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ABSTRACT

Discrete Volterra series is shown to approximate arbitrarily

closely the response of nonlinear sampled-data systems. A multi

dimensional Z-transform calculus is developed which makes it possible

to generalize the property of convolution to nonlinear discrete systems;

operator notation can then be used to analyze the problem. A typical

example is taken and a representation of the system is obtained from

which the transient response is easily computed.
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I0 INTRODUCTION

The analysis of continuous nonlinear systems using Volterra
12 3

series has been developed by Brilliant , George , Van Trees , and
4

Flake . In connection with the application of Volterra series, a multi

dimensional Laplace transform calculus was defined and used in solving

for the kernels. Brilliant proved that for a bounded input function, a

nonlinear time-invariant system of the form:

L[y(t)] +F[y(t), y'(t),..., y(n)(t)] =x(t) (1)
where L represents a linear differential operator and F is a nonlinear

analytic function, can be approximated arbitrarily closely by the

following polynomial form:
p+ oo p +oo o+oo

y(t) =hQ + h1(T)x(t-T)dT + I h2(Tl, T2)x(t-T])x(t-T2)dT1dT2
^-oo v-^-oo ^-00

(2:

The h.'s are the kernels respectively of i-th order.

A similar procedure is taken to solve nonlinear discrete systems

and the multidimensional Z-transform calculus concurrently introduced

makes it possible to solve easily for the kernels.

Analysis of nonlinear discrete systems has not yet been solved
5

although Alper gave some related results.

II. REPRESENTATION OF NONLINEAR SYSTEMS IN DISCRETE

VOLTERRA SERIES

Consider the following system:

x
sample —* _,, , , . .

^ Hold Lx-^ Plant | y(*K



The plant is time-invariant and "continuous" in the sense defined by

Brillianto

If x(t) is the input to the sample, the output x (t) of the sample is

oo

xV(t) =^y x(t)6(t-kT). (3)
k=0 •

The output of the hold having impulse response function O(t) is

x*(t) = / Q(t-T)x*(T)dT. (4)
v_j-00

Approximating the output of the plant by the n first terms of the Volterra

series we have

V" r+0° r+0° tV*y(t) = N /•••I h.(T1,...fTi) I /x (t-Tj)dT. (5)
^~ K-J- 00 w - 00
i=l j=l

p+oo <\—X'"(t-Tj)= Q(t-T.-T)\ x(T)6(T-kT)dT (6)
k^O

Without loss of generality we can consider the second degree term; the-

other ones will take the same general form.

+ oo n> +oo

Y2= / / h,(Tl,T,)x (t-Tl)x (t-T?)dTldT
"-00 ^-00

v+00 /-n+00 +00 ooJT OO ^TOO TOO WJ

dTj I dT2h2(Tl, T2) (Qlt-Tj-TlX x(T)6(T-kjT)
-oo J.„ J-co Zl

00

:=0

p '00
> / dT'Q^-T.-T1) x x( T')6(T,-k:,T). (7)
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Changing the order of integration,

•+oo r>+oo

Y2 = dr dr'x (t)x (t1)
^-4. 00 "->-oo

+ 00 _ +00

fdT PdT^Tj.T^Qd-Tj-T)
vJ- oo J - oo

Q(t-T2-T (8

The term between brackets represents the hold in cascade with

the second order kernel; let it be designated by g?(t-T, t-T '). So then

we have

.+00 /-s+00 00 00

Y2 = dr dT,g2(t-T,t-Tl) \ x{ r)6(T-k1T) \ x( T-)6(T'-k T
y-J- 00 W- 00 Z_ z

k2=o
(9)

Interchanging the order of integration and summation, one obtains

00 oo

2= > / , .
Z Z J-oo ./'"oo
k^O k2=0

\ I ' g?(t-T, t-T!)x(T)x(T*) 6(T-k1T)6(T,-k2T^dTd

(l'>)

So the second order term of the overall system has the discrete repre

sentation shown above; g?(t-k.T, t-k?T) is the second order discrete

kernel. In general the output of the system can therefore be represented

by the following discrete series:

00 ( 00 00
i

n ' r:.)y(t) = ;.g.(t-klT,t-k2T,...,t-k.T)/ 'x(k.TK

i=l 'k =0 k. = 0
1 i
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If the output is sampled, the following series, which we shall call

Volterra discrete series, is obtained:

n r n n i

y(m) = > <i >... .gi(m-k1,oco,m-ki) / /x(kjK (12)
i=l Ik^O k. =0 j=l )

where the sampling period T has been deleted from the notation for

simplification,, From now on, y(m) means y(mT).

The discrete Volterra series has been shown to approximate,

within an arbitrarily small error, the output of a "discrete" continuous

nonlinear system. The next step would be to extend the validity of this

representation to digital systems. It involves the notion of compactness

in the space of discrete variables and an extension of the Stone-

Weierstrass theorem.

Definitions: a system that can be exactly represented by

n | m m i

y(m) =\ ) \..\h (klf...,kjT /x.(m-k ) (13)
Z__!._ Zl...
i=l W =0 k. =0 J=1

1 i

will be called an analytic system if it is stable in the bounded input,

bounded output sense. The norm of the n-th order kernel is defined as

m m

llhjl =\o.^>|hn(k1,k2,...,kn)| (14)
/_ /__

k =0 k =0
1 n

If all the norms | |h. | | are finite and the power series
oo_

B__(x) = >| |h | |x has a nonzero radius of convergence RH, then for an
Z_

n=0

input bounded by a constant R<RH, each functional converges absolutely

-4-
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and the series will converge absolutely. The output will be bounded by

B-j.(R); the function B-j. is then called the bound function of the system,
H Jri

Any kernel can be altered by permuting its arguments k., . , , k.

except if it is symmetric. So analytic systems are represented by a

unique set of functionals if the kernels are symmetric. In case the

kernels are unsymmetric, symmetric ones will be obtained by taking the

arithmetic mean of all the kernels obtained after permuting the arguments

in all possible ways.

Properties of the kernels

The difference equation of an analytic system can take the general

form

L[y(m)] +F[y(m), y(m+l), ..., y(m+n)] = x(m).

L is a linear time-invariant difference operator and F is a multinomial

in y(m) and its n following samples. h(k) is the sampled impulse response

of the linear part of the system. h.(k) is the first order kernel in the

Volterra series representation.

If the Volterra series representation of y(m) is substituted in the

difference equation, it is immediately seen that the difference equation

corresponding to h (k) is the same as that for h(k). Therefore the first

order kernel corresponds to the sampled impulse response of the linear

part alone.

In the particular case when the nonlinearity is composed only of

an n-th order term [y(m)] , a relationship between the order of the

existing kernels is derived. First of all, being given a Volterra series

representation of the output y(m), let us investigate the Volterra series

representation of [y(m)] ,

p ( _m m i

y(m) =\ '\ ...\ h(k.k., . . .", k.)7 /(x(m-k.)!% (15)
s \ •'' / l J :' j .'

i=l X=° k.= 0 J=1 J
1 i

which can be written as

- 5-



y(m) = Yx + Y2 +...+ Yn+...

[y(m)]2 will be obtained as the result of the discrete convolution of two
2

signals y(m); therefore the n-th functional Vn of [y(m)] is related to
y(m) as follows:

n-1 ' m m n

Vn => ^> ••;>hj<kl' •••'Vhn-j<Vl' •••'kn| /x<m-ki> - (16>
1=° V

\Z. JL 1=1

j=l vk =0 k =0
" 1 ir-l

\ 2Similarly [y(m)] is obtained as the discrete convolution of [y(m)] and
3

y(m). Therefore if [y(m)] is written as the sum of the contributing

functionals

Hence

[y(m)] 3=Vf +W2 +. . .+Wn +. . . (17)

n-1
^_—

n / SL n-Jt

i=l

jg-l f m m i

V. =

Z— u. .< i=1
j=l k: =0 k =0
J i a

^\..^h.(k1,...,k.)hi_j(kj+1,...,ki)J /x(m-k.); (19)

mm n

Yn-i V ''V> hn-i(ki+l' •'' 'kn>7 /^"V'
/_ i=i

k =0 k =0
i n

6-
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n-1 i-1 , m m

wn=ysy -f> •->hj(kr ••••WjVi' ••••k£]
£ I* /-

1=1 j=l \=0 k =0
A n

n

hn /(ki+i..--.kn>7~^(m"ki,S- <21>
J

Note that at the maximum i-1 = n-2, thus the n-th order kernel of
3

[y(m)] takes the following form

n-1 n-2

hn3=> >hjhi-jhn-i- <22>
Z Z__

4=1 j=l

This result could be easily generalized by an induction proof to yield the

n-th order kernel of [y(m)]" as

n-1 n-2 n-p+1

h => >../\ hh ...h/.h (23)np y / / r g-r i-j n-j v '
i=l j=l r=l

which is a combination of the kernels of y(m) of order less than n taken p

at a time. Now consider a difference equation of the type L[y(m)] +

F[y(m)] = x(m) where L is a linear difference operator and F is an n-th

order power operator. The two first nonzero kernels are h. and h .
1 n

The next one is obtained as a combination of n terms in which the only
kernels app

obtained as

h h . . .h. which is of order n+(n-l)

n-1 terms

The following one is then

kernels appearing are h and h ; therefore the next least order kernel is

-7-



h h h,. . . h, which is of order n+(n-l) 2
n n 1 1

n-2 terms

From the two initial kernels hj and hn, only kernels of order n+(n~l)p
appear where p is an integer. In general, higher order kernels obtained
are formed as combinations of kernels of order 1, n, n+(n-l)ji (^ are

integers):
p m n-(m+p)

i=l j=l r=l

The order of such kernels is

p p ..,

pn + (n-1) ^ j. + mn + n - (m+p) = (n~l) >ji+p + n, +n

i=l L-i=l

Therefore the order of all possibly existing kernels is

n + (n-l)p where p = 1, 2,. . . , q

and 1 and n.

Note that if we allow p = -1, 0,1, 2, . . . , q, all the existing kernels

are obtained.

In order to extend the property of ordinary Z-transform which

transforms the convolution in the discrete domain into multiplication, a

multidimensional Z-transform is introduced.

III. MULTIDIMENSIONAL Z-TRANSFORMS

(a) Definition. Similarly to the ordinary Z-transform, one defines

F(zr z2, . . . , zj =Z{f(mv m2, . . . , mj} (24)

-8-



00 ^°_ -rn. -m_ ™m
,.\f(m1,m2,.,.,mn)z z ,...,z (25)

m =0 m =0
1 n

Let us consider the n-th functional in the Volterra series representation

of y(m)
m m

^—

>• .:>«
t

/

kx=0 k =0
n

n(m) =X, ...\£(kv k2, ... ,kn)J7x(m-k.)
n

"^ (2 6)

i=l

Associate with this form

Y (m., m_,. . . , m ) such that Y (m) = Y (m_, m_, . , . , m ) (2 7)
n 1 c n' n n 1 2 n

when m, = m~ -. . . - m - m.
12 n

m_ m n

Yn(mr m2,. . .,mn) =\. .. \f(k^. ..,kjj /xdn.-k.) (28)

1^=0 kn=0 i=1

If we consider the multidimensional Z-transform of this expression the

following is obtained

oo oom.ni
1 n

ZiY^nr^, m2,..., mn)} =^>. ..\ X> .. N>- fO^, . . ., kn)

m =0 m =0 k=0 k =0
1 n 1 n

n

rT~r "mix / / xfir^-k^z i
i=l

-9-
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00 oo oo 00

-m.

zL* 5(kl''''' kj '̂ 5 7Tx(mi"ki,z 11
k =0 k =0 m=0 m =0
In In

Let m.-k. = p., then

(30)
v i i' i

i=l

oo oo n oo oo n

n<V •••Zn> =^> ^f(kl kn>77Zi ^ ^JJ^i^
V° k„=0 l=1 Pi=-ki ^ (3D

but p. and k. are independent indices and range from 0 to oo, therefore

we have

Yn(z1, .. ., zn) = F(zx, ..., zn)M^v .. ., zn) (32)

So it is seen that the relation between convolution and multiplication

which makes the Z-transform so useful in the case of linear systems

has been extended to the nonlinear systems by the introduction of the

multidimensional Z-transform.

But dummy variables m., m_, . .. , m had to be introduced and an

extra problem of associating these variables appears when the inverse

transform is sought.

(b) Association of Variables

The problem is, knowing H (z.,..., z ), how can we find h (m)?

The procedure of taking a number of variables m.,.. ., m to be equal is

called "associating the variables. " Theoretically it would be possible to

invert H (z.,..., z ) into h (m.,.. ., m ) and then, by associating the

variables, find h (m). A better procedure is to associate the discrete
n

time variables in the transform domain, that is, given H (z , .. . , z ) as

the transform of h (m.«...
n 1

will then be found directly.

the transform of h (m.,. . . , m ), H (z) is the transform of h (m) which
n 1 n" n n

-!0- \
\



The inverse multidimensional Z-transform is found as

/ i \ r r "V1 "V1hn(m1, m2,.. . ,mn) =-^-\ (.. ,| H_(z,, zot.. ., z_)zT z
W "V n 1

^L Fn
m -1

...z n dz1#..dz (33)
n 1 n

where T. is the contour containing the singularities of H (z.).

Associating the two first variables m. = m_

h (nij,m2, m3,..., mn) =|
n m.-l

Hn(z1,z2,...,zn)(z1z2)
v2lTJ

2 nl 1

m~-l m -1

xdzAz^ •••zn n dz2'**dzn' ^^

Let us call z.z =u. . In the integral between braces, z is the variable

and the other z. are held constant so dz. =(__lp (mi» • • • »m )
\z2/

•(^ljtiiiH«ft,B2 Kh3,"z; dzr"dZnt>t rr
2 nv J (3 5)

where T is the contour containing the singularities of the function of u..

Now assuming the function H is absolutely convergent and continuous in

all variables, we can interchange the order of integration

-11-
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Let us consider the integral between braces and make the following

change of variables

u1=z1

Z2=U

We then have

2irj / nVu
Jr.

Gn-l(zl' z3'' ••' Zn> =-£j \ Hnhr«U,Z3 ZJtT (37)
r2

T2 is the domain containing the singularities of the function in u; note

that at the maximum this domain is the unit circle in the u plane, so if

some poles are outside they will not contribute to the function.

To obtain H (z) one should proceed associating variables two by

two using the derived formula.

Example: Consider

Z Z Z Z

H2(VZ2) = ^T -„ *% «a„dP>0Ve z2-e z^-e P

tt/„\_1JL u u z du
Hz(z)" Eg-9 «—=« ^ —=jr —

J ' —e u-e z-e r

H,(z) = ^ JU 0 du
2 z-?P Z"J T (z-ue^Xu-e-")

Only the pole u = e is inside the unit circle, so

H2<Z> =-V —ha- •
z-eK z-e

Now inverting H(z), it yields

-12-



h0(m) = —a_»„ e +—y^nr e
2 jT^o- 6 +1-e2a-p

1-e

The technique and the formula previously given are general and whatever

the form of the function to invert is, simple poles, multiple poles, delay

term, the inverse multidimensional Z-transform can be obtained.

In the particular case of simple poles, characteristic forms

always appear and an inspection technique can be developed. Considering

the previous example, the first factor has for transform e 1;

z.

similarly, to corresponds e"a %. Associating the variables
z~-e

m, = m~ = m, it yields e which has for Z-transform -2ar

Z1Z2third factor of H-ta, z_), g has been seen to yield after association

of variables g—. Therefore H2(z) is easily found as
z-e "

H2<Z> =-^
z-e z-e r

It is repeated that this technique is limited to functions with simple poles,

only case when the transform has this simple configuration. Further

properties of the multidimensional Z-transform are investigated.

(c) Properties of the Multidimensional Z-transform

(a) Initial value theorem

y(0) =Y(z1,z2,...,zn)

zn-> oo (38)

The proof is obvious from the definition of the multidimensional transform.

-13-



(ft) Foward shifting theorems

The problem is to find Z[ y^+l, ..., mn+ 1) ]. By definition

00 00
n

z

n -(m.+l)

i
:[y(m1+ 1,... ,mn+ 1)] =\,..\y(m1+ 1,. .. ,mn+ 1J

m=0m =0 i=1 <39>
1 n

Make the following change of variables m.+ 1 = p.

oo oo n ^
^ ^—r- "P:

z[y(p1.....pn)l =N--^>y<Pi"v»pn)77Zi
Z_ Z__ i=1
p =1 p =1

oo oowo uu |^

Z[ytPj,..., Pn)] =\ ..Ny(p1,..., pn) T~]~zi

n

p =0 p =0
rl *n

-\y(Z]L, ..., zul, 0, z.+1, ..., zn) +(n-l)y(O, 0, .. ., 0)
i=l

where oo oo oo oo

?(zr .... Z.^, 0, Z.+1, . .. ,Zn) n\ .>> \. .. \

p =0 p. =0 p.,.=0p =0
*T *i-l *i+l *n

"Pl "Pi-1 "(pi+l) "Pny(Pl, .. . , PU1. 0, p.+1, pn)Zl ...z.^ ,z.+1 ,zn (42)

Thus n

Z[y(m1+l,m2+l, ...,mn+l)] =Ylz^...^^^, ..., z. r 0,

M>)

(41)

i=l

S z.+1, . . . , zj + (n-l)y(O). (43)

-14-



(\) Final value theorem

A proof of the final value theorem is given only for the two

dimensional Z-transform; in the general case, a similar approach

would be taken but would yield more complicated developments.

Consider the following expression

ZtyCnij+l, m2+l) - y(m1+l,m2) - yfrcy m2+l) +yfrn^ m2)] (44)
It is easily shown that

Z[y(m1+l,m2)] =^(z^ *2) - z^fO, z2). (45)

Therefore expression (44) is written

ZlZ2Y(zl' V " zlz2^(zl' 0) " zlz2^{0' ZZ) +ziz2y(0' 0) " Z1Y(Z1' ZZ>

+ Zly(0, z2) - z2Y(Zl, z2) + z2y(Zl, 0) + Yfz^ z2) (46)

= (z1-l)(z2-l)Y(z1,z2) - Zl(z2-l)y(0,z2)

-z2(Zl-l)y(0, zj + Zlz2y(0,0) (47)

Relation (44) could have been written

oo oo

/ y {y(m1+l,m2+l) - yfn^+l, m2) - y(m1,m2+l) +y(m1,m2)}
m=0 m =0

-m. -m.

zx Xz2 *. (48)

If we let Zj-^1, z2-^l, and m^^ oo, m2-^> oo, then after expanding the
summation one obtains

lim {y(mrm2) - ylm^ 0) - y(0, m2) + y(0, 0)}
m.—>oo

l2m^oo

If the limit exists, equality with the Z-transformed terms holds anJ

-15-



lim (z1-l)(z2-l)Y(z1, z2) + y(0, 0) - z^z^DyfO, z2) - z^-Dy^, 0)
zf^ !

Z2^X

= y(oo, oo) - y(oo, 0) - y(0, oo) + y(0, 0) (49)

which yields

lim (z1-l)(z2-l)Y(z1, z2) =y(oo) (50)
Zj—>1

if the limit exists.

(6) Relationship between multidimensional Laplace and Z-transforms

Let us consider the multidimensional time function f(t., . . . , t ).
1 n

Assuming the sampling rate is the same in each dimension, its sampled

value is then

oo oo oo_.

f*(tx tn) =fftj tnj\> Sttj-mjTj) N6(t2-m2T).. ;.o^-rnj)
rnj^O m2=0 m^O (M)

oo oo n

Note that

=X..? ^(mjT,..., mnT)T 7$(ymiT>
mT^D m =0 i=l

1 n

(52)

poo -s.t. -m.Ts.
X\ 6(t.-m.T)] = I 6(t.-m.T)e l ldt. =e l l (53)

Thus we obtain _ _
00 oo

* .n * *•— k • ~ • ^/l^-m.Ts.
F (s^ ... ,sn) =£ [f (t „. ., t )] = \.. . ^(m., . . ., m )/ e

/ -- / — i=i (54)
m =0 m =0

1 n

^,n
where.-C^ [•] denotes the n-dimensional Laplace transform. If we replace

-16-
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Ts.

by z{i

*>* (zl>...» zn) = F (s^» s2». . . , sn)
s. = T" in z.

(55)

and the relationship between multidimensional Laplace and Z-transforms

is expressed as follows

J~(z>l,..., zn) =F*(slt. .., sn) =jf*[ i*(tv ..., tn)] (56)
:>n

= v

n oo

i=l ^~
m.=0

i

(57)

n
•^>Given the n-dimensional ,-c transform of a function, the next goal is to

obtain directly the n-dimensional Z-transform. Using the fact that
„n

convolution holds for the .J^ transform and that

X

r- oo

\6(t.-mT)
/ l l

l_^m.=0 _
1-e

1

A g(t)f(t»] =='^)j"JT(Xl' "" V7TG(V Xl,dXl
^i ^ i=lIn l x

G(V\) = -*(s.-u
1 - e

i i

Therefore

.^v....»a) .^j r. rF<v.... ^n)77 Zim dxt
^ rn i=1 zi " e *

-17-
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(d) Multidimensional Modified Z-Transforms

The approximate solution of nonlinear continuous systems with

pure delay will be solved assuming the system sampled at a rate equal

to the delay. In the case of sampled-data systems with delay, as well

as when the value of the response is desired between samples, a multi

dimensional modified Z-transform must be used. Similarly to the

modified Z-transform, it is defined as:

00 00

-n, -n

Jf{zlt z2,..., zfc, m) *\ \ fO^-l+m, n2-l+m,. . ., nk-l+m)z ]..

nr° v10 (62)

IV. BLOCK DIAGRAM REPRESENTATION

Given a nonlinear system N, its output can be written y = N(x) or

as exposed in part II

y =Nq +N^x) +N2(x) +... +Nn(x) +... (63)

which could be considered as an operator power series expansion of the

nonlinear operator N. If the system is stationary and continuous

Nn =f'•|hn(t-Tl'*•*' '"V77*(Ti)dTi (64)
J0 °0 i=l

If the system is sampled

nn. m n

Nn =y- •'")> gn(m-kl' '•'•m"kn)77^(ki)- (65)
k =o k =6 l=1

1 n

The block diagram representation of a nonlinear system is then as shown

in Fig. 1.

-18-
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X

N
y

linear \(t)

quad
ratic

h2(Tr T2)
yX ^\

J
cubic h3(rr r2, r3)

[

Vhn{Tr T2« : • • >

Fig. 1

Similar representation is obtained for discrete system. To determine the
order of a subsystem, the fact that this operator representation is homo

geneous in x is used and instead of considering input x, consider ex, where
e is a constant.

If Y represents the n-th functional Y Ux) = N [€x] =cnN [x] the
n r n n n

2
order of the n-th component is seen to be n. George gives an extensive

treatment of the block diagram manipulation and some of his results will
be exposed shortly and used in order to simplify the solution of nonlinear
discrete systems. The basic operations on nonlinear systems are addition,
multiplication and cascading and they have respective notation +, •, ". The
properties of these operations are given in detail by George but most of
them are fairly obvious and only some of the cascading operations are

noted.

(J + K)*L = J*L + K*L (66)
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but

L * (J + K) * L * J + L * K (67)

because

J * K ^ K * J (68)

This is easily verified from the block diagram representation.

We have shown that a nonlinear operator was expandable as

follows

H = Hx +H2 +... + Hn. (69)

Now consider the system

L = A. * (B + C ). (70)
2 n m' x '

We are looking for an expansion of that expression

L[x] =(A2*(Bn +Cm))[x]

=A2[Bn[x] +Cm[x]]. (71)

Let

y = B [x] andz = C [x]
n m

L[x] =A2[y+z]

which from the form of the operator A? can be written as

L[x] =A,((y+z)2)

=A2(y2) +2A2(yz) +A2(z2) (72)
Substituting the respective expression of y and z gives

L[x] =A2((Bn[x])2) +2A2(Bn[x]*Cm[x]) +A2((Cm[x])2) (73)
2

If we use the operator "o" defined as follows by George

(A2o(Bn-Cm))[x] =A2(Bn[x].Cm[x]) (74)

the system L becomes
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L=A?o(B2) +2A o(B;C )+A^C2)
L n c, n m c m

(75)

Let us apply these properties to the solution of nonlinear discrete systems.

V. SOLUTION OF NONLINEAR SAMPLED DATA SYSTEMS

Simple block diagram properties and operator manipulation are

sufficient to obtain the functional equations which are then solved using

the properties of multidimensional Z-transforms. Let us consider the

sampled-data system given in Fig. 2a where the feedback element is non-
-Ts

linear. H, is a linear operator which has for transfer function 1 - e
1 s(s +1)

r(t)

r®
e(n)

r(t) xlnl

H,

N

Fig. 2

i " c(n)

c(t)

(a)

c(n) (b)

N is a nonlinear operator such that

N[c(n)] =c(n) +0.1(c(n))3 (76)

which can be written as N = I + N-, We know that the output of the overall

system can be represented as a discrete Volterra series which suggests

the representation of Fig. 2b; therefore L = L1 + L7 + ...+L +...

c(n) = H^efa)] (77)

e(n) = r(n) - N[c(n)] (78)

c(n) = L[r(n)] (79)
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So

L[ r(nj =Hx[ r(n) - N[ L[ r(n)] ]] (80)

which yields in operator notation

L = H,*I - H.*N*L where I is the identity operator.

L =HX*I - HX*L - H1*N3*L (81)
3

But N~*L = n~L where n~ is a constant gain term. Thus

L=H^d - L) -n3H]L*L3 (82)
Since the nonlinearity is of third order, the only operators present in the

expansion of L are of order

3 + (3 - l)p with p = -1, 0,1, 2,...

So

L = Lx + L3 + L5 + .. .

Equation (82) is then written

Lx +L3 +L5 +. ..=H1*(I-L1-L3-L5... )-n3H]L*(L1+L3+L5+.. . )3
(83)

=H1*(I-L1)-H1*L3-H1*L5. .. -n3H1*L13-3n3H1*L2L3. .. (84)

Proceeding by identification of orders, this operator equation yields

Lx =H^d - Lx) (85)

L3 =-H1*L3 - n^^L3 (86)

L5 =-H^Lg - 3n3H1*L2L3 (87)

Solving for the operators L,, L3, L,-

Lx =(I +H^"1*^ (88)

L3 =-n3(I +H '̂̂ H^L3 (89)

L5 =-3n3(I +H1)"1*H1*L2L3 (90)
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Cascading corresponds to the convolution in discrete domain which

becomes multiplication in the transform domain. For the linear operator

the transform is the ordinary Z-transform while L_ and L_ correspond

respectively to the 3 and 5 dimensional Z-transforms. H.(z) is found

easily from H, (s):

Hx(z) = ' e_ and if T =1
z-e

"yM-z^rm <91>

U + H^z)) -z + fl ^

h<z>=z4to (92>

Before computing L~(z , z , z ) and IjAz., , 0„, z_) we should point out the

relationship between the impulse response of cascaded systems and its

transform.

Consider L = A,*B . The impulse response function of the system

is oo

in(mlf m2,..., mn) = Xa1(k)bn(m1-k, m2»k,..., mn«k) (93)

k=0

The transform is

L (zx, z2,... ,zn) =A1(z][,z2,..., zn)Bn(z1, z2,..., zn) (94)

Using this fact and

,3 =-n^*^ „„~-3L^ = -n0L,*L3 with n = 0.1
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L (z z z )- 0.0632 0. 632 0. 632 0. 632 _
L3lzl' Z2* Z3 z^ z +0. 264* Z][ +0. 264 "z2 +0o 264 z3 +6". 264

(95)

Similarly one would get

L5(z!» •••» z5) = Li^zi» •••» Z5)'L1(Z1)-L|1(Z2^L*3^Z3' z4* z5^ ^96^

Now, using the technique of association of variables, LJz) and Lgfz) can
be obtained. If a = 0o 632, p = 0. 264, A = 0. 0632

t i \ A «3 (97)L~(z) = 3
"* z + pz + p

Neglecting the fifth order term and higher terms, the response of the

system to a unit step u(z) is

Y(z) = L^zjUfz) + L3(z)U(z) (98)

3a z _ A or __ z (99)
3

z+p z-1 z+p z+p z-1

Taking the inverse Z-transform

m, Ac3 1 • (-P)"1 (1 +P)(-P)3m !{1nn}
l.+ p* j» -{J* U+p3)(P -P3);

From which the transient response of the system is computed

y(0) = 0

y(l) = 0. 632

y(2) = 0.4488

The final value theorem yields

3 \/ , . / <*z A a z \
y( oo) = lim -—- ~— _ , R3 iz^l \ z +P z + P z + P ;

y(oo) = 0.498
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The final value theorem could be applied directly to the multidimensional

transforms as shown in section III. It is a means of determining tlie

number of terms necessary in the operator expansion, given a desired

accuracy. For example if the transient response is desired with an

accuracy of 10 units and the three first decimal points of y(oo) are

the same considering either the 3 first terms of the Volterra series or

4 terms, the solution considering the 3 first terms is accurate within
-3 •10 . Since the Volterra series expansion is an approximation arbitra

rily close to the solution, the solution with the 3 first terms is close to

the exact value but nothing can be said regarding the accuracy with

respect to the exact solution.

This example has been solved by Jury-Pai using z convolution, and

similar results were obtained. The solution of nonlinear difference

equations is also obtained using Volterra series approach. If a block
diagram simulation of the equation can be established, the problem is
the same as a nonlinear sampled-data system. Otherwise, Volterra

series expansion is used and the problem is one of simple identification,

but the complexity of calculations is much greater.

Now we shall consider the case when the initial conditions are

nonzero. The Volterra series solution considered previously for an n-th

order sampled-data system or an n-th difference equation of the form
L[y(m)] + F[y(m)] = X(m) is the particular solution which is initially
zero and whose (n-1) first samples are zero. The technique is then to

introduce an auxiliary variable which is the difference between the
desired solution and its initial value. This is fairly obvious when only
the first sample is nonzero and the following n-1 are zero, then the new
forcing function is defined by a simple translation of the variable. In
the general case it is more intricate. An example of a second order
nonlinear difference equation is given. Consider

y(m+ 2) +ay(m)+ py3(m) =x(m) (101)

with

y(0) = a

y(D = b
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The first step is to remove the initial sample by translating the variables

z(m) = y(m) - a (102)

z(m +2) +oz(m) +0z3(m) + 3paz2(m) =x(m) -a(a+l)- pa3 + 3pa2z(m)
z(m +2) + (a + 30a2)z(m) +3paz3(m) +pz3(m) =p(m) (103)

where

p(m) = x(m) - a(a + 1) - pa (104)

To remove the second sample a new ps eudo-forcing function is introduced.

f(m + 1) + f (m) = p(m) (105)

f(0) = b - a (106)

The Volterra series solution using f(m) as the input function is

m m m

y(m) ^hjOOfdn -k) +\" N^fl^, k2)f(m-k2) +... (107)
k=0 kx=0 k2=0

Then proceed to obtain the solution.

Note on the stability problem

It should be noted that, as it is presented in section V, the solution

of a nonlinear sampled-data system is obtained in general as an expanded

operator form

L = Lx + L2 + L3•+ .. .

which can take the block diagram representation of Fig. 1. Each 'of these
operators has a multidimensional Z-transform; from the definition the
multidimensional Z-transform converges outside the hyper sphere of

radius unity. Therefore the system will be stable if each transform has

its poles inside the respective unit circle.

Howjever, stability of the system will be analyzed before trying to

obtain the Volterra series representation. Stability analysis can be

performed on the system using Popov's method and its extensions as
presented by Jury and Lee. Then if the system is found stable, Volterra
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series representation can be sought.

Conclusion

A method of analysis of nonlinear sampled-data systems has been

developed extending the concept of Volterra series and defining a multi

dimensional Z-transform. Approximate solution of analytic systems is

obtained by solving for the kernels; transient response is then easily

computed for general kinds of bounded inputs.

It is hoped that this representation of nonlinear sampled-data

systems will be useful for future work in the areas of identification and

optimal control, synthesis of nonlinear discrete systems and statistical

design.
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