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Introduction

In the present paper we shall consider some optimi-
zation problems for systems described by difference equations.
This paper 1s divided into three sections: the fifst by J. B.
Roseh, the second by B. W. Jordan and E. Pqiak and the third

be H. Halkin. In each of these sections a different problem

1s deflned and a different set of results is obtained. We have

declded to stress the fundamental similarities between our par-

ticular problems and to exhibit thelr real differences in a con-

text which 1s free of terminological and notational ambigulties.
In each section of this paper the state vector will

be an element x of a Euclldean space En; the control vector

wlll be an element u of a Euclidean space E¥ and the time will

assume the discrete values 0,1,2,...,k. The evolution of the

system will be described by the difference equations
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The problem will be to f£ind sequences Xor X1s seer Xy
and u , 4, ..., w._, satisfying the relation (0.1) (and
posslbly some other given constraints) and minimizing (or
maximizing) a given function of the variables Xor X1s eees Xpy
Ugs Ugs coes W 4. Corresponding to the different assumptions
and constraints which we shall give in each of the three sec-
tions of this paper we shall obtain three independent sets of

results.



1.1

l., State-Constrained Linear System

In this section we consider a dlscrete problem in
which both the control vector and state vector are sdbject
to constraints at each discrete time. The evolution of the
system is assumed to be given by means of a linear system of
difference equations, and it is desired to minimize a con-
vex functlion of both the control and state vectors. The ap-
proach taken here 1s closely related to the Kuhn-Tucker theory
which shows the equivalence of a constrained minimization prob-
lem and the saddle point of a Lagrangian function [1,3]., A
computational method based on this approach has previously
been described [1.4].

To be specific we wish to determine optimal controls
ﬁi, i=0,1,...k-1, and the corresponding optimal state vectors

ii, 1=0,1...k, so that

yci(xi’ui) = min, (1.1)

i=0

where the Xy must satisfy
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and x, and the uy; must be selected so that

Uy € Uy, 1=0,1,...k-1 (1.3)
and

X, ¢ Xy,  1=0,1,...k. (1.4)

We willl assume that the sets U; are convex.subgets of Er,
and the sets X, are convex subsets of E”. We also assume
that o,(x,u) 1s convex and £,(x,u) is linear on XyxUy »
for 1 = 0,1,...k-1.

We can now give the maln result of this section as
a discrete maximum principle for an optimal solution to a
state-constrained problem.

Theorem 1

A necessary and sufficilent condition that
X451 = 0,1,...k, and ﬁi, i1=0,1,...k-1, are optimal
(satisfy (1.1) for all vectors Xy and u,; which satisfy (1.2),
(1.3) and (1.4)) is that there exist nonzero vectors p; ¢ E7,

i = 0,1,...k, such that

Hi(ii’ai’pi‘l‘l’pi) 2 Hi(xi’ui’p1+l’pi)’ 1 = Oylyo-ok"l
Xy € X4

Uy €Uy (1.5)
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and

Pe(xc®y) 2 0 (2.6)

e € Xy
where the functilons Hy are deflned by
Hi(x’u’p’Q) = p'fi(x,u) "' (p'q)' X = Ui(x’u) (107)

and Po = O.

The proof requires the following

Lemma
Let Z be a convex subset of E®, and p(z) a function
from Z to E* which 1s convex on Z, Let w(z) be a linear func-

tion from Z to EY. We will denote by W C E® the linear mani-

fold determined by w(z) = O. A necessary and sufficient
condition that z* ¢ Z MW satisfies

p(z*) = min  p(z) (1.8)
zezZMy

is that there exists a vector A ¢ Ez such that

Az*) < A(z2) | (1.9)

2 ¢2
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where the Lagranglan functlon A(z) is given by
A(z) = p(z) + Atu(z). (1.10)

The proof of the lemma is similar to that given by
Karlin [1.2], for the case where Z is the nonnegative orthant
in E°, To show necesslty for the more general case considered

here we define the subset R C E#*1 by

(2

Because of the convexity of p(z), the linearity of w(z) and

yoz p(Z), Z el

R = (1.11)

Yy =w(z), z ¢ 2

the fact that Z 1s convex, it 1s not difficult to show that
R 1s a convex set. Because of (1.8) and the convexity of R,

there exists a supporting hyperplane for R at the point

Vo = p(z*), ¥y = 0, with a normal vector i directed into R.
That 1is,
Yo
P(z*) < ¥, + Ay, | ) e R (1.12)

Choosing y, = p(z) and y = w(z), we get (1.9) from (1.11)
and (1.10).

The‘sufficiency of (1.10) follows immediately from
the observation that w(z) = 0 for z ¢ ZMNW, so that (1.9)
implies (1.8).
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In order to prove the theorem we make use of the
lemma by defining the vector z ¢ EB in terms of the vectors

Xy and u;. We let
' ! ? ! ! !
Z' = (xo’ Xl,...xk, uo’ ul...uk_l) (1.13)

so that s = n(k+l) + rk. The set Z C E® is taken as fhe

direct product of the sets Xy i = 0,1,...k, and Ui,ri = 0,1...k-1.
The set Z 1s therefore convex. The llnear function w(z) from

Z to ﬁ£ i1s given by the linear recursion relations (1.2), so

that w(z) = 0 1s given by

xi+l - xi - fi(xi’ui) = O, l = 0,1)...1{"1 (1.114)

and 4 = kn. While not relevant to this theorem, 1t is worth
noting that because of the structure of (1.2), the (constant)
Jacoblan matrix of w(z) 1s of rank 4 (full row rank).

The function p(z) to be minimized is now given by

k-1

)

- p(z) = L

O(Xi,ui). (1.15)
i1=0 :

To complete the association we let

! ! ] ‘
A = (pl, p2,....pk) (1.16)
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and observe that (1.9) is now equivalent to

kg

), Pa(Raly) + pyyy Ry - %y - £(%y,8;) 1}

1=0
k-1
A\ ?

< {?1(X1'“1) * Piy1 (Fayy - %y - fi(xi’ui)]} .
1=0 |
Uy e Uy

(1.17)

To complete the necessity proof we assume the §1
‘and Uy are optimal (satisfy (1.1) - (1.4)) and note that
this implies that z* satisfies (1.8). By the lemma, (1.9)
holds, and therefore (1.17) 1is satisfied. Combining the

terms involving Xysuy, We can rewrite (1.17) as

k=1 k=1
2, Hy (X0585505,70P) 2 Z, Hy(¥15U4904,75P4)
1=0 Xy € %, 1=0

ui € U

(1.18)

where the H, are defined by (1.7), and P, = O. But (1.18)
requires that (1.5) and (1.6) hold since if, say, (1.5) were
not satisfied for 1 = B, we could get a contradiction to (1.18)

~

by setting x, = X, and u, =1, for 1 # B,
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To show sufficlency, we see that (1.5) and (1.6)
imply (1.17) and therefore (1.9). By the lemma, (1.8) holds,
which insures that the X, and the U, are optimal.

Corollary

Let o, (x,u) be 1n C* on X4XU;. Then for each
i=0,1,...k-1, either ii 1s on the boundary of X,, or p,
and Pyl satisfy the adjoint equation

’ -~ -~ ' ~ ”
Pay1 7 Py = 7 Fyp(Xyoly) Py + 04, (Xg00,) (1.19)

and either ik 1s on the boundary of X,, or Py = O.
Similarly, for each i1 = 0,1,...k-1, either Gi is

on the boundary of Uy, or

¢ -~ ~ ' ~ ~
Piu(Xgoly) pyyy - 95,(%458) = 0 (1.20)

Proof':

The function Hi(x,u,p,q) 1s concave on X4xU. There-
fore if it attains its maximum at an interior point 21 of X,
the gradlent wlth respect to x of Hy must vanish at (ii,ﬁi).
But this 1s Jjust the requirement (1.19). The corresponding
situation for X, follows from (1.6). Similarly, if Hy attains
1ts maximum at an interior point Gi of Uy, the gradient with
respect to u of H, must vaniah.. This requires that (1.20) is

satisfled.
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A final femark concerning this corollary is in
order here, For a continuous problem, the case when ﬁi is
interior to.Ui and (1.20) applies, 1s usually described as a
singular arc [1.1]. By analogy we might consider solutions
which are not state constrained, and therefore satlisfy the.

adjoint equation (1.19), as singular arcs in the state space.



2.. An Optimality Condition for Nonlinear Discrete Time Systems

Consider a system whose state difference equation is the time
invariant form of (0. 1), i.e.,
X1 "% = { (xi, “i)' i=0,1,2, .... , k-1l (2.1)

In expanded form the vector x; will be written (xil, xiz. cese xin).

The following assumptions will be made:

1) For i=1, 2, ., , k-1, u, € QCEr, where (Qis a finite union of dis-

joint closed and bounded convex

2) The function f € C! on E® x
3) The initial state Xg = éo' where s_ is a given state.
4) The terminal state X3 € SCE", where S is a subset which will be

specified in the conditions of the theorem to follow.

Statement of the Problem:

Find a sequence Uge Uy cee s Uy and a sequence Xor Xpr eee 0 Xy

such that

1) :'Eo =s_;

) R, - R =R, G, i=0, 1, ..., k-1;
3) ﬁieﬂ.i=0. 1, ..., k-l;

4) %, €S;

2-1-



5) For ahy other two sequences Uge Ups ees s Uy and Xge X)s cee 0 X
satisfying the conditions 1) to 4) above,

1 _ Al
xksxk.

Definition:

Any two sequences ﬁo. e s ﬁk-l' Ryr oo s %, satisfying the
conditions 1) to 5) aBove will be called optimal,
Remark:

Although this problem formulation deals explicitly only with time
invariant systems, time varying systems may be cast into such a form by
considering time to be an additional state variable as will later be shown in
example 2, Problems in which one is required to maximize a function
depending on all or several components of the terminal state X and/or on
the control sequence Ugs oo , uk-l can also be recast into an equivalent
standard form in which the first component of X, only is maximized, see
example 1 and Reference 2.2

Theorem:

1f \'io. \31. cen s ﬁk-l’ and ’20' Riv vony &%, are optimal sequences
and if A(ﬁi) is the set of all vectors '6“1 sach that ﬁi + 8 6».’.i €0, for all ¢
‘such that 0 < ¢ < € (\'ii. bu,), where N (Q,, bu;) >0, then there exists a

sequence of nonzero vectors ﬁo, 131. cee s ﬁk (ﬁi €E" for i=0, 1, ... , k)

such that

1) Condition on the Hamiltonian:

"~ a -~ -~
<pi+l’ T 3 (xi, u)L.‘:“i éui > <0, for all Gui € A(ui) and for all
i

i'-‘o. l. e o e k-lo (2°2)

e

2.2.



2) Adjoint Equations:

B, - B = (St (x, 8ee)” By 1200 1y s K2 (23)

3) Trensversality Conditions:

Let gl(x) ) see gm(x), m < n-1, be continuously differentieble
mappix{gs from E® into El such that for every xcE® the vectors

% gl(x), ey 86; gm(x) aré linearly independent and 56;1 gi(x) =0,
isl, 2, +o. , m. If S = (x: gi(x) =0, 1=, 2, ... , m}] then

Pkl > 0 and there exist real numbers El, E’Z’ e Em’ such that

J_o By D e(xh o ,
?k -izil 1 5‘-‘; i )Ix-xk y 392, 3, ... , n; (2.4)
Remarks
Special Cases:
() Ifmen-l, S = (x = (x = (xl, vee xn):v %2 = xg, X = xg ) cee

x* - g ’ xg fixed, }, i.e., S is a line in E® parallel to the xl axis,

then fkl > 0; . : ‘ (2.5)

(b) If me0, S = E® , then

?kl Z o’ §k2 = §k3 | 0 = ?kn = 0. (206)

Note that the condition 563? 1lg (x) = O insures that the "cost" variable

xkl is constrained only through its dependence on the other state variables

xka, cee 3 xkn.



Remarks:
If S 1s a convex n-dimensionsl subset of E" with a s coth boundary
and if x, belongs to the boundary of S the normal transversality condition
applies, otherwise, x, is in the interlor of S and special case (b) applies.
The proof of the above theorem may be found in [2.5] and 1t proceeds
as follows. First the optimel seguences ﬁb, cee ak-l’ and id, cee ik are
asswied to exist and to be known. These are then perturbed to obtain
sequences ﬁb+ € Buo, oo ak~1 + € 6uk_1 and the corresponding sequences

Xy * 80Xy +.. , X + bx_ are computed by means of (2.1). It is then shown

that
3 ! 5 R
X, = (xk + Bxk) =X, 0+ f;% ¢4 So £ (xi, u)lu=G 6ui + 0 (e),
i
where
k-1 ( o f (x, u,) )
d = N (I +——ed
i Jﬂi Bx lJ?
J
and that the set
- k-1 S . R
Ke= g +nery =2 o, sz f (x5 u)| . Bu, Bu, e A(L), 1 =0,
1=0 \,mzui

1, ..., k-1)
is a convex cone with the property that there exists a hyperplane through
ii which separates K, from the half-line, (x| xt > ii , x) = ii J=2,3 ..., n)
and whose normal, 0 satisfies the transverality conditions previously
stated. This fact is expressed by the condition on the Hamiltonian for 1 = k - 1.
By invoking the adjoint difference equation, it is shown that this condition on

the Hamiltonian must hold for all i=0, 1, 2, ... , k-1.

2-kha



Examgle 1:

Consider the system

Z 02..'. = Az. + u.d, i=0’ 1, z’ se e k‘lo
1 1 1

i+1
< l‘l-l . n-l

where, for i=0, 1, ..., k, z, €EE » Ais a constant matrix, d € E

is a constant vector and the scalars Iui| <1, i=0, 1, ... , k-1, Given an

initial state e and a terminal state ey find a sequence ﬁo, cee ﬁk-l and

a sequence io. cen s ﬁk such that

(1) Zi1°% = Azi+ uid, i=0, 1, ... , k-1~
(ii) zZg=e,, 2, =€

(iii) for all sequences Ugr Wpoene o (4 uil <1), Zor Zys vee s 2y,

satisfying (i) and (ii) above

k-1 k-1
- (@)% B ()2 .
i=0 i=0
To convert this problem to the standard form given, we introduce the
i-1
following substitutions., Let x(l) = 0 and xli = 3220 (uj)z, i=1, 2, ... , k,

x-i’*'l = z’l »j =1, ¢, ..., n-1, i=0, 1, .., , k. We then obtain the equation

xi+l -Xi = Bxi"" Q(ui), 1 = 0, 1' s e ) k.

1 -1 1 1 -
x0=(0. eo’o¢-;eg ), xk--(xk. ek, o'o,elr: l)‘
where
0:0 4 & & 0
B =f 0
'o : A ]
0,
2 1 - onel
q(ui) =((ui) ’ uid Y cae \uid )

{
[

e

=



Thus, this reduces to the standard problem with S a line as in trans-
versality condition (ii).. Assuming that a solution exists, (in which

cage it is unique), we obtain from the condition on the Hamiltonian,

-1 +1
(26, pi_, + z.l BItl @) bu, 50, foran tu, ¢ Au,).

By exam‘ining the above expression, we conclude that if

1 g" A141
j

(24; By, ) Pi+1

dJ) >0, then A(ui) must be the set {éui: (’mi <0}
and hence ﬁi =+ 1. Similarly, if this expression is negative, ﬁi = -1,
n-1

Otherwise, 2u, p11+1 El §J+: dJ = 0. This enables us to express the

sequence uo, cee s uk-l in terms of the sequence PG+« » Py 28 follows:

~j+1 Lj
g -1 Pi+1 d
* 51

(=13
[P+

-1
Pis1

A}

As a result, the problem is reduced to a two point boundary value problem:

A 1 gl

xi+l-x-Bx+q(satE - ),
Pit1

~ ~ - T A

P "Pjy) B By o

1 P | 1 n-1 0.
0 (0 e ,..-,e ); -(xk ’ekt-nvvek )v pkzo.

The last condition is derived from transversality considerations.

2-6-
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Example 2: (Reference [2.7]
Consider the time varying discrete time system described by the

scalar difference equations,

1 1 _ 2.2 1 i 2, 1
X1 7% = - (xi) + 3 (-2) (Zui+ (ui) ) -3
2 2 _ 1
X4l X 7Y T
with x(l) =0, xg = 1, and the scalars | uil €2, To remove the functional

dependence on i, let x? =i, i=0, 1, 2, ... , k., Thus, the following.
standard problem is obtained.

Given Xq = (0, 1, 0) and k = 2, find a sequence 60' i, such that

1
1 1,221 2, 1
(i) xi+1 'xi = "(xi) + 2'(’2),"‘3 (zui+ (ui) ) 7 (2.7)
2 2
.. 3 -l

X1 7% Y

3 3
Xip1 X =1

(ii) Xq = (0, 1, 0)

(iii) For all sequences u, “l’(l uil < 2) and Xor Xy» Xp satisfying

(i) and (ii), x; < xé i

Solution:
If the system equations are solved, it is found that xé = --.l,- (1»110)2

-(l-l»ul)Z --é- and thus the optimal sequence ﬁo, u, is given by ﬁo=1.. ﬁl= -1.

1
Now consider the condition on the Hamiltonian (2, 2), Since we know that the
optimal sequence lies inside the control constraint set, ou in (2. 2) can be
positive or negative, Thus, the condition on the Hamiltonian ie expressed

as,

~ a o) .
-— a >= =
<Pi41’ 3! (xi ! “)'u=ui 0, =0, 1.



The optimal control is thus given by

"2
-p.
ui = “1 1+lz ’23 ‘l . (zc 8)
Piyy (-2

Since S = E3, the transversality condition permits us to set p, = (1, 0, 0).

Thus, from (2. 8) ﬁl = «1, From the adjoint equations (2, 3)

1 sl a2 2 .2l
Pio1 Py v Py 5P 9% Py
Al Al a1 A2 a2 . ' .
giving Pg =P, =Py = 1 and P, = -le . Inserting these values into (2. 8) we
find that \'io = :'if -1. Substituting this into the system equations (2. 7) we

obtain %5 = 247

observe that at x = Sio, u=4d, p= fil. the Hamiltonian <p, f (x, u) >has a

-1, hence, :‘%:1. Thus, ﬁo = 1. Using these values, we

maximum with respect to u and at x = :’El, u = ﬁl, p= 132 the Hamiltonian
has a minimum,

This illustrates the local nature of the optimality conditions (2, 2),
as well as the major difference between these conditions and the conditions
given in the other sections, Note, however, that the class of problems to
which the conditions (2, 2) can be applied is correspondingly larger than the

ones described in the other sections of this paper.

2-8-
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3. A Maximum Principle for Nonlinear Discrete Time Systems

3.1 Problem Statement

In this section the evolutlon of the system wlll be
described by the difference equations

X1+l - xi = fi(xi’ui) 1 = 0’1’2,00.,1{-1
(3.1)

A certaln set ) 1s glven and all the control vectors will be
required to belong to this set ). For every 1 = 0,1,2,...k-1
the vector valued function f,(x,u) 1s glven and satisfies the

following conditions:

(a) the vector valued function £, (x,u) is defined
for all (x,u) ¢ EVQ.

(B) for every u ¢ () the vector valued function
fi(x,u) is twice continuously differentiable
with respect to x.

() the function £,(x,u) and all its first and
second partial derivatives with respect to x

are uniformly bounded over Ax () for any bounded

set A C ER.
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(6) the matrix I +-§% fy(x,u) 1s not singular on
E" x Q.
(e) the set (f;(x,u) : u ¢ Q) 1s convex for every

erno

The condltions (a), (B) and (y) correspond to the
usual "smoothness" assumptions. The conditions (6) and (&)
are of another nature: they are always Justified in the case
of a system of difference equations which approximates a
system of differential equations (Halkin [3.1])but they are
not necessarily Justified in the case of a system of differ-
ence equatlions describing a control process which is basically
discrete.

We shall now define an initial set

(x : hy(x) =0, 1 =1,2,...,¢) (3.2)

a terminal set
(x : g4(x) =0, 1 =1,2,,..,m) (3.3)

and an obJective function go(x). The functions

hl(x),h2(x),...,hz(x),go(x),gl(x),...,gm(x) are glven con-
tinuously differentiable mappings from E" into El such that

n ) ) o
for every x e.E the vectors Y h, (x), by hy(x)yeees y h,(x)
are llnearly independent and the vectors

g& SO(X),'§; gl(X),..., g% gm(x) are linearly independent,



3.3 N

Two sequences U,,8;,...,0)_, and ﬁo,il,...,ik are
sald to be optimal 1f they satisfy the conditions
(1) hy(x,) =0 = for i =1,2,...,4 (3.4)

(2) %341 - %3 = £y(xg5uy)

for all 1 = 0;1,2,...,1('1 (3.5)
(3) ui € @) for all 1 = O’l,2,..o,k-1 (3.6)
(u) gi(xk) a Q ' for 1 = 1,2,...,“1 (3’7)

and 1f go(ik) 1s the maximum value of g,(x,) subject to these

constraints.
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3.2 Maximum Principle

. A A N a A A
If the sequences Ugs Ugy eee uk-l an xo, Xqs ooy

Qk are optimal then there exists a sequence of nonzero

A A A
vectors Pos Pps cee Py such that

(1)

(2)

(3)

Maximizatlon of the Hamiltonian

A A A A A
£(%g Ug) = Pyyy 2 £4(Xy, W)+ Byyy , (3.8)

for all 1 = 0,1,2,...,k-1 and all ueQ

Adjoint Equations

A

T

A o A A

pi " p1+1 = (3; fi(X) ui) ixﬂﬁﬂ_) pi‘l‘l (3-9)
for &11 1 = O,l,a,...,k-l |

Transversality Conditions

There exists real numbers @y By eeey “3"50’ 51, P

B. such that

m
\ 9
A
(1) bp, = 1§=:1 @, 3% hy(x) |x=5‘:o (3.10)
m‘
(11) .ﬁk = Z 51 33; Si(x) IX’ﬁk (3'11),
1=0 :

(111) B, > © (3.12)



3.5

3.3 Outline of the Proof of the Maximum Principle

The proof outlined here is similar to the proof of
the Maximum Princlple for systems described by differential
equations given in Halkin [3.2].

Let us assume that io,ﬁl,...,ik;ﬁo,ﬁl,...ﬁk_l is
an optimal solution. We shall prove that the Maximum Prin-
ciple holds for that optimal solution. |

We defline the set W of all states X). corresponding
to all sequences Xo2XysveesXys UgsUgseeesly 4 satisfying
conditions 3.4, 3.5 and 3.6. The set W is called the set
of reachable states at time k. Next we define the set S(X,)
as the set of-all states satisfylng the corditions 3.7 and
for which the obJective function takes a grea%er value than

at ik‘ Formally we have

S(%) = (x & gy(x) =0, 1 =1,...,mg (x) > go(X,)).

(3.13)

We remark immediately that the sets W and S(X, ) are disjoint
(1.e., have no peint in common), Indeed if the sets W and
S(X,) had a point in common then the solution -

uo,ul,...,uk_l;xo,xl,...,xk would not be optimal and we would

have a contradlction., If we knew also that the sets W and

1



3.6

S(X,) were convex then the Maximum Principle would follow im-

medlately, see Halkin [3.1], since two disjoint convex sets

are always separable,*

For a nonllinear problem of the type considered in
this section the sets W and S(xk) are not necessarlly convex,
and hence not necessarlly separable, The difficulty is turned

by considering a certain linearized problem around the solu-

tion Go,ﬁl,...,ﬁk_l;ﬁo,il,...,ik_l. This linearized problem

1s defined as follows:

(¢) the functions h,(x) are replaced by the functions
E §.x hy (%) (x-%,)

(B) the functions gi(x) are replaced by the functions
81 (%) + 5 8 (%) (x-%,)

(7) the functions fi(x,u) are repiaced by the functions

~ a ~ ~ ~
£y (Xqou) + e £(Xqouy ) (x-X4)

*Two sets A and B of E" are separable 1f there exists a
hyperplane P such that A 1s contained in one of the closed
half space determined by P and B is contained in the other
closed half space determined by P, There exlist disjoint

sets which are not separable and separable sets which are
not disjoint,.
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We note immediately that the sequences Go,ﬁl,...,ﬁk_l;ﬁo,ﬁl,...ik
constitute also a solution (bu£ not necessarily an optimal solu-
. tion) for the linearized problem defined above.

We define now the sets ;(ik) and g(ﬁk) in the same
way as the sets W and S(X,) defined earlier but with respect
to the linearized problem defined above and not with respect to
the 1initlal nonlinear problem which was used in the definition
of W and S(X,). It i1s easy to prove that the sets &(ﬁk) and
g(ik) are convex, We shall now state a result which 1s in-
tultively obvlous but which 1is nevertheless long to prove (see
Halkin [3.3]).

Linearization Lemma

If the sets W and S(ik) are disjoint then the sets
+ + .
W(xk) and S(xk) are separable.
With the help of this Linearization Lemma the proof

of the Maximum Principle follows easily.
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