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A NOTE ON AIZERMAN'S CONJECTURE *

The following system of three differential equations will be

considered:

x = -cx +y - olx)
y=-x+2 (1)
z = - cx + bex)

where b >0, ¢ >0, b< c2 and the single-valued, piecewise-

continuous, nonlinear function ¢(x) satisfies the conditions
(0) = 0 and 0 < X <k foran x4 0,

where k is a finite number, This will be referred to as a nonlinearity
in the sector (0, k). In the language of feedback control systems, the
transfer function of the linear plant G relating its input ¢[x(t)] to its

output - x(t) is

' 2
G(s) = —=—"B . (2)

(s +1)s + ¢)

When ¢(x) is replaced by the linear function hx where h is a con-

stant, we will refer to (1) as the linear system with gain h . If a
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system is stable for linear gains h in the interval (kl, kz) , then
the open sector bounded by the lines ¢(x) = klx- , @ (x) = kzx will be
called the Hurwitz sector for that system.

In 1949, Aizerman [1] made the conjecture that a regulator
system with a single nonlinear elément will be asymptotically stable
in the large for all nonlinearities contained in the Hurwitz sector.

Equation (1) could describe a particular third-order regulator
system and the validity of Aizermap's conjecture will be investigated
for this system.

It has been shown that this conjecture is true for second order
systems with the exception of particular cases when the nonlinear
function approaches one side of the Hurwitz sector asymptotically.
Bergen and Williams [ 2] verified the conjecture for certain third
order systems with no zeros. However in 1958, Pliss [3] , using
the example of system (1) gave sufficient conditions on ¢(x), lying
within the Hurwitz sector, for the system to admit a periodic solution.
Thus Aizerman’s‘conjecture‘was disproved in general.

Aizerman and Gantmacher [4] used system (1) to illustrate
the V. M. Popov theorem. The Hurwitz sector for this example is
found to be the sector (0, c/b). Using the Popov theorem, absolute
stability is guaranteed for all nonlinearities in the sector [¢, 1/c]
where ¢ > 0 is arbitrarily small. It is stated in [4] that this example
serves to disprove Aizerman's conjecture since 1/c < c¢/b . However,
since Popov's theorem gives only sufficient and not necessary conditions
for stability, the statement is not precise, and only by exhibiting the

presence of a periodic solution can Aizerman's conjecture be disproved.
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The work of Pliss [3] is often q@xoted but is not well known.
His monograph is not readily available outside the U.S.S.R. and has
not been translated from the original Russian. Also it does not con-
tain any n@erical examples. This correspondence serves to remove
any doubts on the validity of Aizerman's conjecture by presenting a

specific numerical counter-example.

4 Examgle

In (1) let b =1/2 and ¢ = 1. Then the Hurwitz sector is the
sector (0, 2) and the Popov sector is the sector [¢, 1] . The sufficient
conditions given by Pliss for the existence of a periodic solution are
very restrictive, so much so that it was not possible to simulate such
a nonlinear function on an analog computer. However, it was found
experimentally that these conditions are far from necessary. System
(1) and the nonlinear function shown in Fig. 1 were simulated on an
analog corﬁputer and the projections of some system trajectories on
the plane z = 0 are shown in Figs. 2 and 3. A stable limit cycle is
seen to exist, thus contradicting Aizerman's conjecture of asymptotic
stability in the large.

The nonlinear function in Fig. 1 has the basic shaLpe required
by Pliss' ther‘rem but does not satisfy fnany of his sufficient con-
ditions. The important factors in the shape of this function were found
to be (a) the slope of CD , (b) the negative slope of BC and DE , and
(c) the magnitude of ¢ (x) in the regions AB and EF . It was noticed
that either an increase in (a) or (b), or a decrease in (c) made the

existence of a limit cycle more likely. In the example given, the slope



L(‘

of CD was 1.6, the slopes of BC and DE were approximately -20
and the value of ¢ (x) at the point E(x = 25) was 2.0.
For this example the state space can be divided into two un-
bounded regions; from the first rggion #11 trajectories are asymptotically
stable at the origin and from the c.;omplement of this region, all tra-

jectories are asymptotic to the stable limit cycle.
CONCLUSION

The contribution of this note has been to present a numerical
counter-example to Aizerman's conjecture. Such an example for con-
tinuous systems has not previously appeared in the literature even
though thé work of Pliss has been known for many years. Since
Aizei-man's conjecture is not true in éeneral, the approach to the
problem of absolute stability must be that of Bergen and Williams,
that is, to single out those classes of systems for which the cionjecture

can be verified.
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Hurwitz sector

Popov sector

Fig. 1.

Nonlinear function.
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Fig. 2.

Projection on the plane z = 0 of a trajectory approachiny the
stable limit cycle. '
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Fig. 3. Projection on the plane z = 0 of the stable and unstable trajectories.
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