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Analog Circuits for Energy and Fuel

Optimal Control of Linear Discrete Systems

M. D. CANON AND E. POLAK

INTRODUCTION

In general, the implementation of optimal control strategies

requires the use of fast digital computers. Asa result, optimal con

trol of fairly simple and inexpensive systems is usually unfeasible

for economic reasons. A possible way out of this impasse may be

found in the form of passive analog networks which solve the optimal

control problem. As the reader probably knows, the idea of using

analog networks for solving programming problems is not entirely
1 2new. ' However, to the best of the authors' knowledge, the rele

vant theorems for networks consisting of transformers, resistive

elements and several mixed sources have not been proved. Conse

quently, the first part of this paper is devoted to writing network

equations in a compatible vector form and to proving the theorems

on which the optimization analogs are to be based.

The main purpose of this paper is to explore to some degree

the possibilities of analog networks for solving two optimization

problems: optimal fuel and optimal energy for discrete systems

with linear plants. Since ideal networks are not realizable, some

thought is devoted to the errors introduced by the nonideal charac

teristics of physical components and to a possible physical imple

mentation of such networks. Generally speaking, it appears that

such networks are best suited for the control of simple, mass

produced systems.

This manuscript was received . The research herein
was supported by National Aeronautics and Space Administration under
Grant NsG-354 (S-1).
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DESCRIPTION OF THE SYSTEM

Consider an n-th order, time invariant, discrete system described

by the linear vector difference equation

x.,, = C x. + u.,,d (1)
-J+l --J J+1-

where x.€ E is the state of the system at the j-th sampling instant,

j = 0,1, 2, . . . , u. is a bounded constant scalar which is the system

input during the j-th sampling period, C is a constant, real nonsin-

gular n x n matrix, and de E is a constant vector. It will be assumed

that the system (1) is completely controllable, i. e. , that the vectors
In —1 \

d, Cd, . . . , C d are linearly independent.

Let x~ be the initial state of the system (1) and let (u^u-,, . . . , u-J

be a sequence of controls. Then, from (1), the corresponding state at

the N-th sampling instant is

N

xN =CNxQ + I CN"J du. . (2)
iN j=l J

Eq. (2) may now be rewritten as follows:

N

(C"NXlVT -xn) = X C"jdu; . (3)
J=l J

Asa result, the two-point boundary-value problem--"given x-. and

X-. find a sequence of controls (u,, . . . ,uw) such that (2) is satisfied"-
transforms into the problem of finding a sequency of controls (u., . . . ,

u^-) such that

?:2 =^N (4)
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-Nwhere ^ = (C x - x_) is the given target state, u = col(u,, . . . , u.,)

is the required sequence of controls represented as a vector in E ,

and R is a n x N matrix whose j-th column r. = C"^d, j = 1, 2, . . . , N.

Definition: Let S1VT be the set of all the target states z„T
N 6 —N

which can be reached from an arbitrary initial state x_ in N samp

ling periods with controls | u. J < 1, j = 1, 2, . . . , N, i. e. ,

SN =]—N : —N = —' —=col(ui' ' ' *,UN '̂ l^lji1' J =^ 2» ••• jNf
(5)

Definition: For a given target state js eSM, let U be the set

of all the bounded controls u which satisfy (4), i. e. ,

U=<u: Ru =zN, u=col(ur . . . ,uN), |u |<1, j =1, 2, . . . ,NI. (6)

STATEMENT OF THE PROBLEM

For the system (1), given the integer N and a target state
e f£-.€. S-^j, find a control u 6 U and a control u e U such that

(i) J (u ) = min J (u) (minimum energy) (7)
e~ ueU e~

N

where J (u) = Z. u. (8)

(ii) Jf(u ) = min Jr(u) (minimum fuel) (9)
U€ U

N

where Jf(u) = X |u.| . (10)

-3-



Remark: Since J is strictly convex and U is also convex, there

is a unique control u which satisfies (7). However, J is convex,
—e f

but not strictly convex, and hence the solution of (ii) above need not be

unique. In fact, there may be an infinite number of solutions. It will

be observed that (ii) is a problem in linear programming.

It will now be shown that there exist ideal component circuits

which solve the problems (i) and (ii) exactly and that circuits using

nonideal components may approach the desired solution arbitrarily

closely. However, first it will be necessary to extend and strengthen
4 5

two theorems due to Duffin and Millar.

DESCRIPTION OF THE NETWORK T(

Consider a network7? consisting of h independent current

sources, i ., j = 1, 2, . . . , h, k independent voltage sources, vcsj r to vsj
j = 1, 2, . . . , k, m nonlinear resistros, and p ideal transformers

having a total of n windings. The networkT^ will be assumed to

satisfy the following conditions:

(1) For j = 1, 2, . . . , m, the voltage v . across the j-th

nonlinear resistor is related to the current i . in this resistor by

the equation

vrj =gj(irj)> j =1,2, . . . ,m, (11)

where the g.(') are continuous, monotonic increasing functions.

(2) The network?! obeys the Kirchhoff current and voltage
laws (KCL, KVL) independently of the numerical values of the

current and voltage sources. In particular, this implies that

there do not exist in lb any loops consisting of voltage sources only,-

or cut sets consisting of current sources only.

(3) The ideal transformers introduce some further restric

tions onTL . Thus, let v., i € E be vectors whose elements are
—t —t

the n transformer coil voltages and currents. Following Carlin
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and Giordano, one may define flux meshes and, analogously, flux nodes

for the transformers and then write down the n x q coil-turns-flux-mesh

incidence matrix M^ and the n x s coil-turn-flux-node incidence matrix

N, where q is the number of flux meshes and s is the number of flux

nodes. In terms of these matrices, the transformer relations are;

M'_it = 0^ (12)

N'Vj. = 0 (13)
n

<2fit>= j| Vtj =°• (14)

The rank of M is q and the rank of N is s and both of these must

be strictly less than n, the number of coils. This imposes a restric

tion on the manner of interconnecting various windings. Furthermore,

(12) and (13) impose a restriction on the manner of connecting current

and voltage sources to the transformer windings.

KIRCHHOFF'S CURRENT AND VOLTAGE LAWS FOR 71

In order to be able to show that a specific networkTl is capable

of solving one or the other of the problems (7), (8), it will be neces

sary to write KCL and KVL in a suitable form, and hence to

deduce some further relations for the various branch current and

voltages.

Let i , i , i , i^_ be vectors whose elements are the cur-
—cs —r —vs —t

rent source, resistor, voltage source and transformer winding

currents, and let v , v s v , v, be vectors whose elements are
—cs' —r -vs -t

the voltages corresponding to these currents. Furthermore, let

i, = (i , i , i , ij!, v, = (v , v , v , v.)', and let i, , i
—b —cs —r —vs —t' —b y—cs —r —vs —V —bcs —br

i, , i,^, v. , v. , v. j v. ^ be vectors of the same dimension
—bvs —bt —bcs —br —bvs —bt

as i, and v and obtained from these by setting to zero all but

the indicated components: thus i, = (i , 0, 0, 0), etc.
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Now, considering each current source, voltage source, resistor

and winding as a separate branch, let us construct a tree for »tcon

taining no current sources (if under the above hypothesis the circuit

has more than one separate part, a tree is to be constructed for each

one). Let i„ = (i , i „ ,) eE be a vector whose elements are the
7 —I x—cs —I r

current source currents as well as the currents through the remain

ing chords (branches not in the tree). Then, the vector i_ specifies

a unique set of fundamental loops and fundamental loop currents for

Tb . In terms of these,

and

KCL is iu = A i, (15)
—b — —I

KVL is A1 vb = 0 (16)

where A is a n x u dimensional matrix of the form

Eq. (12) may now be used to bring in the restrictions due to

the transformers. These may be cast into the form

= Ti_f (16a)

.vwhere i, = (i , ir,) eE , v < u, ir, being a vector whose elements
—f v-cs —fr — —fl °

are some of the elements of i. ,. The elements of i_, form a set of

basic current variables which, once given, determine all the cur

rents in the networkT\ by means of the relation

i_b =ATi_f . (17)
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The u x v matrix T has the form

T =

where the identity matrix has the same dimensions as the one in the

matrix A. Hence

T'A'v,
— bcs <Xcs' °> (18)

where the vector in the right-hand-side of (18) is of demension v.

Now combining (14) and (17) one obtains

<I'A'vbt,if) = 0 . (19)

Since (19) must hold independently of the values of if, the trans

former voltage relations are, in an alternate form to (13),

T ' A' v = 0 . (20)

Now, let D be a v x v matrix of the form

D =

where I is a (v - h) x (v - h) identity matrix. Then, combining

(16), (18) and (20), one obtains

DT'A'v, = DT'A' (v, + v, ) = 0 .
—b — —bvs —br7 —

(21)

Eqs. (17) and (21) will be called the Kirchhoff law derived current

and voltage constraints, (KCLD and KVLD).
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THE FUNCTIONALS J(_ib*) AND J(vb*)

Let the actual current and voltage vectors of the networkTl be

i. and v, , i. e. , they satisfy all the equations above. When all the

restrictions imposed by the network on the branch currents and vol

tages are relinqji^ied» except for (11), while the sources are retained,

it may be assumed that the branch current vector has the arbitrary

value i, =(i ,i ,i , i^ ) and that the branch voltage vector_b l-cs' -r -vs -t ^ ^ +
has the arbitrary value v. = (v , v , v , v, ). It is understood,

of course, that v and i are related by (11). It is now possible

to associate with the network il* the functionals
*

P-b

•ULb*' =J (v^ +v*—' *d^ {22)p

-Xb

Jd<Xb*» =.

—br —bvs7 —b

(i, + i, ) ' dv, . (23)
—br —be s —b

It will be observed that the above line integrals are independent of

the path of integration and that they are convex in i, and v

respectively. The above two functionals, in a sense, bear a primal

dual relationship to each other.

THEOREM: Subject to the constraint of KCL and the trans -

formers, i.e., i_b = AT^, (KCLD, Eq. (17)), the functional

Vi-b>=Jo dbr +ibvs) • ii*.

associated with the networkTL, assumes an absolute minimum at
* . o

the actual current distribution of 71, i. e. , for i, = i_, .

PROOF: Since J is convex in i, and the constraints are
p b

also convex, it follows that if J has a constrained stationary
P
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value, this value must be a minimum and it is unique. The value of

i, at which this minimum is achieved, however, need not be unique.

Now,

*iyi-b0> =<VJp<ib°>' di.b ) (24)

where

, N = (h + k + m + n]VTp(i_b°) =(8Jp(i_b)/9ibl 3Jp<ib)/3ibN)
. o

i-b = lb

and

di, = A T Ddi_f ,

since djL_f = (0, dif, ). Combining (11), (24), and (21), one obtains:

dJ (i, °) = (DT'A'K ° +v, ), di ,*) = 0, for all di,* t 0.p —b ' x —br —bvs' —f ' —f

# * oHence J (i, ) has a constrained stationary value at i, = i_, and

this value must be the constrained minimum value of J QED.
P

After rewriting KCL and KVL in a suitable form, and pro

ceeding essentially as before, it becomes possible to prove the

following "dual" theorem.

DUAL THEOREM: Subject to the constraints of KVL and the

transformers (analogous in form to (21)), the functional

*

Jd<ib*)=J <ibr +W d^b
o

associated with the networkTL , assumes an absolute minimum at
f (

v = v

-b -b
the actual voltage distribution ofTL, i.e. , for v, = v, .
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CURRENT ANALOG FOR THE MINIMUM ENERGY PROBLEM

Consider the network shown in Fig. 1. It will now be shown that

this network can be used to solve the minimum energy problem (7).

The transformers in this network are ideal, with turn ratios l:r., ,

j = 1, 2, . . . , n, and k = 1, 2, . . . , N. The sources are dc current sources

of magnitude zM , j = l,2,...,n. The N nonlinear resistors have

identical terminal characteristics which are shown in Fig. 2(a) and

a realization for them is shown in Fig. 2(b). The incremental re

sistance of these elements is equal to two for |i , | < 1 and it is
equal to s for | i , | > 1, k = 1, 2, . . . , N. Let us assume that
the incremental resistance s, which is introduced to exhibit the

effect of using nonideal circuits, may be used as a parameter for

this network. The network will be denoted by ~ft . Then the

functional (22) which may be associated with 77 will also depend
c &

parametrically on s, and, since there are no voltage sources in

' I , it assumes the simple form
cs *

^-br

ps —br '

where i
—r

*

•r

= I
keM

= (i

Ibr

V
—r

dlbr

di
—r

lrk* + keMc
(2|irk*|-1 +̂(|irk*|-l)2s) (35,

*.), Mc(l, 2, . . . , NJ is an index set such that
if k€M then |i k| <1, and Mc is the complement of M in {1, 2, . . . ,N}

The KCL and the transformers impose the following relation on

the resistor currents:

, i
rN
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*N =RLr (26>

1 nwhere z_j = (z , . . . , zN ) is the current source vector whose value

will be assumed to be identical with that of the target state for (7) and

R = (r., ) is a n x N matrix whose components are the transformer

ratios. Again, it will be assumed that the matrices R in (26) and

in (6) are identical.

Now, let U,CE be the set of all vectors i which satisfy
1 —r J

(26), and let i be the actual resistor current vector for "71
x ' _r s cs

Then, since from (6) UCU,,

J (l, ) = mm J l, < min J i, ) . (27)
ps —brs ' . TT ps —br7 — . TT ps —br'
r 1 €U, r l €U r

—r 1 —r

However, it is seen from (25) and (8) that

J (i, )= J (i ) for all i eU . (28)
ps —br' e —r' —r

Since by assumption (7) has a solution in U, it follows that for all

s > 0

J (i, °) < min J (i ) < oo . (29)PS -brs -. eU e x-r
—r

Since (29) must hold when s—•oo, it is clear that i_ eU, that

J (i, °) = min J (u) (30)pcov-br ^ e-

and that u = i ° is the required solution for the minimum energy
—e —r oo ^

problem. Thus, for s = co, the circuit solves the minimum energy

proglem by a current analogy.
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VOLTAGE ANALOG FOR THE MINIMUM ENERGY PROBLEM

Now consider the network shown in Fig. 3. The ideal transformers

have turns ratios l:r., , j = 1, 2, . . . , n, k = 1, 2, . . . , N, the ideal sources

ZN ' J = 1» ^» • • • »n> are voltage sources, and the nonlinear resistors
have characteristics shown in Fig. 4(a) and their realization is shown

in Fig. 4(b). Again, the network, which will be denoted by i\ ,

depends parametrically upon the incremental resistance s. For y\ »

*
y.

J j (vu ) = I iu • dv,ds —br ' J —br —br•r*

•X'i dv
—r —r

= I v *% I (z|v *|-1+^.(|v *| -l)2s^) (31)
UM rk ktlcV rk J rk /

where the set M is defined in the same manner as before.

The KVL and transformers impose the following relation on the

voltages across the nonlinear resistors:

^N =Rlr <32>

where z^ = (z^, , . . . , z„ ) is the voltage source vector whose value

is assumed to be identical to that of the target state for (7) and

R = (r., ) is a n x N matrix, whose components are the turns

ratios, and which will again be assumed to be identical with the

matrix R in (6). By an argument identical to the one for the cur

rent analog, it follows from the dual theorem that for s = oo the

network M. solves the minimum energy problem with the optimal

control u = v
—e —r
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CURRENT ANALOG FOR THE MINIMUM FUEL PROBLEM

In order to solve the minimum fuel problem (9), the network

shown in Fig. 1 is used again, but with different resistive elements.

The terminal characteristics of these resistive elements, which are

again all identical, are shown in Fig. 5(a) and their realization in

Fig. 5(b). As before, the network, which will be denoted by 11 ,
depends on a parameter s. It will be observed that (26) represents

the KCL and transformer constraints for this network as well. For

cs

JDs(ibr*)=Z ^ V+7 ^ T^IW "1/s>ps-br L k€M^ rk L k€M^L ^

+(|irk| -1/s)2 s/(s -l)2]

+7 ^ (2(|irkl -D/(s - D+(|irkl -D2s) (33)
ksMo

where M,, M?, M-, C |l, 2, . . . , NJ are index sets defined as follows:
keMx if lirk<l/s> keM2 if l/s<|ik| < 1, and keM3 if |irk| > 1.
It may now be shown in the same way as for the minimum energy

problem that when s = oo the index sets M, and M~ must become

empty, i. e. , that i €U and that
r J r oo

J (i, *) = J,(i *) for all i *eU .
p oo —br ' f —r —r

Hence ur = i is a solution of the problem (9). Note that when
—f —r oo r

s = oo the network"71 becomes indeterminate in the same manner
cs

as the linear program (9) and may be capable of an infinitude of

solutions, each of which is equally good.
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VOLTAGE ANALOG FOR THE MINIMUM FUEL PROBLEM

When the resistors shown in Fig. 6(a) (realization in Fig. 6(b))

are substituted for the resistors in Fig. 3, one obtains a new network

'I which can be used to solve the minimum fuel problem by means
vs

of a voltage analogy to the control u.. The restrictions due to KVL

and the transformers on the resistor voltages are still given by (27),

while the associated functional J , becomes
ds

=7 2 'k€Mx
2 1 <T

rrk S+1 ^rk L k€M2

k€M3

r2(|vrk| -1)
s-1

<2KJ -7> +<|vrkl -7>2-T7
(s-1)

+(|vrk| -l)2s (34)

where the sets M,, M2> and M3 are defined in the same manner as
before.

Again, when s—•oo, the networkTl solves the minimum fuel

problem (9), with ur = v and
r w' —f —r oo

J^ (vo. ° ) = J (v ° ) = min J^ (u) •d v—br oo ' ev-roo ' ueU e —

•1

PHYSICAL IMPLEMENTATION OF THE ANALOG NETWORKS

In practice, one has to build networks out of real components and

it is hence clear that it will be necessary to resort to special techniques

in order to realize a reasonable approximation to the analog networks

discussed previously. First, in order to be able to use real trans

formers, one may use for voltage souces pulse train modulators, with

a typical modulator output shown in Fig. 7(a); the corresponding
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voltage across the secondary of a pulse transformer is shown in Fig. 7(b)

( not to scale). The pulses must be narrow with respect to the period of

the pulse train. This is necessary in order to avoid substantial drifts

of the "zero" level. One then reads these voltages through a narrow

aperture so as to obtain their values at instants when the "transient"

ripple has died down. Whenever linear resistors are used, their values

must be chosen so as to provide adequate damping to the transformers.

(Note that the actual value of these resistors is unimportant. ) Current

sources may be approximated by placing relatively large resistors in

series with the voltage pulse train modulators. Finally, in order to

evaluate the effect of nonideal diodes and nonideal Zener diodes, one

may assign suitable values to the parameters in the various formulas

previously developed.

CONCLUSION

It has been shown in this paper that ideal component circuits can

be used to solve minimum fuel and minimum energy problems for

linear discrete systems. It has also been shown that effects of using

nonideal diodes may be accounted for, while the effect of nonideal

transformers can be largely avoided by resorting to pulse techniques.

However, as far as a. physical implementation is concerned, the

requirement of specially wound transformers would make the use of

such circuits most practical in the control of mass produced systems.

A simple secondary controller would probably have to be added to

control the system in a small neighborhood of the desired state in order

to ensure asymptotic stability.

The authors have built an elementary optimal system of the

kind described in this paper and have found that the network computed

controls were within five percent of the required optimal values. As

a result, the authors are inclined to encourage the utilization of

analog network controllers in simple applications.
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Fig. 1. Current analog for the minimum energy problem.
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slope s

Fig. 2(a). Minimum energy current analog nonlinear
resistor characteristic.

1 1, 2rk

p pp. WW

rk

Fig. 2(b). Minimum energy current analog nonlinear
resistor realization.
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Fig. 3. Voltage analog for the minimum energy problem.
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Fig. 4(a). Voltage analog nonlinear resistor characteristic,

rk

rk ? 1
• (Zener diodes)

I

Fig. 4(b). Voltage analog nonlinear resistor realization.

20-



slopes

rk

Fig. 5(a). Minimum fuel current analog resistor characteristic,

(Zener diodes)

O BE» W3
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Fig. 5(b). Minimum fuel current analog resistor realization.
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Fig. 6(a). Minimum fuel voltage analog resistor characteristic,

Lrk

r

rk (Zener diodes)

Fig. 6(b). Minimum fuel voltage analog resistor realization.
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-i(t)

2T

Fig. 7(a). Pulse modulator output.

v
rk(t)

Fig. 7(b). Transformer voltage waveform.
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