the QK dimensional vector z, = f (0) + e ,

in which all the bias terms have been included in X^x) : if £ does

not include all the bias terms, our final estimate will contain an error

determined directly by the bias terms not included in x. Thus e

is a zero-mean gaussian vector random variable which is uncor

rected for different values of n and whose covariance matrix

we denote by

}•E e' e i= 2

the prime denoting the transpose of a vector (or matrix). If we

assume the errors from different instruments are uncorrelated,

then 2 will be diagonal. Our uniqueness requirement implies

that the function f (x) possesses a unique inverse for all values

of x which are regarded a priori as possible.

Having introduced the necessary notation, we proceed as

follows. In Sec. II we find the bound given by the Cramer-Rao

inequality for the minimum error achievable by an unbiased esti

mator. In Sec. Ill we describe the recursive estimation method,

develop an expression for the asymptotic behavior of the error in

the estimates generated by this method, and relate this to the

bound given by the Cramer-Rao inequality.

II. THE CRAMER-RAO BOUND ON THE ESTIMATION

ERROR

We wish to apply the bound of the Cramer-Rao inequality

to the situation described in Sec. I. Although simple proofs of

this inequality are widely available in the one-dimensional case ;. 5

this is not true for the multidimensional case. Therefore, we

first give a short derivation of this inequality.
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Let the components of the vector z^ denote all the observations

made and let the distribution of z for a value x of the vector to be

estimated be denoted by

dP(z;x) =p(z:, x) dz.

Let x = x(z) denote an arbitrary unbiased estimator of 0. Using

the fact that x is unbiased, we have for any set of constants a.
rsj J

R

idP = 0 . (1)2 a. f(x. - 0.)<

Taking the partial derivative of both sides of this equation with respect

to x.
l

R ^ .
a. = a. fdP = 2 a. f(x. - 0.) -=A- dPl. = a. PdP = 2 a. f(x. - 0.) -^—

= 2a. f(x. - 0.) (^- p) dz

=2a. /(£. - 9.) [£- lnp)pd:

=2aj/(VeJ)(arlnp)dP' (2)

Let us multiply both sides of this equation by an arbitrary constant

b. and then sum over ithe equations that result for all R values of
i

i. Denoting the inner product (scalar product or dot product) of the

vectors a and b by (a,b), we obtain
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(a,b) =f

Let

R

2 a. (x. - 9.)
j=l J J J

R a2 b. ( <L
i=l x 9xi

lnp)

X=E \{& - 0)' (x - 0)
^>^ i /•« /^» •<** <~>

dP.

denote the covariance matrix of the estimation errors and let

B denote the covariance matrix whose i-i-th element is

b.. = E'(
ax.

lnp) x=0(3xT'lnP) x=0 1

(3)

(4)

(5)

Then applying the Schwartz inequality! 6] to the right-hand side of
Eq. (3) yields

(a,b) < (a, Xa) (b, Bb) .

The matrix B is positive semi-definite. We assume that it is

positive definite, for, if not, we could reduce the dimensionality

of our problem. The matrix B is thus invertible, and we set

(since a and b are arbitrary vectors) b = B a. Eq. (6) then
*s* *** ' r>* r-» r^

becomes

(6)

(a, B"1 a)2 < (a, Xa) (B_1 a, a) . (7)

But B is symetric or self-adjoint, thus (B~ a. a) = (a, B~ a)

which is greater than zero for any nonzero a. Dividing both sides

of inequality (7) by (]3~ a, a) thus yields the Cramer-Rao inequality

(a, Xa) > (a, B_1a) (8)

which holds for an arbitrary vector a.
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Now return to the situation described in Sec. I. If we base an

estimate on the observations z , n = 1, 2, . . . , N, then under the assump-
/vn r

tions made on the distribution of the z we have
~n

lnp =const. + (1/2) 2 z - 1 (x) ' 2_1 |z - f (x), |_^n *iiv>/J ^n l~n ^n. ~ J

and

8x.
In p

x=0

N 8f
'n

, 8x.
n=l i

x=0

2* I z - f (0)
~n I ^n />/n Vv '

in which (9f /9x.) denotes the vector whose j-th component is
Of ./3x.) .

nj i'

Thus

N 0f

b..= 2 J2-
1J n=l 9xi

,1 a4
^n 9x.

x=0 J x=0

(9)

(10)

(11)

Or, if we let F denote the matrix whose p-q-th element is given

by

0f

(12)
nq

npq 3x
x=0

then the matrix B appearing in the Cramer-Rao inequality is

N N .

B = 2 R = 2 F 2 F' .
«~ , <~yh , rvn s^ti >~n

n=l n=l

(13)

This equation, together with Eqs. (12) and (8), gives a lower bound

for the mean square error that can be obtained in making an unbiased
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estimate of an arbitrary linear combination of parameters, 2 . ,

a.x. , using the observations & , n = 1, 2, . . . , N. We will use this

bound as a criterion for judging the performance of the estimation

method to be discussed in the next section.

in. A RECURSIVE ESTIMATION METHOD

The recursive estimation method to be considered here can

be briefly described as follows. After each K-sample times we

have a vector observation of the form

z = f (x) + e n = 1, 2, 3. . .
~n '-'nv-'7 ~n

in which f is a vector valued nonlinear function of x whose value\ ~n ~>
uniquely determines the value of x. Suppose, having observed z.,

we carry out a single iteration in the usual iterative or differential

correction procedure used to solve the nonlinear problem of finding

the maximum likilihood estimate of x given z.. Suppose, having

observed z?, we again carry out a single step in this differential

correction procedure, basing our calculation on the result of step

one and weighting the usual differential correction by the factor

1/2. We then continue in this fashion, basing the single differen

tial correction using the observation z on the estimate resulting

from the previous (n - 1) steps and weighting the differential

correction by the factor 1/n. The weighting 1/n is used to

"average out" the effects of the noise, e , as the number of obser-

vations becomes large. The idea behind this type of method can

perhaps best be understood by reference to the original papers

(Ref. 1-3) describing the basic version of this type of method. The

interesting point is that although this method can be carried out

in real time and is computationally much simpler than a maximum

liklihood estimate based simultaneously on all n observations,
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the performance of the two methods will be equal, under certain condi

tions, for large values of n (that is, they will both approach the

bound given by the Cramer-Rao inequality).

We will now describe this estimation method more precisely.

We denote by ^x , the estimate of Q formed after observing z^
and we select our initial estimate either arbitrarily or on the basis

of some a priori estimate of 0. We let M (u) denote the matrix

whose elements are given by Eqs. (12) with the partial derivatives

evaluated at x = u instead of x = 0. Let

y (x) =F (x) 2_1rz - f (x)l (14)

B (x) =F (x) 2"1 F» (x) (15)

and

G (x) = B"1 (x) . (16)

We assume that there exists some bounded subset, A, of R-dimen-

sional Euclidean space that contains all values of the parameter x

that are regarded a priori as possible (it will be computationally

convenient, but not necessary, for A to be a rectangle). We also

assume that 0, the true value of x, lies in the interior of A. Our

sequence of estimates x , n = 1, 2, 3, . . . , is then determined by

the recursive equation

x* = x + (1/n) G (x ) y (x ) . (17)
^n+1 ~n * ' ^n V^n' ~n ~n

If x^ lies within A, we set ^p^, if not we take x^
to be the point within A lying closest to x^ ^ .

Note that if the number of measurements or observations

made in a group can be picked such that the dimensionality of x

and z are equal (the dimensionality of jz will always be larger

than or equal to that of x) then we have the following simplification
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G (x) y (x) =| F' (x) Pfz - f (x) | .~nW Xnv l^n vJJ <~n «nvj

With a mind to making the analysis of Ref. 4 applicable here,

we now point out two properties possessed by the quantities y (x)

and Ci (x) by virtue of our definitions and the assumptions made

previously in Sec. I.

Property 1. The vector random variables y (x), n = 1, 2, 3, . . ,

are statistically independent gaussian random variables (all of whose

components have a finite bounded variance).

Now for convenience, let us define

(x) =EJy (x)} =F (x) 2"1[L (6) - f (x^l (18)m
~n

and note that

J8n<2) =%• <19>

Let m .(x) denote the j-th component of m (x); then, using Eq. (18)

direct evaluation yields

and

8m .(x)

~~95T
J

I r>* n rs* r*n ***> n ~ l j

x=0

Ely' (0)y (0) \ =F (0)2_1 F' (0) =B

Summarizing these remarks, we have

Property 2. 5^(6)= 0, g;1 (6) =B^ and

niV7nj V. I nij 9x.
x=0
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We now need to make two further assumptions. The first of

these does restrict the class of problems for which the recursive esti

mation method is applicable, but is the type of restriction that must

be satisfied by any estimation problem for which an iterative method

can be successfully employed to find the maximum value of a nonlinear

liklihood function. The second assumption is simply a regularity con

dition that can always be assumed to hold in practice whenever the

first assumption is satisfied. Note that

E < z - f (x) } = f (0) - f (x)
^n ~n ~ ~nW <~n ~

is zero at x = 0, and by our earlier assumption on the uniqueness of

the inverse of f (x) is zero only for this value of x. We now further

assume that

G (x)m (x) =G (x)F (x)2_1ff (0) - f (x)l

is also zero only at x = 0. In particular, we require

Assumption 1. There exist constants K and K ', 0 < K
£. o o — o

< K ' < oo such that
— o

K llx - 0l|2 < - (x - 0)' G (x)m (x) <K • ||x - 0||2

for all n and all x in A,

a vector.

Our second assumption is

Assumption 2.

denoting the Euclidean norm of

£nte>Sn(5> =" fe"i» +3 • II 5 II Id/Z^Hx-ell, Kj <oo

and

n

Imivv' ~nWSnfetenW = = gnkk<6) +T• ITl f K2 K2 < «
k=l
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Note that the essential properties of this assumption have already been

implied by Property 2 and Assumption 1; Assumption 2 only bounds the

behavior of the remainder terms J and t.

Now let us examine the behavior of the estimates x , n = 1, 2, 3. . ,

This basic estimation method is considered in Sec. II of Ref. 4; there

the character of the observations was not assumed to change with n so

that the random variables y (x) were identically distributed for all n

and G (x) was independent of n. Nevertheless, that analysis can

be easily modified to accomodate the case at hand and show that

Properties 1 and 2 and Assumptions 1 and 2 imply the existence of

a number N such that, for n > N ,
o — o

Ej(xnj "6j)2}- (1/n2) * Snjj [(1 +2k+1k2) exp(C/k)J +0(n-ll+^ ) (20)
o

in which C is a bounded constant, y is some number greater than

0, and 0(n v ^ ) is a term which goes to zero at least as fast as

some constant times n ^ . The quantity g .. denotes the j-th
diagonal entry of the matrix G (0) = B~ .

The quantity inside the brackets in ineq. (20) approaches

one for large values of k; thus, for large values of n, we have as

an approximation (which can be shown to become exact as n—•co)

EK -V2} =(1/n) V^" =(1/n) [<1/n> JNW9)] (21)
o

in which we have used the bar to denote a time average. This

gives an asymptotic estimate for the mean square error in the j-th

component of our parameter vector x. For the purposes of Ref. 4,

this was sufficient; here we also wish to find the asymptotic behavior

of the covariance matrix of the errors, or, equivalently, to be able

to find the asymptotic behavior of the estimation error for any vari

able which is a linear combination of the original parameters.
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To achieve this end, let us consider the change of coordinates

v =Cx x =C_1v . (22)

If we note how the matrices M (x) and G (x) and the vector y (x)
^n "n/ ^n ^ -mi ~

were defined, we see that the corresponding quantities in terms of

these new v variables will be

9f R 9f 9x R ,

f (v)=-JES.= 2 ---23. * = 2 f (x) (C_i) (23)
npqv/ 9v . 9x 9v . nsqV ~ 'sp v '

r^ p s=l s p s=l ^ r

thus

F(v) = (C_1)'M (x) (24)

and

y (v) =F (v)2_irz - f (v)"l =(C_1)'y (*) (2*)

B (v) =F (v)2_1F' (v) =(C_1)'F (x)2_1 F' (x)C_1 =(C'VbJxJC"1 (26)

G (v) = CG (x)Cf . (27)

Using Eqs. (24-27), one can verify directly that Properties 1 and 2

remain true in the new v coordinates. Next, consider Assumption

1, letting 0 = C0. The quantity in question is

(v - 0 )'G (v)m (v) = (x -0)'C«C G (x) C (CT^n (x)

= (x -0) C CG(x)m (x)

= (C(x -0) , CG (x)iri (x) ) . (28)
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Now if C is a Unitary (or orthogonal) matrix (i.e. , represents a

rotational transformation), then for any two vectors a and b [ 7]

(Ca, Cb) = (a, b) .
zvv ss~ fs* '/^y *->*

We will assume that C is such a Unitary matrix. Then

(v - 0 )'G (v)m (v) = (x - 0, G (x)m (x) )
V~ «v *** n -» a- n ysj *rss ~ /vnvc//wnV '

= (x - 0)' G(x)m(x) (29)
rss s**Y\. s**r *ss n s\S

so that if Assumption 1 holds in the x set of coordinates it will

also hold in the v set of coordinates. Assumption 2 will then also

hold in the new set of coordinates (with perhaps different values

for the two constants). Thus, any results concerning the behavior

of the estimation method as described in the x set of coordinates

also pertain when the method is described in the v coordinates.

The equivalent of Eq. (22) is

E{(VJ "9vj)2} "(1/n) ^jj^v1 =<1/n)[(1/n> ^ gkjj(ev>] ' (30)
Expressing this equation in the original coordinates, we have

2 c.Jxl.c.. =(1/n) 2 c.,|g (0)1 , . c .. (31)
k,i JkL-Jkl J1 k,i JkL~n ~Jkl ji

in which C may be an arbitrary Unitary matrix.

We would like to find the mean square error in the estimate

of an arbitrary linear combination of the x variables, 2^ a, x, ,

using a corresponding linear combination of our estimates x , .

The error in such an estimate is

E{[^ ak(xnfc -9k)]2} =S_ ak[X]ki &i . (32)
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Now the only requirement on a single row of a Unitary matrix

is that the sum of the squares of the elements in that row be equal to

one. Thus if we scale the a^'s to meet this requirement, the linear

combination 2, a, x, can be regarded as some constant times a

coordinate of a v vector, v = C- , in which C is a Unitary matrix

which has one row proportional to the a-t's. Thus Eq. (31) applies

and we finally have

E\ ( 2 a, x - 2 a 0 )21 =(a, Xa) =(1/n) (a, H~a) . (33)

We can now compare the performance of the recursive estimation

method with the bound given by applying Eq. (26) to the right-hand

side of the Cramer-Rao inequality

-1 n -1(a, Xa) > (a, B "a) = (a, (2 B ) "a)
k=l

=(1/n) (a, (CT1 )_1aj . (34)
/%/ '^n fsj

Note first that if our measurements are independent of n (as they

might be approximately for a high circular orbit) then

"=Ts -1 .^— -1, -1 =
<S„ > =<ST > ~=G

so that G , the covariance matrix of the errors in the recursive
^n

method, is equal to the covariance matrix of the Cramer-Rao

bound; thus, in this case, the recursive method is asymptotically

efficient.

If each of the matrices G does not deviate too much from
~n

, then G is still "close" to the covariance matrix of the
n ~n

Cramer-Rao bound. To make this precise, let us define the norm

of a matrix as
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I|A|| = auB ||Ax|| . (35)sup

x: x =1
esj x>sss'

Note that for a symmetric positive definite matrix G .8

G|| =max \ llG"1!! =(1/min \Q)

in which \r denotes the eigenvalues of G.

Now the covariance matrix appearing in the Cramer-Rao

bound is

\

B '•[J^]"!?,^]-1 •
Setting G = G + AG

° ~n ~/n s^»n

B"1 =T 2 GT _1 (1 +G, _1 AGJ"1!"1 . (37)
rss Lk=l ^•k' J

We now assume that II G AG II is small with respect to one

(this would be true for example if (l/min\r ) (max\Af, ) is small
S?n ^>?n

with respect to one) so that the inverses inside the inner brackets

may be expressed to a good approximation by the first three terms

in a Von Neumann series

B
rsj '1'[jl^"1&"^"1^k +(^"1-k)2]]"1 <38)

But J£ =(1/n) Z£=1 5k =(1/n) l£=1 (Gfc +AGk), thus 2^ AGfc =0;
su stituting this in Eq. (38) and using the first two terms in a Von Neu

mann expansion of the inverse yields

~n|_kIt+'Sk""1^)2]]"1
;<1/n> ST [i- <1/n> Jx <Sk~_1 ^Sk»2] • (39>
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Thus, as long as none of the individual covariance matrices G
_1 ^

deviates too much from the average (||G " AG || small compared
to one), the covariance matrix of the Cramer-Rao bound does not

differ appreciably from the covariance matrix of the errors associ

ated with the recursive estimation method.
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