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Theory of Optimum Discrete Time Systems

H. Halkin* t
B. W. Jordan

E. Polak^
J. B. Rosen

Introduction

In the present paper we shall consider some optimi

zation problems for systems described by difference equations.

This paper is divided into three sections: the first by J. B.

Rosen, the second by B. W. Jordan and E. Polak and the third

by H. Halkin. In each of these sections a different problem

is defined and a different set of results is obtained. We have

decided to stress the fundamental similarities between our par

ticular problems and to exhibit their real differences in a con

text which is free of terminological and notational ambiguities.

In each section of this paper the state vector will

be an element x of a Euclidean space En; the control vector

will be an element u of a Euclidean space Er and the time will

assume the discrete values 0,l,2,...,k. The evolution of the

system will be described by the difference equations

xi+l " xi=s fi(xi' ui> (°-1)
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The problem will be to find sequences xQ, xx, ..., xk

and uQ, u1# ..., uk-1 satisfying the relation (0.1) (and

possibly some other given constraints) and minimizing (or

maximizing) a given function of the variables x . x,, ..., xw
©J. K

uo* ul* •••' uk-l" Corresponding to the different assumptions

and constraints which we shall give in each of the three sec

tions of this paper we shall obtain three independent sets of

results.
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1. State-Constrained Linear System

In this section we consider a discrete problem in

which both the control vector and state vector are subject

to constraints at each discrete time. The evolution of the

system is assumed to be given by means of a linear system of

difference equations, and it is desired to minimize a con

vex function of both the control and state vectors. The ap

proach taken here is closely related to the Kuhn-Tucker theory

which shows the equivalence of a constrained minimization prob

lem and the saddle point of a Lagrangian function [1.3]. A

computational method based on this approach has previously

been described [1.4].

To be specific we wish to determine optimal controls

u±, i = 0,1,...k-1, and the corresponding optimal state vectors

x±, i = 0,1...k, so that

2Ja1(x1,u±) = min, (1.1) •
1=0

where the x1 must satisfy

xi+l " xi " fi(xi>ui)> i- 0,1,...k-1 (1.2)
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and xQ and the u^ must be selected so that

ui € U±, 1 « 0,1,...k-1 (1.3)

and

xl € X±, i - 0,1,...k. (1.4)

We will assume that the sets V± are convex subsets of Er,

and the sets X± are convex subsets of En. We also assume

that a±(x,u) is convex and f±(x,u) is linear on X±xU±,
for i « 0,1,...k-1.

We can now give the main result of this section as

a discrete maximum principle for an optimal solution to a

state-constrained problem.

Theorem 1

A necessary and sufficient condition that

x±, i = 0,1,...k, and u±, 1 • 0,1,...k-1, are optimal

(satisfy (1.1) for all vectors x± and u± which satisfy (1.2),
(1.3) and (1.4)) is that there exist nonzero vectors p. 6e11,
i = 0,1,...k, such that

Hi(Xi'Vpi+l>Pi) 2 Hi(xi'ui>Pi+i>Pi)> 1= 0,1,...k-1
Xi € Xi

Ui *Ui (1.5)
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and

Pk<xk-Jk) 1 ° (1.6)

xk € xk

where the functions H^ are defined by

H^u^q) » p'f±(x,u) + (p-q)' x - a±(x,u) (1.7)

and p0 » 0.

The proof requires the following

Lemma

Let Z be a convex subset of Es, and p(z) a function

from Z to E which is convex on Z. Let w(z) be a linear func

tion from Z to E^. We will denote by WC Es the linear mani

fold determined by w(z) » 0. A necessary and sufficient

condition that z* 6 Z H w satisfies

p(z*) = min p(z) (1.8)

z € Z n w

is that there exists a vector X € E such that

A(z*) < A(z) (1.9)

z € Z
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where the Lagrangian function A(z) is given by

A(z) - p(z) + Vw(z). (1.10)

The proof of the lemma is similar to that given by

Karlin [1.2], for the case where Z is the nonnegatlve orthant
o

in E . To show necessity for the more general case considered

here we define the subset RC E^+1 by

o

R - "
y~\ y0 z p(z)> z e z

y « w(z), z € Z (1.11)

Because of the convexity of p(z), the linearity of w(z) and

the fact that Z is convex, it is not difficult to show that

R is a convex set. Because of (1.8) and the convexity of R,

there exists a supporting hyperplane for R at the point

yo ~ p(2*)> y = 0, with a normal vector * directed into R.
That is,

P(z*) <y0 +Vy ,(y°j€ r. (i.i2)

Choosing yQ « p(2) and y» w(z), we get (1.9) from (1.11)
and (1.10).

The sufficiency of (1.10) follows immediately from

the observation that w(z) « 0 fpr z €zO w, so that (1.9)
implies (1.8).
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In order to prove the theorem we make use of the

lemma by defining the vector z € Es in terms of the vectors

x± and ui# We let

'=(v xi>---*k> V ul"-uk-l) (1-13)
so that s = n(k+l) + rk. The set Z C Es is taken as

direct product of the sets X±, i= 0,1,...k, and U±, 1= 0,1...k-1
The set Z Is therefore convex. The linear function w(z) from

Z to E is given by the linear recursion relations (1.2), so

that w(z) = 0 is given by

xl+l" xi " fi(xi>ui) = °> 1 - 0,1,...k-1 (1.14)

and I « kn. While not relevant to this theorem, it is worth

noting that because of the structure of (1.2), the (constant)

Jacobian matrix of w(z) is of rank I (full row rank).

The function p(z) to be minimized is now given by

k-1

P(z) = ^ °(*±,u±). (1.15)
i=0

To complete the association we let

V"(pl' p2' pkJ (1.16)

the
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and observe that (1.9) is now equivalent to

*-4 r .
h lai(xi'si) +P±+i [Ji+i -H ~fi(%^i)]}
1=0

£ L ri(xi'ui> +pi+i [xi+i" xi" fi(xi'ui)^} •

xi€ xi

U± € U±

(1.17)

To complete the necessity proof we assume the x\.

and u± are optimal (satisfy (1.1) - (1.4)) and note that

this implies that z* satisfies (1.8). By the lemma, (1.9)

holds, and therefore (1.17) is satisfied. Combining the

terms involving x^u^ we can rewrite (1.17) as

L Hi(%'si'pi+i'pi) > /, Hi(xi>ui'Pi+i>Pi)
k-1

.—i

\
> i

1=0
xi e Xi

ui € U

k-1

I
1=0

(1.18)

where the Kx are defined by (1.7), and pQ = 0. But (1.18)

requires that (1.5) and (1.6) hold since if, say, (1.5) were

not satisfied for 1 = 0, we could get a contradiction to (1.18)

by setting x± = x^ and u± « u^ for 1 ^ P.
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To show sufficiency, we see that (1.5) and (1.6)

imply (1.17) and therefore (1.9). By the lemma, (1.8) holds,

which insures that the x^ and the ui are optimal.

Corollary

Let aA(x,u) be in C on X^xU^. Then for each

i « 0,1,...k-1, either x^ is on the boundary of Xj, or p±

and p1+1 satisfy the adjoint equation

pi+l "Pi ""fixOVSi) P1+i +aL(xi'ai) (la9)

and either x^ is on the. boundary of xk, or p. = 0.

Similarly, for each i = 0,1,...k-1, either u\ is

on the boundary of v., or

flu(xi'Gi) pl+l "aiu(Si'Si> ~° C1-20)

Proof;

The function H1(x,u,p,q) is concave on X^xU. There

fore if it attains its maximum at an interior point x1 of X,,,

the gradient with respect to x of h^ must vanish at (x.,u.).

But this is Just the requirement (1.19). The corresponding

situation for xk follows from (1.6). Similarly, if H± attains
its maximum at an interior point u. of u\, the gradient with

respect to u of H^ must vanish. This requires that (1.20) is

satisfied.
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A final remark concerning this corollary is in

order here. For a continuous problem, the case when EL is
l

interior to uA and (1.20) applies, is usually described as a

singular arc [1.1]. By analogy we might consider solutions

which are not state constrained, and therefore satisfy the

adjoint equation (1.19), as singular arcs in the state space.



3. An Optimality Condition for Nonlinear Discrete Time Systems

Consider a system whose state difference equation is the time

invariant form of (0. 1), i. e.,

xi+l " xi = f <xi» ui)' i=0'1'2 » k"1 lZ-l>

In expanded form the vector x. will be written (x. . x. . .... , x. ).
i 11 i

The following assumptions will be made:

1) For i=l, 2, .. , k-1, u. €0CE , where fi is a finite union of dis

joint closed and bounded convex

2) The function f € C1 on En x a

3) The initial state xn = s , where s is a given state.
u o o

4) The terminal state xfc €SCEn, where S is a subset which will be
specified in the conditions of the theorem to follow.

Statement of the Problem:

Find a sequence uQI Uj u^j and a sequence xQ, x., ... , x,
such that

X> x0 = 8o;
}) xi+1 - x\ =f {xv u.), i=0, 1 k-1;

3) u. €0, i=0, 1, ... , k-1;

4) xk € S;

2-1-



5) For any other two sequences uQ, Uj ukl and xQ, x^ .... x^
satisfying the conditions 1) to 4) above,

1 ^ -1
X S v

k k*

Definition:

Any two sequences uQ tf^, *Q, ... , ^ satisfying the
conditions 1) to 5) above will be called optimal.

Remark:

Although this problem formulation deals explicitly only with time

invariant systems, time varying systems may be cast into such a form by

considering time to be an additional state variable as will later be shown in

example 2. Problems in which one is required to maximize a function

depending on all or several components of the terminal state x. and/or on

the control sequence uQ, ... , u^ can also be recast into an equivalent

standard form in which the first component of xfe only is maximized, see
example 1 and Reference 2.2

Theorem:

Ku0' ur ••• »Uk-T and xo» xi' ••• • *fc are optimal sequences
and if A(u.) is the set of all vectors 6u£ each that ^ +«6u. €0 , for all c
such that 0* es €j (tf., 6u.)t where ^ (^ 6^) >0, then there exists a
sequence of nonzero vectors pQ, £x ^ (£. €E* £or i=0# l# \ fc)
such that

1) Condition on the Hamiltonian:

^i+1' d5 f(*i' u)|^ 6ui >s0, for all 6u. €A(u.) and for all
i

2-2-



2) Adjoint Equations;

h-K+i "<J? *(x' "Px-*/ *m' *"* l' "' >"• <2-3)
3) Transversality Conditions:

Let g1(x), ... , SL(x)> m< n-1, he continuously differentiate

mappings from E11 into JT such that for every xcE11 the vectors
do* d57 g1(x), ••• >g^ &JL*) we linearly independent and g^L g^x) »0,
i»l, 2, ... , m. If S « (x: g. (x) « 0, i « 1, 2, ... , m} then

P. > 0 and there exist real numbers £., £>2, ... , & , such that

V "2 ^ J- 6i(X)l x-*k 'J"2' 3, ... ,ni (2.4)k 1b1 axj K

RemarKs

Special Cases:

1 n ' 2 2 ^ ^(a) If m«n-l, S« {x - (x - (x , ... ,x ): x - x^, xJ «x| , ... ,

x -xj? ,x£ fixed, }, i.e., Sis aline in E11 parallel to the x axis,

then^^O; (2.5)

(b) If m-0, S « E11 , then

K1 ^°* K2 m*k3 • •••" V " °' (2,6)
o"Note that the condition *— 1 &± (x) -0 insures that the "cost" variable

x^ is constrained only through its dependence on the other state variables
2 n



Remarks:

If S is a convex n-dimensional subset of E11 with a s ooth boundary

and if x^ belongs to the boundary of S the normal transversality condition

applies, otherwise, x^ is in the interior of S and special case (b) applies.

The proof of the above theorem may be found in [2.5] and it proceeds

as foLlows. First the optimal sequences u , ... , u. ,, and xQ, ... , x. are

assumed to exist and to be known. These are then perturbed to obtain

sequences uQ+ e 6uQ, ... , u^. + e ou. - and the corresponding sequences

Xo + ^X0' *" ' \ + 5xk are comPuted by means of (2.1). It is then shown

that

where

k-1 .

\ =(xk +5xk) c\ +l* *i+i £l f $l> u> ^ 5ui +o(€),

k-1 d f (x, u )
$, » n (i +—~-—sL., )
1 J-i *X lx/

and that the set

k-i &
h. - l\ +V yk - * Vl ST f (V u} ~ 5V 6ul 6M^), i - °»

1, ... , k-1}

is a convex cone with the property that there exists a hyperplane through

x^ which separates K^ from the half-line, (x|x1 > x£ ,xJ »x£ J»2, 3, ..., n}
and whose normal, pfc, satisfies the transverality conditions previously

stated. This fact is expressed by the condition on the Hamiltonian for i - k - 1.

3y invoking the adjoint difference equation, it is shown that this condition on

the Hamiltonian must hold for all 1=0, 1, 2, ... , k-1.

2-1*-



Example 1:

Consider the system

«i+1 -sV =Az£+ u^, i=0( 1, 2, ... , k-1,

where, for i=0, 1, . . . , k, z{ €En-1, Ais aconstant matrix, d €E*1"1
is a constant vector and the scalar s | u.| si, i=0, 1, ... , k-1. Given an

initial state e0 and a terminal state e, , find a sequence un, ... , u. and
'•' k 0 k-1

a sequence zQ, ... , z, such that

(i) zi+1'zi s Azi+ uid» i=(>» 1 k-1
(ii) zQ » eQ, zk =ek

(iii) for all sequences uQ, iij,... , u^, (| u.| M), zQ, Zj »k,
satisfying (i) and (ii) above

k-1 7 k-1 -
- £. (u.)* * - £ (u.)2 .

i=0 x i=0 l

To convert this problem to the standard form given, we introduce the
i . i-1 ?

following substitutions. Let x* =0 and x* =2^ (u.) , i=l, 2, ... , k,
j+l J J ^xi =^ »J =1» 2, ... , n-lt i=0, 1, ... , k. We then obtain the equation

where

Xi+1 "Xi =Bxi +q(ui)( *=0, 1, ... , k,

xo=<°» eo eo"1)« *ka<*L. ek ^r1)*

B =

q<u.) =((u.)2, u.d1 ^.d11"1).

2-5-



Thus, this reduces to the standard problem with S a line as in trans -

versality condition (ii). Assuming that a solution exists, (in which

case it is unique), we obtain from the condition on the Hamiltonian,

(2"i Pi=l +£=1 M+l dJ) 6ui *°' for a11 6ui €A<ui>-
By examining the above expression, we conclude that if

- -1 n"* *1 +1 i(2u.p.+ 1 +Lx pi+1dJ) >0, then A(ut) must be the set {6u.: 6u. <0 J

and hence u\ = + 1. Similarly, if this expression is negative, u. = -1.
a, n-1 .

Otherwise, 2u. p.+1 +£ 1 pj dJ =0. This enables us to express the
sequence uQ, ... , ukl in terms of the sequence p0 pk as follows:

n-1 pJ+Jdj
i+1u. = -sat Z/

pi+l
i ~Vj«l .1

Pin

As a result, the problem is reduced to a two point boundary value problem:

n-1

x., -x = Bx. + q (-sat Z .
l+l i l ^ j=l

pj +1 dj
pl+l

A
pHl

Pi "Pi+1 =bT^i+1 '

V(0- ei 'o'1*- *k =(xk • ek ek"1>- Pki0-
The last condition is derived from transversality considerations.

2-6-



Example 2: (Reference [2.7]

Consider the time varying discrete time system described by the

scalar difference equations,

xi+l "xi =" (xi) +I {"2) (2ui+ (tti} ) 'I

2 2X. .. -x. = u. -1
1+1 1 1

with xQ =0, xQ =1, and the scalars | u.| s 2. To remove the functional
3

dependence on i, let x. = i, i=0, 1, 2, ... , k. Thus, the following.

standard problem is obtained.

Given xQ =(0, 1, 0) and k =2, find a sequence uQ, u such that

(i) x.1^ -x.1 =-(x2)2+ \ (-2) g (2Ui +(Ui)2) -i- (2. 7)
2 *

2
Xi+1 "Xi ""i"1

x3 -x3 = 1l+l i L

(ii) xQ =(0, 1, 0)

(iii) For all sequences ufl, u.,(| u.| ^ 2) and X-, x., x- satisfying

(i) and (ii), x* *x* .

Solution:

11 2If the system equations are solved, it is found that x- = -•=- (l-un)

-(1+u.) -j and thus the optimal sequence iL, u. is given by ufl=l, u = -1.

Now consider the condition on the Hamiltonian (2. 2). Since we know that the

optimal sequence lies inside the control constraint set, 0u in (2. 2) can be

positive or negative. Thus, the condition on the Hamiltonian is expressed

as,

<pi+l' lif (xi' u)lu=u. >=0« i=0' U

2-7-



The optimal control Is thus given by

VT77J3 -»• <2-«
phi <-2) l

3
Since S = E , the transversality condition permits us to set p- = (1, 0, 0).

Thus, from (2. 8) u. = -1. From the adjoint equations (2. 3)

*1 *1 -2 A2 ,A2 Ai
P« i = P- » P* i s P« -2x. . p.*i-l ri ' *i-l *i i-l *i

giving pQ = p. a p^ = 1 and p = -2x . Inserting these values into (2. 8) we
a2find that uQ = 2x -1. Substituting this into the system equations (2. 7) we

2 A2 *2obtain x = 2x, -1, hence, x. =1. Thus, uQ = 1. Using these values, we

observe that at x = xQ, u = uQ> p = p., the Hamiltonian < p, f (x, u) > has a

maximum with respect to u and at x = x , u = u , p = p2 the Hamiltonian

has a minimum.

This illustrates the local nature of the optimality conditions (2. 2),

as well as the major difference between these conditions and the conditions

given in the other sections. Note, however, that the class of problems to

which the conditions (2. 2) can be applied is correspondingly larger than the

ones described in the other sections of this paper.

2-8-
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3. A Maximum Principle for Nonlinear Discrete Time Systems
——^•—•—•••»—^••«"—»———-"^.—«—————.—"-—i———•——»«»—».

3.1 Problem Statement

In this section the evolution of the system will be

described by the difference equations

xi+l " xi = fi(xi>ui) *• " 0,1,2,...,k-1

(3.1)

A certain set ") is given and all the control vectors will be

required to belong to this set O. For every i « 0,1,2,...k-1

the vector valued function f1(x,u) is given and satisfies the

following conditions:

(a) the vector valued function f.(x,u) Is defined

for all (x,u) € EnxO.

(P) for every u e O the vector valued function

f±(x,u) is twice continuously differentiable

with respect to x.

(y) the function f±(x,u) and all its first and

second partial derivatives with respect to x

are uniformly bounded over Ax O for any bounded

set A C En.
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(6) the matrix I +- ^ f±(x,u) is not singular on

En x O.

(e) the set (f^Xju) : u e O) is convex for every

x € En.

The conditions (a), (£) and (7) correspond to the

usual "smoothness" assumptions. The conditions (6) and (e)

are of another nature: they are always Justified in the case

of a system of difference equations which approximates a

system of differential equations (Halkin [3.1])but they are

not necessarily Justified in the case of a system of differ

ence equations describing a control process which is basically

discrete.

We shall now define an Initial set

{x : h±(x) « 0, i - 1,2,...,4) (3.2)

a terminal set

(x : gi(x) « 0, i - 1,2,...,m) (3.3)

and an objective function gQ(x). The functions

h1(x),h2(x),...,hje(x),go(x),g1(x),...,gm(x) are given con
tinuously dlfferentlable mappings from En into E1 such that

for every x €En the vectors |- h (x), 1- hp(x),..., J- h,(x)
dx lN dx 2V ' dx J0V '

are linearly independent and tht vectors

dx So(x)' ^ Zi(x)>**-> ^ Sm(x) are linearly independent.
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Two sequences ^,2-^,.. .,uk-pl and xQ,x^,99.,x^ are

said to be optimal if they satisfy the conditions

(1) h±(x0) = 0 fori = l,2,...,jg (3.4)

(2) xi+1 - x± =* f^x^)

for all i = 0,1,2,...,k-1 (3.5)

(3) u± €o for all 1 = 0,1,2,...,k-1 (3.6)

W Si(xk) a 0 for i = 1,2,...,m (3.7)

and if g0(xk) is the maximum value of g0(xk) subject to these
constraints.
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3.2 Maximum Principle

A A A AIf the sequences uQ, u1# ... uk-1 and xQ, x1# ♦..,

x^ are optimal then there exists a sequence of nonzero
. A A Avectors pQ, p^, ..., p^ such that

(1) Maximization of the Hamiltonian

f±(^, fi1) •S±+1 >> fjL(Slf U) •fc1+I (3.8)

for all 1 » 0,1,2,...,k-1 and all ucO

(2) Adjoint Equations

A A fo* . A N

pl " pi+l - \&t fi<x' ui>

for all 1 = 0,1,2,...,k-1

r>i+1•*i
(3.9)

(3) Transversallty Conditions

There exists real numbers a., a^,

{3 such that
m

i
1=1

<*> po -I «i & hl<x>

m

1=0

(111) Pni0

A
x=x.

x»:

••* ai» P0* Pt# •••*

(3.10)

(3.11)

(3.12)
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3.3 Outline of the Proof of the Maximum Principle

The proof outlined here is similar to the proof of

the Maximum Principle for systems described by differential

equations given in Halkin [3.2].

Let us assume that x0,x1,...,xkiG0,u1,...ulc-1 is

an optimal solution. We shall prove that the Maximum Prin

ciple holds for that optimal solution.

We define the set W of all states x.. corresponding

to all sequences x0,xx,..,,xk; uQ,u1,...^^ satisfying

conditions 3.4, 3.5 and 3.6. The set W is called the set

of reachable states at time k. Next we define the set S(xk)

as the set of all states satisfying the conditions 3.7 and

for which the objective function takes a greater value than

at x^. Formally we have

S(x"k) = (x : g±(x) - 0, 1= l,...,m;gQ(x) > g0(x*k)}.

(3.13)

We remark immediately that the sets W and S(x\) are disjoint

(i.e., have no point in common). Indeed if the sets W and

S(xk) had a point in common then the solution

Uq,^, .. ,,uk-1;xQ,x1,. ..,xk would not be optimal and we would

have a contradiction. If we knew also that the sets W and

m
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S(xk) were convex then the Maximum Principle would follow im

mediately, see Halkin [3.1], since two disjoint convex sets

are always separable.*

For a nonlinear problem of the type considered in

this section the sets W and S(xk) are not necessarily convex,

and hence not necessarily separable. The difficulty is turned

by considering a certain linearized problem around the solu

tion Uq,^, .. .,uk_1;xQ,x1, ...,xk_1. This linearized problem

is defined as follows:

(a) the functions h±(x) are replaced by the functions

Mxo) +|;ni(xo)-(x-xo)
(0) the functions g1(x) are replaced by the functions

si<xk) +4 Si(xk)-(x-Sk)
(7) the functions fi(x,u) are replaced by the functions

dx
f±(x±,u) +|- f(xi,ui).(x-xi)

* n
Two sets A and B of E are separable if there exists a
hyperplane P such that A is contained in one of the closed
half space determined by P and B is contained in the other
closed half space determined by p. There exist disjoint
sets which are not separable and separable sets which are
not disjoint.



3.7

We note immediately that the sequences u0,ux,...,uk_1;S0,x1,...xk

constitute also a solution (but not necessarily an optimal solu

tion) for the linearized problem defined above.

i + +We define now the sets W(xk) and S(xk) in the same

way as the sets W and S(xk) defined earlier but with respect

to the linearized problem defined above and not with respect to

the initial nonlinear problem which was used in the definition

of W and S(xk). It is easy to prove that the sets W(xk) and

S(xk) are convex. We shall now state a result which is in

tuitively obvious but which is nevertheless long to prove (see

Halkin [3.3]).

Linearization Lemma

If the sets W and S(x, ) are disjoint then the sets

W(xk) and S(xk) are separable.

With the help of this Linearization Lemma the proof

of the Maximum Principle follows easily.
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