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ABSTRACT

This report applies the generalized analysis of planar field-effect

transistors developed by Richer* to the calculation of theoretical per
formance in a volume field-effect transistor. Richerfs analysis is illus

trated first, then the mathematical techniques are extended to cover the

case of an arbitrarily-shaped volume FET. This extended general analysis

is then applied to a FET with circular cylindrical-geometry. Graphs of

computer solutions of FET drain-current, drain-voltage characteristics,

and of equivalent-circuit element values are presented. The character

istics of the planar and cylindrical FET's are compared.

Ira Richer, "Properties of an Arbitrarily Doped Field-Effect Transistor,"
Technical Report, Solid-State Electronics Laboratory, California Institute
of Technology, May 196*1.
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I. INTRODUCTION

The motivation for this analysis of a volume field-effect transistor

(FET) was the announcement by Zuleeg of the successful construction of
p

such a device. Shockley had discussed the general properties of a volume

FET in 1952, but a complete analysis of current dependence, channel pro

files, and equivalent-circuit values for the device has not yet appeared.

As in other FET analyses, calculations are made only in the region below

pinch-off. The characteristics in the important drain-current saturation

range are obtained by extension of the conditions at pinch-off.

In this paper we give a simple analysis for a volume FET of arbitrary

cross-section. We begin by presenting Richer1s analysis of a planar FET.

Richer has given a general analysis of a planar FET in which he demon

strates that the general characteristics of these devices are practically

independent of doping profiles. The model taken is that of a depletion-

mode device having an n-type channel and a p-type gate.

The FET's to be described consist of a block of n-type material to

which is attached a block of p-type material called the gate. For useful

device properties, the gate is much more highly doped than the channel.

When the p-n junction is reverse biased, the space-charge region

penetrates the lower conductivity n-type region (Fig. l). When a voltage
V^ is placed on terminal 3, a current will flow in the undepleted portion
of the n-type material. This region is called the channel. The carriers
flow out of terminal 1, which is called the source, into terminal 3, which

is called the drain. Because of the potential drop in the direction of

current flow, the channel has the shape which is shown in Fig. 1. There

are essentially no free carriers in the space-charge region, hence the

drain current is determined by the shape of the charge-free channel.

T. R. Zuleeg and V. 0. Hinkle, "Multi-Channel Field-Effect Transistor,"
Sept. I96U, presented at the 196k Electronic Devices Meeting, Oct.
28-31, Washington, D.C.

2. W. Shockley, "A Unipolar Field-Effect Transistor," Proc. IRE, 40,
1365 (1952).

3. Ira Richer, "Properties of an Arbitrarily Doped Field-Effect Transis
tor," Technical Report, Solid-State Electronics Laboratory, California
Institute of Technology, May 196U.
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Fig. 1. Section of a planar field-effect transistor,
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Mathematical analysis will be carried out on two types of field-effect

transistors. The first type is the one-dimensional FET sketched in Fig. 1.

The second type consists on an n-type region completely surrounded by a

p-type gate, which we designate a volume FET. In considering volume FET's,

the general analysis for an arbitrary cross-section will be discussed, and

the detailed solutions for a right-circular cylindrical geometry will be

given. The goal of the analysis is to obtain an equivalent circuit for

these devices.

In Sec. II, we cover the analysis for a planar FET. Sections III and

TV contain a discussion of the analysis for an arbitrary cross-section

volume FET and the detailed analysis for a cylindrical volume geometry FET

respectively. In Sec. V, we compare our results for the planar and the

cylindrical volume FET's.

- 3 -



II. ANALYSIS OF A PLANAR FET

In this section the one-dimensional planar FET is analyzed. The

analysis is due entirely to Richer^ and is repeated here for illustrative

purposes. The model to be used is sketched in Fig. 2. To simplify the

analysis, Richer makes the following assumptions.

1. The doping profile is specified as:

e(Nd - Na) = +f>0 in n-type region

e(Nd -N&) = -¥f> in gate region

where K »1, N, is the donor density and N is the acceptor

density. Thus, the gate conductivity is much greater than the

channel conductivity. Therefore, when the p-n junction is reverse

biased, essentially all of the space-charge region appears in the

channel.

2. The built-in potential at the junction will be neglected when com

pared to the applied bias.

3. Carrier mobility is constant.

k. Drain current is carried only by majority carriers (electrons for

the profile given in assumption l).

5. Gate current is negligible.

6. The boundary between the gate and the channel is sharp. No current

flows in the depletion region since there is no mobile charge present,

7. In the channel region

E « E
I xl I zl

|e I« (e I
I yl I zl

By this it is meant that in the x-y plane there is no appreciable

voltage drop and hence uniform current density across the channel.
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Fig. 2. Model for the analysis of a planar field-effect transistor.
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8. In the space-charge region

£>E
«

where £ is permittivity of the material.

Assumption 8 says that the channel shape does not change rapidly with

increasing z. Such an assumption is obviously true when V ~ 0 since

then the width of the channel is approximately uniform. We assume here

that the assumption holds even when V is not small. Assumption 8 is

called the "gradual approximation" since it implies that the channel width

does not change rapidly in the z direction.

Richer shows in some detail that these eight assumptions are valid

for virtually all types of commercial FET's. We now proceed with the

analysis.

Consider the potential V(z,y) at some point z,y in the space-

charge region. There the potential satisfies Poisson's equation,

2z
bv2 e

(i)

At the channel edge of the space-charge region, the electric field

is zero; thus,

Ey=-.S?=° at y=b(z)

and at the gate edge the potential is V .
6

Integrating Eq. (l) under the above boundary conditions, we obtain

the potential in the space-charge region,

/%V(z,y) =Vg +;£ [(a -b(z))2 -(y -b(z))2] where b(z) *y*a

- 6 -



Because of assumption 7 we see that there can be no potential drop

across the channel. Therefore, the potential at any point within the

channel is equal to the potential at the channel-space charge boundary;

hence

V(z,b) = V + V
' g PP I* -*H

is the potential in the channel where

PP 2£

0 S y S b(z) (2)

From Eq. (2), if b = 0, V(z,b) - V = V . Another way of viewing this

is that if the potential V is placed across the gate-channel junction,

the channel width becomes zero. Hence, the potential V causes the

channel to become pinched off.

We now define several normalized parameters as follows:

a
u(z) =

V

31
gn

Dn " V

d =
v

Since we are concerned with operation only as a depletion mode device,

V will always be negative.

- 7 -



In terms of the newly-defined variables, Eq. (2) becomes

tfpl =-V +(1 -u)2 (3)
gn

PP °

Consider a differential element of channel having length dz. The

resistance between z and z + dz planes is

,R dz 1 dz
=n/^bD " ji/%aD u

where D is the width of the device in the X direction and u is the

mobility of the majority carriers in the channel.

The voltage drop across the element is -dV which is calculated

from Eq. (3); accordingly

-dV = 2V (l - u) du
PP

therefore

where

*=I =-2v%u(i -u) £ <«

G = -4^—
op L

Since we have no current flow from channel to gate, I is not a

function of z. Therefore, we can easily integrate Eq. (k).
From Eq. (3), we can obtain the proper boundary values; thus

u(o) =1- h +E&&1 =1 - Yv~ V(0,b) =0-y gn Vpp Ygn

- 8 -



and

therefore

V ^ pp v :

v„ - v _
* = i -VT

pp

The minus sign in the equation for u(L) occurs because V was defined
gn

as the absolute value of V /V but V is always negative.

Now we integrate Eq. {k):

fL fl-Vd
/ I dz = -2G L V / t u(l - u) du

J0 op pp Ji-Vv
ĝn

\= -f [(1 -^V2 (1+2VV -(i -^)2 (1+^J (5)

where I = G V .
op op pp

1/3 is the maximum current that can flow in this FET (V = 0).
op' g

Given a block of semiconductor of conductance G , a current I will
op op

flow when a voltage V is applied across it. In the FET however, the

presence of the space-charge region limits the current to IOT)/3« A"t
this current, the FET is saturated and an increase in voltage will not

change the current. Hence I /3 is the maximum current that can flow
op

in the planar FET. A plot of normalized drain current (31^/lQ ) versus
normalized drain voltage is shown in Fig. 3.

Now we find the expression for the channel shape by integrating Eq.

(k) to some point z along the channel.

11 • -f [(1 -VV2 (1 +2VV "u2(3' ^

- 9 -
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Combining this expression with Eq. (5) we find that

z (1 -u)2 (1 *2a) -Vgn(3 -2-tfT)
L= d(3 -2VJ) -Vgn(3 -2Vv^

(6)

Equation (6) gives the relationship between z and u as a function

of the applied bias. Thus, we have an expression for the location of the

channel edge for any combination of normalized gate and drain voltages.

Now we turn our attention to the small signal equivalent circuit.

First, we derive the forward transconductance and output conductance.

These are calculated easily from Eq. (5);

2>I

2>v
a>

22

hz

2>VT
Dp.

op v v gn

= G (1 - Yd)
opx '

(7a)

(7b)

Alternatively, we may calculate normalized g, and Gp2 as follows,

bl

ay
Dnp

gn
- 3(V^ - -^rj

22

&E

&•
Dnp

Dn

= 3(1 - Yd)

Where JDnp =3W
It will be useful in later discussions to have

in this way. Figure k shows normalized

normalized G00 versus V_ .
22 Dn

(8a)

(8b)

and G__ defined

versus V and Fig. 5 shows
gn
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The remaining elements to he derived are capacitive. Richer defines

short circuit input "charge-capacitance" and output "charge-capacitance"

as follows,

'11

dQ
dV

(9a)

22

dQ
dV.

(9b)

where dQ/dV is the voltage rate of change of charge in transit between

source and drain. Actually, C* = -dq. /dV , where q. is the charge

placed on gate. However, for every element of charge that is placed on

the gate, an equal amount of charge goes into the space-charge region from

the channel; thus

or

'11

dq.

dQ

dq.

dV

= -1

dQ

dq.

dQ

dV

Richer shows in some detail that C__ is identical to the "real"

short circuit input capacitance, Eq. (10a), and that C* is that frac

tion of C p that appears between source and drain.

C- =— •r=- quadrature component of i L _0

C22 =a) *T~ [5uadrature component of iDJy =Q
g g

- 1U -
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Since we have a uniformly doped channel, the charge is simply pro

portional to the channel volume; thus

Q=PQaDL

PQaDL

fu(0
u(L) +

Ju(L) Ldu

1 + 3

dd - VI)2 - vgn(i - Vy2
a(3 - 2-ya) - vgn(3 - aV^T)

Application of Eqs. (9a) and (9b) yields the desired capacitances as

follows,

(11)

.*

C*(V^"+VV
(i - VI)2 +Mi - Va)d - VO + (i - VO

• ' gn : :

[3(V«+ VV -2(d +^v+ VJ
£B1

11 0

'22

where

c*(Vd + Vv ) t •= ; —B—Tp
sn 3(vr+vv)-^d +V«v +V]

(1 - VI)(i - VVgg)
♦ <#V< -vv> |-3(V5- +v^). 2(a +v^ ♦ vgn)]

co = ^ I

(12a)

(12b)

In our model, the source and drain are indistinguishable so that

C* = C*
dg sg

15 -



also

C* = (C* - C* )
sg N 11 dg'

°|g -«%1 "Csg>

therefore C* = 2C* . Richer shows that when V, = 0
11 dg d

C*

22 2

Based on the above discussion, Richer postulates the equivalent circuit

shown in Fig. 6.

We will now extend the method illustrated above to cover the case

of an arbitrary shape for the FET.

- 16 -
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III. GENERAL ANALYSIS

In this section an analysis, similar to the above, is presented for

a volume field-effect transistor of arbitrary cross section. The model

to be used is shown in Fig. 7. This analysis is still first order and

retains all of the assumptions specified at the beginning of Sec. II.

Since the p-type gate is much more highly doped than the n-type

bulk, we show the gate only as the boundary of the n-type region. Point

0 represents the point to which the channel converges as one approaches

the pinch-off condition. Line C represents the boundary between the

channel and space-charge region and hence must be an equipotential line.

A Represents the area of the channel. We may define the Of axis by an

arbitrary straight line passing through point 0. The boundary between

the gate and the space-charge region intersects the -\J axis at W. We

assume that W is not a function of z, i.e., that the FET is cylin

drical but not necessarily circular. The equipotential line C intersects

the 0 axis at 0-. At this time we define x, =\3/W, where 0 ^ x, = 1.
In terms of the new variable, the equipotential line C intersects the

\J axis at x_. From the uniqueness theorem we know that only one equi

potential line can pass through point x_. Thus the channel area must be

definable as a function of x.. only.

We define the potential in the channel (along the equipotential line

C) as v(x1), where v(l) =0. Again, by the uniqueness theorem, the
channel voltage is a function of x- only. We may now define a potential

V(x_) as follows,

V(X;L) =V +v(Xl) (13)

where V is the gate voltage usually referred to the source,
g

We define the pinch-off voltage

space-charge region when x. = 0; thus

We define the pinch-off voltage V as the voltage drop across the
XT

V = v(0) = V(0) - V
P i

- 18 -
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Another way of viewing this is that when V - V = V (the channel

has zero area), it is pinched off.

It is not always easy to solve Poisson's equation for an arbitrarily

shaped FET. The problems involved in the solution are discussed at the

end of this section. For the present, let us assume that we have both

v(x1) and A(x-) and proceed.
Consider an element of channel having length dz. Then we calculate

that

dR = *? K (Ik)
^0A(xl}

From Eq. (13) we have

^ =̂ =v.(Xl) (15)

To obtain an expression for drain current, we calculate

X2
/ Idz =v'(x1) ^0A(x1) dxx =J v-fyv'ix^ A^) dx

where we have defined the quantities

X± =xx(z =0)

X2 =x^z =L)

therefore

I--^J V(x1)A(x1)dx1 (16)

Xl

- 20 -



To find a relationship between the channel-edge (x.) and z, we

integrate the current to an arbitrary z.

rz rXl(z)J0 IdZ =̂ oJx V(xx) A(xx) dxx

Combining this form with Eq. (16), we find that

rxl(z)
Jx v' (xl) A(xl) toi

z _ 1
L ~ T

Jx v' W} A(X1) ^1
(17)

To find the small signal circuit elements, we proceed as in the

planar case. Although V and VD do not appear explicitly in Eq. (l6),
X and X are functions of V and V„.
12 g D

L X vt(x1) A(x1) dx1

Similarly, we have that

22 =T i f V(Xl) A(Xl) dxx2)i
L

As in the planar case, we find that

'11
dQ
dV

- 21 -
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where Q=PQ (volume of the channel); thus

A(X2)

'A(3L)u J&fv \ 1

We have found an implicit relationship between z and x. in

Eq. (17). Let us say that x± =f-(z); then

•L

Q=pQ J A(fx(z)) dz (19)

The capacitances can then be calculated in a straightforward manner

by means of derivatives, as in the planar case.

This completes the general analysis. For all but the simplest

geometries, the above functions will be tables of numbers and the speci

fied integrations and differentiations must be carried out numerically.

As mentioned earlier, Poisson's equation for arbitrary shapes

cannot be solved in a straightforward manner. Two distinct problems

are encountered when trying to calculate v(x-) and A(x ). The first

is the numerical solution of Poisson's equation given the two boundaries,

their respective boundary values, and the charge distribution between

them. Computer programs have been written to solve these mixed boundary

value problems (one boundary specified in terms of potential and the

other in terms of gradient) using relaxation methods. Setting up this

problem for an arbitrary shape is not straightforward and the convergence

of a solution procedure cannot always be guaranteed.

The second problem arises when we realize that the location of only

the outer boundary is known at the start of the problem. The inner

boundary is specified only as an equipotential and one must guess at

its initial location. The problem is now one of trying to find the

exact shape and location of the inner boundary by solving Poisson's

equation until this inner boundary is an equipotential line. There is

- 22 -



no assurance of convergence in general because the charge distribution

is a function of the shape of the inner boundary. So far as has been

determined by this author, each geometry must be considered separately,

and no guaranteed solution techniques are available.
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IV. CYLINDRICAL GEOMETRY

One geometry that can be used to illustrate the general analysis

given in the previous section is that of a circular-cylindrical FET.

For this geometry, vQ) becomes v(r) and can be found by applica

tion of Gauss' Law (Fig. 8).

2*£rEr =pQn(r2 -r*) (20)

The boundary condition is that V = V at r2. We want to cal-

culate the potential at r = r. since this is the potential in the

channel. Integrating Eq. (20) we find

V =
2£ riinrr?- riin r2+1

Again, we let x. be the normalized variable

X- = —
1 r,

We simplify the expression for V,

When x1 = 0

v(xi> =vg +Tr(xi7n|-|+1

PoTlV - V = -777^ = Vg k£ pc

+ V

Equation (22) defines the pinch-off voltage for the cylindrical

geometry.

- 2k -
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Looking at an element of channel dz, we calculate

dR = - dz
u^itr^x2 2

2X1

From Eq. (2l) we find

therefore

where

-dV = kV xn Jn x.,
pc 1 1

I=f? =-UV Gnp Lx3^n x. -r^
dK pc oc 1 1 dz

- ^0*r2
\J = z
oc L

is the conductance in the absense of any biases. Therefore

I I dz = -1+V G L I x3 Jn x dxJ0 pc op Jx (23)

1

To find the boundary conditions for the right hand side of Eq. (23),

we must solve for x.. at the source and the drain. We have the relation

ship (Eq. (2l)) between x_ and the potential in the channel. We know

that at the source, V = 0, and at the drain V = V^. We call the value
of x- at the source, X , and the value of x_ at the drain, X .

Rewriting Eq. (21) at the source and drain, we find

- 26 -



V + V- = XI
gn Dn 2

:n

2 1<v =x?AM
gn 1 I e

+ 1 z = 0

+ 1 z = L

It should now be clear that we cannot solve for X and X. directly

since this involves the solution of a transcendental equation. We will

derive all of our expressions in terms of X. and X^, leaving it to the

computer to substitute the numerical values when we evaluate the final

expressions.

Carrying out the integration in Eq. (23) we find

"Dc

where

I
oc (x^ -xp +hOqJn xx -x^yn x2)

I = V G
oc pc oc

(2lt)

(25)

We notice that for the cylindrical geometry, the presence of the

gate limits the current to one-fourth its maximum, were there no gate

present. This result will be compared with the planar FET in the next

section. A plot of normalized drain current (^jr>c/^-oc) versus normal
ized drain voltage (Vr/V ) is shown in Fig. 9.

3y integrating Eq. (23) to an arbitrary x., and combining this
result with Eq. (2*0 we can calculate the relationship between x_ and

2,1 M,lx^ -Jnx^ -X*(| -^nX1)

X^(| -Un X2) -x![(£ -Jn Xx)

Again this gives us the channel shape versus applied bias.

- 27 -
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I-U CHARACTERISTICS
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a PLPNRR
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8 .9 1.

FIG. 9. NORMALIZED DRAIN CURRENT VS NORMALIZED DRAIN VOLTAGE FOR A CYLINDRICAL
FET.
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We now calculate the elements in the small-signal equivalent circuit,

For the transconductance, we have

&L
Dc

"Sv = kV G
pc oc

3 ^2 3 dXl
X2 ^n X2 W "Xl ^ Xl dV~

We now calculate dX /dV and dX /dV from Eq. (21) as follows

-^ =X^nU +1

-dV = kV X. Jn X_ dX.
g pi 11

fi ,. i

z = 0, V = 0, xx = Xx

The plus sign is chosen since V is always negative. The same
8

results follow for X.

Now we simplify g;

fa i
dVg= UVpoX2AX2

= G
oc 4-4

The calculation for G is similar

22

hi
Dc

&•
D
=GoXl

- 29 -
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As in the planar analysis we may define normalized c and G__

as follows

8m
"Dnc

V
gn

-k[4-4) (28a)

22

Dnc

V
Dn

•^o X2 (28b)

where I_ = k • I_. /I . Normalized
Dnc Dc' oc'

versus V is shown in Fig.
gn

10 and normalized Gp2 versus Vp. is shown in Fig. 11.

To calculate the capacitances, we first need to find the volume of

the channel.

X2

Substituting Eq. (26) for z/L we find

«=/°0 4 *L

where

X2 - B (Y2 - Y2} -
*2 A - B lAl V

[x* (A X2 -|) -X* Un Xg -|)]
3(A - B)

A =X2 (f ~Jn X2)

B=Xl (¥ "^ Xl>
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FIG. 1C. NORMALIZED c VS NORMALIZED GATE VOLTAGE FOR A CYLINDRICAL FET

(Maximum Drain Current Normalized to Unity).
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FIG. 11. NORMALIZED G VS NORMALIZED DRAIN VOLTAGE FOR A CYLINDRICAL FET

(Maximum Drain Current Normalized to Unity),
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The capacitances

dQ

'11 dV

dQ
'22 dV,

cannot be easily represented. The numerical analysis to obtain these

values on the computer is straightforward however.

This completes the analysis of the cylindrical geometry. Plots

(both planar and cylindrical geometries) of channel chape, channel

volume, input and output capacitance, as well as I-V characteristics,

r and G , are given in the next section.
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V. DISCUSSION

Let us review for a moment the mechanism of current flow in a FET.

Let the gate voltage, V , equal zero volts. As the drain voltage is
S

increased to V , the current approaches its maximum value, I = V G /K
p max p o

where

V is the pinch-off voltage

G is the equivalent conductance of a block of semiconductor

K = 3 for the planar FET

K = k for the cylindrical FET

We have previously stated that when the channel is at potential V with

respect to the gate, the channel is pinched off and x1 = 0. Actually,
this is not quite the case for, if the channel area were actually zero

and all of the assumptions stated at the beginning of Sec. II remained

valid, no current could flow. In real devices, current does flow at

voltages above pinch-off. Assume that the drain is at potential V +
P

AV and V = 0. For a real FET, instead of approaching zero area, the

channel becomes very narrow (x = 0 ). The resistance in this region

becomes large so that there results a large field in the z direction.

Thus, the gradual approximation (assumption 8) becomes invalid in the

pinch-off region. Instead of the current going to zero at pinch-off,

it saturates at G V /K.
o p'

For the planar transistor, the space-charge depletion limits the

current at pinch-off to one-third of the value which would flow if there

were no gate present. For the cylindrical FET, the maximum saturation

current is limited to one-fourth its ungated value. Clamping of the cur

rent to a small fraction of its ungated value implies good coupling

between gate and channel. This good coupling has the effect that if one

wished to have planar and cylindrical devices with the same current at

pinch off for zero gate bias, the cylindrical FET would have a larger

volume than the planar FET. The dimensional ratios are calculated by

requiring that the two devices have the same current at V = 0 and
g

V,, = V .
D p
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where

I I
oc _ op

"T - 3

^c Goc V ^0r2 ^*r2 1
"T~ ~ k ~TT "~l- ' 5"

I G V p.& n/ZaD _
_2£ op pp _ LO__ # F/0 1
3 3 " 2£ L 3

where a = width of planar FET; D = depth of planar FET; and rp = radius
of cylindrical FET.

Since we are just comparing volumes let D = a. Then

2 2
and the volume of the cylinder is equal to rtrJL = 2.89La ; volume of

2
planar device is equal to La .

Hence, the volume of the cylindrical device would have to be approxi

mately three times the volume of the planar device to have the same current

at V°> vd =V
In order to compare the performance of the planar FET with that of the

cylindrical-volume FET, we normalize the I for each device to unity.
max

Plots of drain current versus drain voltage as calculated from Eqs. (5) and

(2k) are shown in Fig. 12. This plot enables us to compare the character

istics of the two devices.

Figures 5 and 10 showed the c for each device. This data is

replotted in Fig. 13 so that one can compare device performance. Because

of the I normalization, the cylindrical device starts out with a
max

four-thirds that of the planar device. As is evident in Fig. 13, at

V «* .275, the gm for both devices are equal and for large V ,

- 35 -
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I-U CHPRPCTERISTICS
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PLANAR AND CYLINDRICAL
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oPLANAR

FIG. 12. NORMALIZED DRAIN CURRENT VS NORMALIZED DRAIK VOLTAGE FOR THE PLANAR
AND CYLINDRICAL FET.
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FIG. 13. NORMALIZED g^ VS NORMALIZED GATE VOLTAGE FOR THE PLANAR AND CYLINDRICAL
FET (Maximum Drain Current Normalized to Unity).
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for the planar device is greater than g, for the cylinder. Computer

code "Cross" was written to calculate the cross-over point to five places,

The g, are equal (in saturation) at V = .27727.

For biases below saturation (VDn +V < l), there exists a family
of points at which both g*s are equal. We see from Fig. 13 that the

locus of these points is a straight line of slope -k. The equation for

this line is

g = -UV + 2.529** .27727 ^ V£ .6323
°mco gn gn

or

ico = -1.9517 vDn 0§ vDn< .72773

where r refers to the common values of g_ shared by the two forms

of the FET. A similar plot giving G22 for both the planar and cylin
drical FET's is shown in Fig. Ik.

A possible explanation for the cross-over behavior in g, is that

in the planar device, the area of the boundary between the channel and

the space-charge region is approximately planar and remains constant as

V is varied. In the cylindrical device however, this area is an
gn

annular shape and is progressively reduced as V is increased. The
gn

plausibility for this argument can be established by study of the curves

of channel volume and channel shape (x. vs z) versus applied bias.

These curves are given in Figs. 15 through 26. Although it is not

apparent in the curves given, the current is less than half its maximum

saturation value when the g: are equal in the pinch-off region.

It should be apparent that any attempted comparison in the per

formance of these FET's is dependent on the normalization chosen. For

example, assume that we wish now to have both devices have the same V

and G . If this were true, we recognize that the planar device would

have a maximum ID/V G of l/3 and the cylindrical device a maximum
value for this quantity of l/k. First, we equate the pinch-off voltages
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FIG. Ik. NORMALIZED G22 VS NORMALIZED DRAIN VOLTAGE FOR THE PLANAR AND
CYLINDRICAL FET (Maximum Drain Current Normalized to Unity).
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FIG. 15. NORMALIZED CHANNEL VOLUME VS NORMALIZED DRAIN CURRENT FOR THE PLANAR
AND CYLINDRICAL FET.
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FIG. 16. NORMALIZED CHANNEL VOLUME VS NORMALIZED GATE CURRENT FOR THE PLANAR
AND CYLINDRICAL FET.
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FIG. 17. THE CHANNEL SHAPE (x1 for cylinder and b for planar) VS Z/L FOR
SEVERAL VALUES OF V_ AND V . The two devices are normalized to have the

Dn gn

same volume.
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FIG. 18. THE CHANNEL SHAPE (x, for cylinder and b for olanar) VS Z/L FOR

SEVERAL VALUES OF V„ AND V . The two devices are normalized to have the
Dn gn

same volume.
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FIG. 19. THE CHANNEL SHAPE (x for cylinder and b for planar) VS Z/L FOR

SEVERAL VALUES OF V_ AND V . The tvra devices are normalized to have the
Dn gn

same volume.
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FIG. 20. THE CHANNEL SHAPE ^ for cylinder and b for planar) VS Z/L FOR
SEVERAL VALUES OF V„ AND V . The two devices are normalized to have the

Dn gn
same volume.
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FIG. 21. THE CHANNEL SHAPE (x., for cylinder and b for planar) VS Z/L FOR
SEVERAL VAL

same volume

SEVERAL VALUES OF V_. AND V . The two devices are normalized to have the
Dn gn
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FIG. 23. THE CHANNEL SHAPE ta for cylinder and b for planar) VS Z./L FOR

SEVERAL VALUES OF V„ AND V . The tvra devices are normalized to have the
Dn gn

same volume.
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FIG. 2l«. THE CHANNEL SHAPE (x^ for cylinder and b for planar) VS Z/L FOR
SEVERAL VALUES OF V^ AND V . The two devices are normalized to have the

Dn gn

same volume.
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FIG. 25. THE CHANNEL SHAPE (x^ for cylinder and b for planar) VS Z/L FOR
SEVERAL VALUES OF V^ AND V . The two devices are normalized to have the

Dn gn

same volume.
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FIG. 26. THE CHANNEL SHAPE (x1 for cylinder and b for planar) VS Z/L FOR
SEVERAL VALUES OF V,. AND V . The two devices are normalized to have the

Dn gn

same volume.
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Now equate G

This gives us

therefore

TT= "sT * r2 = v1

H/°<H> ^aD

D = 2*a

r r
2 2 2A = ad = —^: . 2* —~ = *A = A

p Va Vi 2 c

Hence, we have the same volume of material. Now if we calculate g:

we find that both devices have the same values at pinch-off (V = 0),
S

but g, for the planar device is greater everywhere else. This is not

surprising since the cylindrical device has only 3/k of I of the
max

planar device to start with.

Let us now look at the capacitances (Figs. 27, 28). The capacitance

values were calculated using Eqs. (9a) and (9h). The total charge in the

channel was calculated from Eqs. (ll) and (29). These total charges were

normalized to have a maximum value of unity which means that the two

devices have the same volume. It seems appropriate that to compare the

two devices with respect to capacitance, they should have the same maxi

mum channel volume. The input capacitance was calculated by calculating

(for V^ fixed) the channel volume for V = 0 to V = 1 - VL in
JJn gn gn Dn

increments of V = .001. The capacitance at V (i) is
gn * gnv
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FIG. 27. OUTPUT CHARGE CAPACITANCE (rate of change of normalized channel volume
with respect to normalized drain voltage) VS NORMALIZED DRAIN VOLTAGE (Maximum
Channel Volume Normalized to Unity).
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FIG. 28. INPUT CHARGE CAPACITANCE (rate of change of normalized channel volume
with respect to normalized gate voltage) VS NORMALIZED GATE VOLTAGE (Maximum
Channel Volume Normalized to Unity).
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c* (i) =Qd -i) -ftd +l)
unw .001

c* (i) =Qd -i) -ftd +i)
U?2W .001

V-. = const,

V" = const.
gn

A check on the accuracy was made by calculating C for the planar

geometry by Eq. (12a) and comparing the results with the method as stated

above. Except at V «= 0 where the error was approximately 1 part in
gn

100, the two results compared within 1 part in 1000. Since this is greater

accuracy than one can read from the graphs, it was deemed sufficient.

In this discussion we have shown that in an absolute theoretical sense,

one cannot say which device is "better." On a practical basis, the cylin

drical device does have an advantage which occurs from fabrication tech

niques. This is the fact that large numbers of these devices can be .

constructed in parallel (Zuleeg) with no stray inter-electrode capacitance.

This makes for a device with high current, high gain and high frequency.

Zuleeg has reported the following characteristics for a volume FET with

100 parallel channels.

gm = 10 mA/V

I = 25 mA
max y

V = 10 V
P

CGD =5pf (at 10 V)

Power Gain = Ik db at 60 MC

= 10 db at 100 MC

Extrapolated f = 300 MC
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3 db k cut-off frequency = 275 MC

Zuleeg reports that with optimizing geometry and impurity profiles,

a maximum frequency of oscillation of 1000 MC should be possible.
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APPENDIX A

In this section we present a brief note on the use of the computer

in performing the calculations. All calculations were performed on an

IBM 70^0 - 709^ computer. The computer prepared a plot tape which was

plotted by a Cal-Comp 11 inch plotter. The computer was used because

the solution to a transcendental equation was needed at a large number

of points. It was an easy step then to machine program the output plots

for the various functions. Each code simply evaluates the expressions

derived in the text in a direct manner. The major portion of each code

was in preparation of the plots. All calculations for the cylindrical

geometry used subroutine Xk. This routine calculated X. and X_

given V and V_ . To make this calculation, we first rewrite Eq.
0 gn Dn ' ^
(21) in the following manner, defining a new variable VN.

VN

/ 2\

=V +V =xfin \-f\ +1 (A.l)
gn 1 e

The plus sign on V in Eq. (A.l) is written because V is always
gn gn

negative in reality. At x_ = X , V = 0 and at x_ = X , V = V^ .

We first prepare a table of VN versus x_ for 1 _ x _ 0 in incre

ments of .001. Then when we call Xk the channel edge at z = 0 is

found by setting VN = V and looking up the closest value of x> and

interpolating. To find X we let VN = V + V and proceed as

before. This method is used also in evaluating the channel shape. If

one desires greater accuracy, second order interpolation can be used.

In all plots, except channel volume and capacitance, points were cal

culated and plotted 10 per inch. In these plots, points were calculated

and plotted 100 per inch. The accuracy obtained in each case is greater

than can be observed on the plots. A complete listing of all the codes

is available from the author.
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