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INTRODUCTION

The class of optimization problems known as continuous linear

programming problems, and sometimes referred to as bottleneck prob

lems, has received considerable attention in the literature [1 - 3] . Be

cause of their formal similarity to ordinary linear programming prob

lems, it appeared that duality considerations might be helpful in searching

for solutions. Thus, what to the authors' knowledge was the first suffi

cient condition for the optimality of a feasible solution to a continuous

linear programming problem was obtained by Bellman [l] . He formu

lated a dual problem and showed that if the dual problem had a solution

then the extreme value of the primal and dual functionals was the same.

He subsequently used this approach in many other papers, such as [3] ,

to obtain optimal solutions for various problems in economics, engineer

ing, business, etc. An unfortunate characteristic of this duality method,

however, is that it takes a great deal of intuition to apply it successfully.

More recently, Tyndall, in his Ph.D. dissertation [2], devel

oped a very useful duality theorem which guarantees that for any problem

satisfying readily checked assumptions, not only does an optimal solution

exist, but the corresponding dual problem also has an optimal solution.

However, he does not provide an algorithm for computing an optimal solu

tion. Tyndall [2] showed that the existence of a solution to the primal

problem did not quarantee the existence of a solution to the dual problem

and vice versa, a major difference from ordinary linear programming

problems. Thus, it should be stressed that the range of duality methods

discussed above is restricted to problems whose duals also have solutions.
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STATEMENT OF THE PROBLEM

We begin by stating the primal and dual problems to be con

sidered in a form with inequality constraints, partly so as to be able

to prove the relation between the primal and dual problems, partly to

exhibit the similarities and differences between these problems and the

problems treated by Bellman [ 1 ] and by Tyndall [ 2 ] . We shall then

restate these problems in a form, more convenient for us, with dif

ferential equation constraints and slack variables.

Let a(- ) and b(-) be bounded measurable functions mapping

the real line R into a real n-dimensional vector space Rn. Let B

be a constant, n x n, nonsingular matrix such that at least one of the

following two statements holds: (i) all the elements of B are nonne-

gative, (ii) all the elements of B~l are nonnegative. Let C and D
be constant, n x n matrices. Finally, let X denote the set of all

measurable vector-valued functions x(«) = ( x,(» ),..., x (•) ) mapping

R into Rn, with bounded components x., i = 1, 2, . . ., n, which satisfy

the following three conditions: For t € [ 0, T ]

x(t)£o, (1)

Bx(t)^b(t) + Cx(s)ds + f Dx(s-l)ds, (2)
Jo Jo

x(t)= 0 for t < 0 (3)

Similarly, let Y denote the set of all measurable vector-valued

functions y(•) = (y, (•)>•••» yn (•) ) mapping R into Rn, with bounded
components y., i= 1, 2, . . ., n, which satisfy a dual set of three con

ditions: For t e [ 0, T ]

y(t) ^ 0 , (4)
rT

B y(t) ^ a(t) + y(s)Cds + y(s + l)Dds,
Jt Jt

(5)

y(t) = 0 for t > T . (6)

We shall consider the following continuous, linear programming

problems:
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We begin this paper by reformulating the general primal and

dual continuous-linear programming problems with time delays in the

constraints into a form that is somewhat more convenient for us. Thus,

treating the primal and dual problems separately, we construct functions

which are optimal solutions, provided they are feasible and provided

some additional simple conditions are satisfied. When the functions

we obtain are not optimal, we have no specific method for finding

optimal solutions. Thus, the main advantage of the method proposed

is that it is constructive and does not depend on the simultaneous ex

istence of solutions to the primal and dual problems. We also give

sufficient conditions for the existence of a solution for the dual problem

when the primal has a solution and vice versa. When both the primal

and dual problems are solvable, we exhibit the related solutions. It

will be seen that for the set of problems tractable by both methods, the

hypotheses used in this paper are sometimes less restrictive than

Tyndall's [ 2 ] . We conclude the paper by discussing the relationship

between the continuous linear programming problems considered and

those treated in optimal control and in the classical theory of the cal

culus of variations. An example is worked out in the appendix.

NOTATION

For the most part we shall use standard mathematical notation.

Matrices are denoted by capital letters such as B, C, D. Small letters

such as a, b, 6 denote vectors. No distinction is made between row and

column vectors; the meaning will always be clear from the context.

Let x be an n component vector, and let x. denote the ith

component of x. x = 0-»x. J 0 \/ i. x > 0->x. > 0\f i.
If x and y are n-vectors then xy will denote the scalar product.

We define the function

l(x.) = 1 if x. > 0
v r i

= 0 if x. = 0
i

If A is an n x n matrix then A will denote the ith row of A,

and A. will denote the _jth column of A.
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Primal Problem: Find an x € X such that

>T Q pT
a(t) x (t)dt = max a(t)x(t)dt (7)PT 0 c1I a(t) x (t)dt = max

Jo xe X Jo

Dual Problem: Find a y € Y such that

PT pT
yu(t)b(t)dt = min ) y(t)b(t)dt (8)

•^0 y€ yJo

The relation between the primal and dual problems stated above

is directly analogous to the relation between ordinary primal and dual

linear programming problems [ 4 ] and is summed up by Theorem 1.

Theorem 1: If x e X and y € Y satisfy the condition

/ aUJx^t) dt =f y^t) b(t) dt, (9)
Jo Jo

then x and y are the solutions to the primal and dual problem,

respectively.

Proof: The following proof is an extension of the proof given by

Bellman [ 1 ] for the case D = 0. Let x e X and y e Y, then, by

making use of (1), (2 ), (4), and (5 ) , we obtain the following pair of

inequalities:

a(t)x(t)dt <
Jo J

~T pT pT
[y(t)B- y(s)Cds- y(s + l)Dds] x(t)dt, (10)

0 Jt Jt

X
t pt pt r^
y(t)b(t)dt > '/ y(t)[Bx(t)-f Cx(s)ds-| Dx(s-l)ds]dt (11)

Jo Jo Jo

We shall now show that the right hand sides of (10) and (11) are

equal. First, a simple change in the order of integration of the second

term in the right hand side of (10) yields (after the dummy variables in

the right hand side have been renamed):
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r*
t y(s) Cds ] x(t)dt =

<J
-| y(t)[

P*

^•;o
Cx(s)ds ] dt. (12)

0 O
0

Thus, the second terms of the right hand sides of (10) and (11) are equal.

We now proceed to examine the third terms. Since y(t) = 0 for t > T,

we obtain for the third term of the right hand side of (10):

pT pT pT-1 pT-1
[ y(s+l)Dds] x(t)dt = - I [ y(s+l)Dds] x(t) dt. (13)

Jo ^t ^0 Jt

Since x{t) = 0 for t < 0, we now obtain (after renaming the dummy

variables)

'-1 pX-1 pT pT
[ y(s+l)Dds] x(t)dt = - [ y(s)ds] Dx(t-l) dt (14)

0 Jt Jl Jfc

Now, interchanging the order of integration, we obtain after renaming

the dummy variables [ see (11)]

- I y(t) [ Dx(^-l)ds ] dt = -
Jo Jo U

pT 3.
[ y(s)ds ] Dx(t-l)dt. (15)

1 Jt

Thus the right hand sides of (10) and (11) are equal and hence for all
x e X and y € Y

rT pT

\j

a(t) x(t) dt <

0 \J 0

y(t)b(t)dt . (16)

Therefore, if there exists a pair for functions x € X, ye Y

satisfying (9), then this pair must be solutions to the primal and dual

problems, respectively. This concludes the proof of the theorem.

REFORMULATION OF THE PROBLEM

As is usually the case with standard linear programming

problems, we find it more convenient to deal with equality rather than

inequality constraints. Consequently, we shall now convert the integral

inequalities (2) and (5) into differential equations by introducing slack
variables.
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Definition: Let K be the set of all pairs of functions (z,u)

which map R into Rn such that

(i) u(-) is measurable and z(«) is absolutely continuous >

(ii) u(t) £ 0, B_1[u(t) + b(t) + Cz(t) + Dz(t-l)] ^ 0

for t € [ 0, T] , (17)

(Hi) z(0) = 0 ; (18)

(iv) z(t) = B_1[ -u(t) + b(t) + Cz(t) + Dz(t-l)]

for t € [ 0, T] (19 )

= 0 otherwise.

The matrices b, B, C, D in (17) and (19) are the same as in (2);

Eq. (19 ) is obtained from (2) by letting z = I x(s ) ds and using con-
Jo

dition (3 ). Because of (19 ), the second part of condition (17 ) is equivalent

to z(t) = 0 for t € [ 0, T ] , which corresponds to (1). The pairs (z, u)

which are elements of K_ will be called feasible solutions to the primal

problem.

In terms of the above definitions, we can restate the primal

problem as follows:

Primal Problem I: Let the functional J be defined by
___^————— yj

T

J (z,u) =f a(t) B"1 [-u(t) +b(t) + Cz(t) +Dz(t-l)] dt. (20)
p Jo

Find a pair (z°, u°) e K such that

J (z°, u°) = max JL(z,u)
P (z.u)K^\ / p

(21)

The function a(-) in (19) is the same as in (7). It is readily seen

that (20) defines the same functional as (7) when the constraints (i)
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through (iv) are taken into account. Any pair (z, u) e PL which max

imizes JL will be referred to as an optimal solution to the primal problem.

We now reformulate the dual problem in a similar way.

Definition: Let K, be the set of all pairs of functions (w, v)

which map R into Rn such that

(i) v(«) is measurable and w(«) is absolutely continuous;

(ii) v(t) ^ 0, [v(t) +a(t) - w(t) C - w(t+l)D]B-1^ 0

for t € [0, T] ; (22)

(iii) w(T) = 0; (23)

t+l)D] B"1

for t € [0, T] (24)

(iv) w(t) =[ v(t) +a(t) - w(t) C-w(t+l)D] B"1

= 0 otherwise.

Again, the matrices a, B, C, D are the same as in (5), and (24) is

obtained from (5 ) by letting w(t) = -J y(s)ds and using condition

(6 ). Because of (24), the second half of (22) implies that w(t) ^ 0
for t € [ 0, T ] , which is equivalent to (4). We can now restate the

dual problem.

Dual Problem I: Let J, be the functional defined by
a

Jd(w, v) =[ {v(t) +a(t) - w(t) C-w(t+l)D}B_1 b(t) dt , (25)
o o

Find a pair of functions (w , v ) € K , such that

o O ._, .
J,(w,v)= max Jd (w, v) , (26)

(w, v) € K,

Again, the function b( •) in (25 ) is the same as in ( 8 ) and it is clear

that Eq. (25)defines the same functional as Eq. (8) when the constraints

are taken into account. Any pair (w, v) € Kd which minimizes Jd will
be referred to as an optimal solution to the dual problem.
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PRIMAL APPROACH

We shall now consider the Primal Problem I and, by means of

multiplier functions, obtain for it a sufficient condition for the exis

tence of an optimal solution pair (z, u). Then, assuming that an

optimal solution exists for the Primal Problem I, we shall make use

of Theorem 1 to obtain a sufficient condition for the existence of a

solution to the Dual Problem I. In the dual approach we shall reverse

the order of this procedure.

Multiplier Functions. We begin by discussing differential

equations whose solutions, if they exist, will subsequently be used as

multiplier functions. Consider the following two differential equations:

\(t)=-{ [\(t) -a(tj|B"1A(t) C+[X(t+1) - a(t+lJB*1A(t+l)Dj},
(27)

with the final condition X(T) = 0; and

6(t) =-J[6(t)-a(t)] A(t)B_1C +[6(t+l) -a(t+ 1)] A(t+ 1) B_1D I ,
t € [0,T] (28)

also with the final condition 6(T) ^ 0. In (27) and (28), \(t), 6(t)e Rn,
a, B, C, D are the matrices appearing in the statement of the primal

problem, and the diagonal n x n matrices J\,(t) and A(t) are defined by

y\(t)= diag(l((a(t) - Mt))^"1)) , te [0, T] , (29)
= 0 otherwise

£(t) = diag(l(a.(t) - 6.(t))), t€[0, T] (30) •

= 0 otherwise
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Theorem 2: If the function a(-) is piecewise continuous on the

interval [ 0, T ] then the differential equations (27 ) and (28) have unique

absolutely continuous solutions, defined over the interval [ 0, T ] .

Proof: We first consider the differential equation (27 ) over

the interval [ T-1, T ] . Over this interval the second term of the right

hand side is zero and (27 ) has the form

\(t) =-[Mt) -a(t)]B_1A(t) C , \(t) = 0. (31)

The right hand side is piecewise continuous in t and for t € [ T-1, T ] ,
satisfies a Lipshitz condition with respect to X. , hence (31) has a

unique, absolutely continuous solution over [ T-1, T ] . This solution
may now be extended to cover the entire interval [ 0, T] . We proceed
similarly for Eq. (28).

Feasible Solutions Determined by Multiplier Functions. Whenever

the Lagrange multipliers \ and 6 exist, they may be used to define

a feasible solution to the primal problem I, provided certain conditions

are satisfied.

Theorem 3 : If the differential equation (27 ) has a solution \ ,

then the differential equation

z=ET^Mt^Mt) + Cz(t) +Dz(t-l)); z(0) =0 (32)

which it defines, has a unique solution which will be denoted by z ^ .

Similarly, if the differential equation (28) has a solution 6, then the

differential equation,

z = A(t)B-1(b(t) +Cz(t) +Dz(t-l)); z(0) =0 (33)
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which it defines, has a unique solution which will be denoted by zfi .

The matrices A and A are defined by (29 ) and (30 ) respectively.

Proof: The right hand sides of (32) and (33) are linear in z,

and, since all the elements of A and A are bounded baire functions of

measurable functions, they are measurable in t [ 4 ] ,[ 5 ] . Hence (32)

and (33) have a unique solution each (see [ 6 ] p. 97, pb. 1). This

completes the proof.

Definition: If (27 ) has a solution, then we define the n x n diagonal

matrix A-. by

Ax +A = I , (34)

where J\ is defined by (29) and I is the identity matrix. Similarly, if
(28) has a solution, then we define the n x n diagonal matrix A. by

Ax + A = I, (35)

where A is defined by (30).

Definition: Let z. be the solution of (32). We define the function

u. by the relation

ux(t) =A1(t)£b(t) + Cz(t) +Dz (t-1)] for t € [ 0, T] (36)

= 0 otherwise.

Similarly, let z,. be the solution of (32). We define the function u-

by the relation

u6 (t) =BA^tJB'̂ ^t) +Cz(t) +Dz(t-l) ] forte [0, T] (37)

= 0 otherwise.

It is readily seen that if z. (t) ^ 0 and u. (t) > 0 for t € [ 0, T ] ,

then the pair (z. , u ) is a feasible solution to the Primal Problem I.
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Similarly, if zg (t) > 0 and ug(t) > 0 for t € [ 0, T] , then (z&, ug)
is a feasible solution pair to the Primal Problem I.

Formal Solution of the Primal Problem. We shall now examine

formally the particular case when the matrix D in (19) is the zero matrix

and n= 1, i.e., all quantities are scalars, and B > 0. We shall consider

the problem rigorously and in full generality in the next section. In this

particular case we are required to maximize.

rT i
J(z,u)= a(t) B'x [ -u(t) + b(t) + Cz(t)] dt (38)
p Jo

subject to the constraints that

(i) u(«) be a measurable function and z(-) be an absolutely

continuous function;

(ii) u(t) £ 0, B_3[-u(t) +b(t) +Cz(t) ] £ 0 for t € [ 0, T] ; (39)

(Hi) z(0) = 0; (40)

(iv) z(t) = B_1[-u(t) + b(t) + Cz(t) ] for t € [ 0, T] (41)

= 0 otherwise.

We now introduce a multiplier function X.(-) and proceed to impose on it

conditions which should lead us to a solution. Adjoining (40 ) and (41) to
A

J by means of X. we get a new functional J defined by
P 3 6 P

{a(t)B-1[-u(t) + b(t) + Cz(t)]
0

+ \(t) [ z(t)-B (-u(t) + b(t) + Cz(t))] } dt- (42)

After choosing X. ( • ) we shall

maximize the integrand in (42) at each instant t e [ 0, T] , with respect
to (z,u), subject to the constraints(i) and(ii) above. First, introducing

the condition \(T)= 0 and integrating \(t)z(t) dt by parts we convert
Jo
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the integrand in ( 42) to the form:

a(t) B_1[ -u(t) + b(t) + Cz(t)] - Mt)z(t)

- \{t) B_1[ -u(t) + b(t) + Cz(t) ] (43

The terms in the above expression can be grouped together in the

following two ways:

-[a(t) - \(t) ] B"1 u(t) + [a(t) - \(t )] B_1b(t)

+[a(t) -\(t)] B_1Cz(t) - X(t)z(t) , (44;

or

[a(t) - \(t)] B_1[ -u(t) +b(t) + Cz(t)] - X. (t)z(t) (45)

It may now be seen from (44) that if we set X.(t) = [ a(t) - X. (t) J B C for

all those t e [ 0, T ] , for which [ a(t) - X. (t) ] B_1 £ 0, then
for these t, (44) is maximized by setting u(t) = 0 and letting z(t)

be an arbitrary function satisfying (i) and (ii). Similarly, since B is

positive it follows from (39) that [ -u(t) + b(t) + Cz(t)] > 0 must be satisfied

and if we set X. (t) = 0 for all those t € [ 0, T ] for which [ a(t) - \{t) ] < 0,

the expression(45) is maximized by setting [-u(t) + b(t) + Cz(t)] = 0.

Summarizing these conclusions we obtain formally, provided (ii) is

satisfied, a pair of functions which maximize the integrand of (42) at each

t e [ 0, T] as solutions of the following set of equations defined on the

interval [ 0, T] :

\{t) = [a(t) -Hi)] B"1A(t)C, \(T) = 0 , (46)

Bzx(t) =A(t) [b(t) +Czx(t)] zx(0) =0 (47)

u^(t) =A1(t)[b(t) +Czx(t) ] (48)

Thus, if (ii) is satisfied the pair of functions (z , u ) belongs to the set

K and hence it also maximizes the integrand of J .
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The more general forms (27), (32), and (36), and similarly

(28), (33), and (37) can be obtained by pursuing essentially the same

line of reasoning. We shall now show rigorously that provided the

multiplier functions X and 6 defined by (27 ) and (28) exist, the

solution pairs (z., u. ) and (zfi, Ug ) they determine are optimal if they
satisfy the constraints (17), (18) and (19), for the matrix cases

B = 0 and B §* 0 respectively.

Duality Theorem la : If the multiplier function X. determined by

(27 ) exists, if the solution pair (z. , u. ), which it determines by means

of (32 ) and (36 ) is feasible, and if all the elements of the n x n matrix

B are nonnegative, then the pair (z. , u ) is an optimal solution to the

primal problem I.

Proof: We are required to maximize the functional

pT
J (z, u) = a(t) [ -u(t) + Cz(t) + Dz(t-l)] dt
P <Jn

subject to (z, u) € K . We repeat here the conditions (17), (18), and

(19) for functions in K :
ir

(ii) u(t) > 0 and B_1 [-u(t) +b(t) +Cz(t) +Dz(t-l)] ^ 0
for t e [ 0, T]

(iii) z(0) = 0

(iv) z = B"1 [-u(t) +b(t) +Cz(t) +Dz(t-l)] for t € [ 0, T]

= 0 otherwise.

We now use the multiplier function X given by (27) to adjoin conditions(iii)
A

and (iv) to J_ . We obtain a new functional J defined by
P &

J (z,u) =j jaWB^f-ult) +b(t) +Cz(t) +Dz(t-lj]

+\(t)(z(t)-B-1[-u(t) +b(t) +Cz(t) +Dz(t-l)])i dt (49)
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As in the formal approach, we now convert (40 ) into a more suitable

form for interpretation. First,

T pT
\(t)z(t)dt = - / \(t)z(t)dt

o Jo

=+ I {.X(t) - a(t)] B-1A(t) C+

+[\(t+l) -a(t+l)] B_1A(t+l) d} z(t) dt (50)

Since A (^ = ° for t ^ [ °> T 1 » E<1- (50) becomes

/ X(t)z(t)dt= I [\(t) -a(t)] B_1A(t) [Cz(t) +Dz(t-l)] dt (51)
/Jo Jo

pT
Substituting the right hand side of (51) for l\ (t) z (t) in (40 ) and
collecting terms we get: 0

J^T

[a(t) -\(t)] B_1(-u(t) +b(t) +A1(t)(Cz(t) + z(t-l)] dt, (52)
0

where the matrix/\.,(t) was defined in (34). We shall now maximize
J over a set L of funtions (z, u) satisfying the conditions (i) and (ii)

P P
for the set K , but not necessarily the conditions (iii) and (iv), thus

P A
L !D K . We shall then show that a pair (z, u) which maximizes J

P P P
over L is also in K . Consequently, this pair maximizes J over

P A P P
K since J = J over K . Since all the elements of B are nonnegative,

P P P P
it is clear that the second part of condition (ii) implies the condition

-u(t) + b(t) + Cz(t) + Dz(t-l) ^ 0 for t € [0, T] (53)

Rewriting (52) so as to exhibit the effect of this condition we obtain

XT'

{(a(t) - X(t)]B_1iA(t)[-u(t) +b(t)]

+A1 [-u(t) +b(t) +Cz(t) +Dz(t-l) ]}dt (54)

I
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Now, from (29) and (34), the vector [a(t) - X(t)] B"1 A(t) £ 0 and
the vector [a(t) - X(t)] B_1 Aj (t) g 0 for t € [0, T] . Hence, since
u(t) = 0 and because of (53), the integrand, and consequently also J ,

is maximized by any pair of functions (z, u) e L which satisfy the

condition

u(t) = Ax(t)(b(t) +Cz(t) +Dz(t-l)) for t e [ 0, T] . (55)

Now the pair (z. ,uj e L by assumption and satisfies (55), hence it max-
A K K p A

imizes J over L . Hoever, the pair (zx, uj € K , and J (z,u)= J (z, u)
p p r X K p p ' px '

for all (z,u) e K , thus (zN,uN) also maximizes J over K . This
p A. K P P

completes the proof.

Remark: It should be pointed out that (z., uj is not necessarily a

unique feasible solution pair maximizing the functional J. Thus, suppose

that a(t) - X(t) = 0 for t e I, a nonzero subinterval of [ 0, T] . Then

any solution pair (z',u') € K , such z'(t) = z. (t), u'(t) = u. (t) for
P A. \

t 4 It will also maximize the integrand of (54) and hence will also be

an optimal solution pair.

Duality Theorem Ila: If the Lagrange multiplier 6 determined by

(28) exists, if the solution pair (z,,u.) which it determines by means of

(33 ) and (37 ) is feasible, and if all the elements of the n x n matrix

B are nonnegative, then the pair (zfi, u-) is an optimal solution to the
primal problem I.

Proof: The proof of this theorem is carried out in a manner

similar to the one used for the proof of the preceeding theorem and will

therefore be omitted.

Whenever the multiplier functions \ or 6 or both exist, they

may also define a solution to the dual problem I. The manner in which

this may happen is summed up in the following two theorems.

Duality Theorem lb: Suppose the the multiplier function X de

fined by (27) exists and that it defines an optimal solution pair (z. , u )
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by means of (31) and (36 ) for Primal Problem I. Let the functions

(w\» v\») be determined by X as solutions of the equations
X X

\(t) =[a(t)-w (t)C - wx(t+l)D] A(t)B_1 (56)

= 0 otherwise

vx(t)= -[a(t) - wx(t)C - wx(t+ 1) D]Ax(t) (57)

wx(T) = 0.

If the pair (w. , v. ) satisfies the condition

w^(t) > 0, v (t) ^ 0 for all t €[ 0, T] , (58)

and the n x n matrix B commutes with the matrix A(t) in

multiplication, then the pair (w. , v. ) is an optimal solution to Dual
K A.

Problem I, i.e., (w\»v\) e K, and

Jd(wvV =,min, Jd(w'v)-
(w, V ) e K,

Proof: The right hand side of (56) is linear in w. and

measurable in t and hence (56 ) has a unique solution which in turn

completely defines v. by means of (57). Hence, if (58) is satisfied,

the pair (w* , v. ) € K , . We now make use of Theorem 1 to prove that

this pair is optimal for the dual problem by showing that it yields the

same cost as the optimal solution pair (z., u. ) for the primal problem.

Since by assumption the matrices B~l and -A-(t) commute, it

follows from (32) and (56) that

A(t)zx(t) = zx(t), wx(t) A(t) = wx(t) . (59)

Hence, making use of (20), (32), and (59) we get

J (z^, u^) =Pa(t)ix(t) dt =j a(t) A(t)z^(t) dt . (60)
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Now, substituting for a(t) A(t) from (56 ) and making use of (59 )

we get

PTJ (zx,ux)= [wx(t)Bzx(t) +wx(t)Czx(t) +wx(t+l)Dzx(t)]dt (61)

Similarly, making use of (25) (32), (56), and (59) we get

Jd{w\'v\) =f tWX(t) BiX(t) "™X(t) C\(t) "wx(t)DzK(t-l)]dt. (62)

An integration by parts of the second and third terms in the right hand

side of (62) shows that

- wx(t) Cz^(t) dt =J wx(t) Cz^(t) dt v

XT pT
- w^(t) Dz^(t-l) dt = I wx(t+l)Dz(t) dt .

Hence Jj(w., v. ) = J (z. , u. ) which shows that the pair (w , v. ) is

indeed optimal for the dual problem if (58) is satisfied.

Duality Theorem lib: Suppose that the multiplier function 6

defined by (28) exists and that it defines an optimal solution pair

(z,., u,) by means of (33 ) and (37) for Primal Problem I. Let the

functions (wp, v,.) be determined by 6 as solutions of the equations

.-1w,(t) = [a(t) - wJt)C - w- (t+l)D] B'x A(t)
(63)

w6(T) = 0

vfi(t) =>[a(t) -wfi(t) C-w (t+l)D] B"1 Aj(t) B (64)

If the pair (wc, v,.) satisfy the condition

w.(t) ^ 0, v.(t) ^ 0 for all t e [ 0, T ] ,
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and the matrices B and A(t) commute in multiplication, then the

pair (wj., Vj.) is an optimal solution to Dual Problem I.

The proof of this theorem is completely analogous to that given

above and will therefore be omitted.

DUAL APPROACH

Duality Theorems lb and lib give constructive sufficient

conditions for the existence of an optimal solution to the dual problem

when a particular optimal solution to the primal problem exists. Such

a solution to the primal problem may not exist (e.g. see [ 2 ] ), and it

is therefore preferable to construct a sufficient condition for the exis

tence of an optimal solution to the dual problem in a manner not pre

dicated upon the behavior of the primal problem.

We begin with a formal treatment of a particular case of the

dual problem.

Formal Solution of the Dual Problem. We shall now examine

Dual Problem I formally, following the same lines of reasoning that

were used for Primal Problem I. We restrict ourselves again to the

simpler case D = 0, B > 0, n = 1, i. e., we assume that all quantities

are scalar.

Thus we wish to maximize

Jd(w, v)= j [v(t) +a(t) - w(t)C] B"1b(t) dt (65)

subject to the constraints that

(i) v(«) be measurable and w( •) be absolutely continuous,

(ii) v(t)^0, [v(t) +a(t) - w(t)C]B_1 > 0, (66)

(Hi) w(T) = 0, (67)
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(iv) w(t) = [ v(t) +a(t) - w(t) C] B"1 for t € [ 0, T] , (68)

= 0 otherwise.

We now introduce a multiplier function |J.(*) and proceed to impose on

it conditions which should make the problem readily solvable. Adjoining

(67 ) and (68) to J by means of the multiplier |jl we get the new
IT

functional

Jd(w,v) =J {[v(t) +a(t) - w(t)C]B_1b(t)

+(w(t) -[ v(t) +a(t) - w(t)C]B_1)H. (t) }dt (69)

/ w(t) [l
Jo

parts, and rearranging terms, we can put the integrand of (69 ) into

either one of the following two forms:

v(t)B_1[ b(t) - M.(t)] + a(t)B_1 [ b(t) - n(t)]

- w(t)CB_1[b(t) - |i(t)] -w(t)|i(t) (70)

or,

[v(t) + a(t) - w(t)C]B_1[b(t) - ji(t)] -w(t)ii(t) (71)

Now, if we follow the approach used in the primal case and let

|i(t) = - CB-1[b(t) - |i(t) ] for all t such that B_1[b(t) - M-(t)] ^ 0,
then (70 ) is minimized by letting v = 0. However, if we examine (71)

we see that when B" [ b(t) - |i (t) ] < 0, (71) may not have a finite

minimum, since [ v(t) + a(t) - w(t)C] ^ 0 by assumption ( (66) &B> 0).
Hence we would have to require B~ [ b(t) - |i (t) ] ^ 0 for all t € [ 0, T] .

Note however, that this would also make the slack variable v = 0 for

all t e [ 0, T ] . It appears that a less restrictive assumption can be

made as follows. Suppose that w (•) and v (•) are the optimal

solution pair which we are going to obtain. Now let jx(t)= -CB { b(t)-\i(t)\

-19-
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for all those t € [ 0, T] when [a(t) - w (t) c] = 0 and fi(t) = 0 for
r*

all those t e [ 0, T ] when [ a(t) - w (t) C] < 0 . Imposing the additional
_X P

requirement that B [ b(t) - |i (t)] ^ 0, t € [ 0, T ] , the expression
(70 ) is minimized by setting v(t) = 0 whenever [ a(t) - w (t) C ] = 0
and, when [ a(t) - w (t)C] < 0 the expression (71) is minimized by

setting v(t) + a(t) + w(t)C = 0 . Thus, provided the

conditions (66) are satisfied, the optimal solution pair (w , v ) and the
(J. |X

corresponding multiplier function \i will be obtained as solutions of

the following set of equations

w(t) =[a(t) - w (t) C] M(t)B_1; w (T) = 0 (72)

v(t) = -[a(t) - wu(t)C]M.(t) (73)

ji(t) =-CM(t)B_1[b(t) - \x(t)] ;|ji(0)=0 (74)

where M(t) = l(a(t) - w (t)C])for te [ 0, T ] and M(t) = 0 otherwise ;
M^t) is defined by M(t) + M^t) = I .

Having completed the formal examination we proceed to show

rigorously under what conditions the above reasoning does indeed lead

to a solution of the matrix dual problem.

Feasible Solutions and Multiplier Functions. It is clear from the

preceeding that optimal solution pairs can, possibly, be obtained as

solutions of the following set of equations (depending on whether

B ^ 0 or B"1 ^ 0 ) :
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w(t) = [a(t) - w (t)C - w (t+l)D]M(t)B"1; w (T) = 0 .
(75)

w (t) = [a(t) - w (t)C - w (t+l)D] B_1N(t); w (T) = 0
(76)

The matrices a, B, C, D appearing in (75) and (76) are those

appearing in the statement of the dual problem; the functions w and

w map R into Rn and the nx n diagonal matrices M(t) and N(t)

are defined by

M(t) = diag l(a.(t) - w (t)C. - w (t+1) D) for t e [ 0, T]
(77)

= 0 otherwise ;

N(t) = diag l((a(t) - wy(t)C - wv(t +l)D)B. ) for t € [ 0, T]
(78)

= 0 otherwise.

Theorem 4: If the function a( •) which maps R into Rn is
piecewise continuous on the interval [ 0, T] then the differential
equations (75) and (76) have unique, absolutely continuous solutions.

This theorem may be proved in the same manner as Theorem 2;

hence a detailed proof is omitted.

Whenever the functions w and w exist, they can be used to
|J. v

define corresponding functions v^ , vv by means of the following
equations:

v (t) = -[a(t) - w (t) C - Wp.U+1) D] ivyt)

-1,vv(t) = -[a(t) - wy(t) C- wy(t+l) D] B" Nx(t) B

-21-
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where M.., N, are n x n matrices defined by M + M,= I, N + N, = I.

Note that if w, ^ 0, v = 0 for t € [ 0, T ] then they form a feasible

solution pair. Similarly, if w ^ 0 and v 1 0, then (w^, v^ )
is a feasible solution pair.

The functions w„ and wy can also be used to define multiplier

functions jjl and v by means of the following equations:

{l (t) = +CM(t) B_1[|J.(t) - b(t)] +DM(t-l) B_1[n(t-1)- b(t-l)]
(81)

H(0) = 0 .

v (t) = +CB_1N(t) [v(t) - b(t) ] +DB_1N(t-l)[v(t-l) - b(t-l)]

(82)
v (0) = 0 .

Theorem 5 : If the differential equation (75) has a unique solution

Wn then the differential equation (81) which it defines has a unique

colution \x . Similarly, if the differential equation (76) has a unique

solution w then the differential equation (82) which it defines has a
v

unique solution v .

This theorem may be proved in the same manner as theorem 3

and hence the proof will be omitted.

We now give a theorem showing under what circumstances the

formal treatment of the scalar case leads to a solution of the vector

form of Dual Problem I.

Duality Theorem Ilia : If the solution pair (w , v ) determined
_^————— p. |j.

by (75) and (79) exists and is feasible, if all the elements of the n x n
matrix B are nonnegative and if the multiplier function ji determined

by (81) satisfies the condition

B-^-fxftJ + bft)] > 0 (83)

for t € [ 0, T] , then the solution pair (w^, v^ ) is optimal for the Dual
Problem L
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Proof: We are required to minimize the functional

Jd(w, v) = I [v(t) +a(t) - w(t) C- w(t+l) D] B"Xb(t) dt

subject to (w, v) e K,. We repeat here the last three conditions for

functions inK,.
d

(ii) v(t) ? o£v(t) +a(t) - w(t) C- w(t +1) DJB"1 > 0
for t € [ 0, T ]

(iii) w(T)= 0;

(iv) w(t) = [ v(t) + a(t) - w(t) C - w(t+l)D] B_1 for t e [ 0, T]

= 0 otherwise .

We now use the multiplier function |jl determined by (81) to

adjoin the conditions (iii) and (iv) to J ,, thus forming the new

functional

J,(w, v) = f {[ v(t) +a(t) - w(t) C- w(t+l) D] B"1 b(t)
^ (84)
+(w(t) -[v(t) +a(t)-w(t)C - w(t+l)D] B'Vtt)} dt

Integrating / w (t) |x (t) dt by parts, substituting for |x(t) from

(81) and making use of the assumption that M(t) = 0 for t not in [ 0, T]
we finally arrive at the following form for the functional JT" :

/N'T1

J,(w,v)= / {[v(t) +a(t)] M(t) B_1[b(t) - u(t)]
d ^o (85)

+[v(t) +a(t) - w(t)C-w(t+l)D] M^tJB'̂ ^tJ-^tjlJdt

-23-



We now minimize J , over the a L, of pairs of functions (w, v) which

satisfy conditions (i) and (ii) for functions in K,, but not necessarily

the conditions (iii) and (iv) , thus L, o K, . Since all the elements of

B are nonnegative by assumption, it follows from ( ii) that

v(t) + a(t) - w(t) C - w(t+ 1) D ^ 0 for t € [0, T] (86)

and hence, since by assumption B [ b(t) - |i(t)] =0 for te [ 0, T ] ,
A

the integrand, and consequently, J, are minimized by any pair of

functions (w, v) € L, satisfying

v(t) = -[a(t) - w(t) C - w(t + 1) D] Mx(t) for t e [ 0, T] .

We recognize that the pair (w ,v ) € L, by assumption, that it satisfies

this condition and hence that it minimizes J, over L,. However, (w ,v )
A d d [i [i

€ K, and, since J, = J, for all (w,v) in K,, it follows that (w , v ) minimizes
a ad. a |J. |jl

J, over K,, also, which completes the proof.
d d

We now state without proof the analogous theorem for the case

B'1 > 0.

Duality Theorem IVa: If the solution pair (w , v ) determined

by (76) and (80) exists and is feasible, if all the elements of the

matrix B are nonnegative and if the multiplier function v determined

by (82) satisfies the condition

b(t) - v(t) ^ 0 (87)

for all t € [ 0, T] , then the solution pair (w , v ) is optimal for Dual

Problem I .

The following two theorems can be proved in the same manner as

Duality Theorems lb and lib; hence their proofs will be omitted. Their

purpose is to establish optimal solutions to the primal problem when

optimal solutions to the dual problem are given by the above two theorems,
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Duality Theorem Illb: Suppose that the multiplier function §jl

defined by (81) exists and that the related solution of the dual problem

(w , v ) given by (75), (79) is optimal. Let the functions (z , u ) be
K" K1 [JL (JL

defined as solutions of the following equations:

z (t)= B"1M(t)[b(t) +Cz(t) +Dz(t-1)] ; z(0) =0 (88)

u (t) = M(t)[b(t) + Cz (t) + Dz(t-l)] (89)

If the pair (z , u ) satisfies z (t) > 0, u (t) ^ 0 for te [0, Tl and|i u, |i - jj. i » J
the matrices B"* and M(t) commute in multiplication, then (z , u ) is

r* r*

an optimal solution pair of the primal problem.

Duality Theorem IVb: Suppose that the multiplier function v

defined by (82) exists and the related solution to the dual problem

(w , v ) given by (76 ) and (80) is optimal. Let the functions (z , u )

be defined as the solutions of the following equations:

zjt)= N(t)B"\b(t) +Czy(t) +Dzy(t-1)] ;zy(0) =0, (90)

u^t)= BN(t)B"\b(t) +Cz^(t) +Dzv(t-1)] (91)

If the pair (z , u ) satisfies z (t) = 0, u (t) ^ 0 for t € [ 0, T] and
r V V V V

the matrices BT^ and N(t) commute in multiplication, then (z , u ) is

an optimal solution pair for the primal problem.

A SPECIAL CASE

For the case where D is the zero matrix, and B the identity

matrix, we can readily compare the results obtained here with the

results of [ 2 ] . For this case, the results of [ 2 ] guarantee the exis
tence of solutions to the primal and dual problems if
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1) The elements of C and the components of b(t) are

non-negative for all t € [ 0, T I

2) The components of a(t) and b(t) are continuous

over [ 0, T] .

We shall show the following:

Theorem 9: Let B = I, D = 0, and let all the components of a( •)

be piece-wise continuous functions of time. If all the components of C

and b(t) are non-negative for all t in the interval [ 0, T ] , then all the

hypotheses of duality theorems IH-a and Ill-b are satisfied and the

primal and dual problems have solutions.

Proof: Since all the components of a( • ) are peicewise continuous,

it follows from theorem 4 that (75) has a solution. The fact that the

components of C and of b( • ) are non-negative insure that the solution

pairs (z , u ) and (w , v ) are feasible and that (83) holds. (Note z =z
r (JL (J. ' |J. [L H- v
when B = I.)

(i) The above case is a special case of the problem considered

by Tyndall [ 2 ] . For this special case, however, we have not only

relaxed the conditions for the existence of solutions obtained in [ 2 ] ,

but we have actually obtained the solutions. It should, however, again

be emphasized that the results of [ 2 ] apply to a larger class of problems,
We must stress again that even for the case B = I, the

existence of an optimal solution to the primal problem and the existence

of a feasible solution to the dual problem do not guarantee the existence

of an optimal solution to the dual problem and vice versa. This fact is

contrary to the analagous situation in ordinary linear programming where

the mere existence of feasible solutions to the primal and dual problems

guarantees the existence of optimal solutions to both problems. This

matter, together with an approaprate illustrative example, is further

discussed by Tyndall in [ 2 ] .
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CONCLUDING REMARKS

Computational Aspects. There are no unusual computational

difficulties involved in calculating the solutions to the differential equa

tions encountered in this paper. The procedure one would follow, for

example, in the application of duality theorem I-a would be to first in

tegrate equation (27) backward in time to obtain X.(t). From this (29) is

used to obtainA(t) corresponding to \(t) and the solution to (32) is then

obtained by integrating forward in time. If the solutions to (32) and (36)

are feasible then they are optimal. A similar procedure is used in applying

the other duality theorems. Finally, it should be pointed out that if the

solutions obtained are not possible, and hence not optimal, then optimal

solutions have to be sought by other means which, mostly, still remain

to be discovered.

Pontryagin's Maximum Principle . The reformulated problem is

seen to be essentially a variational one. It cannot, however, even for

the case without delay, be directly treated by Pontryagin's maximum

principle [ 7 ] , [ 8 ] due to the nature of the constraints. In addition,
the maximum principle is concerned only with necessary conditions for
optimal solutions while we are concerned here with obtaining sufficient

conditions.

Calculus of Variations . The reformulated problem can, however,

for the non-delay case, be partially treated by the classical calculus of
variations, keeping in mind that the conditions one might obtain are only
necessary. The constraints such as. (17) are handled by the method of
Valentine [ 9 ] as discussed in [ 10 ] . However, to be handled by the
classical theory these constraints must satisfy two conditions which we

repeat here from [ 10 ] in terms of the notation of (17).
We define a 2n component vector valued function of t, z(t), and

u(t) (we will assume D = 0 and B = I, the identity matrix):

r(t,z(t),u(t)) = (ux(t), ...,un(t), -u2(t) + bx(t) + C z(t), . . .,

-un(t) +bn(t) +Cnz(t) )
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Then the constraints appear as

r(t, z(t) , u(t)) > 0

To be handled by the classical theory these constraints must satisfy the

following conditions: (i) At most n components of r can vanish for any

t € [ 0, T ] on any solution (z , u ) to the primal problem to which the

necessary conditions are applicable; (ii) On any solution (z , u ) to the

primal problem to which the necessary conditions are applicable,

the matrix

3r.
1

8u.
J

where i ranges over those indices where

r. = 0
i

has maximum rank.

It is not difficult to construct examples where the first of these

two conditions is violated, and yet the sufficiency conditions of duality

theorem I-a are satisfied. To illustrate this consider the problem

(n = 1) in the primal problem notation

b(t) =J 0, 0<t <1
1, 1 < t < 2

v.

C = 1, a(t) =1, 0<t<2

D = 0
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with [ 0, 2 ] the interval of interest. The solution to this problem
from duality theorem I-a is readily obtained as

u (t) = 0, 0 < t < 2

z (t) = 0, 0 < t < 1

t-1
= e -1 1 < t < 2

For this problem r is a two component vector, and on the interval [ 0, l]

both components vanish, violating condition (i)

In summary, we have appraoched the continuous linear

programming problem from a point of view rather different from

the one found in previous treatments. Furthermore, we have extended

the problem to include systems with time delay constraints. Our method

is constructive: Whenever optimal solutions can be shown to exist they

can also be computed without any difficulty. Finally, for the method

presented to be applicable it is not necessary that both the primal and

dual problems have solutions simultaneously.
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APPENDIX

AN EXAMPLE

Examples of continuous linear programming problems occuring

in practice are numerous [l],[2],[3] . Presented here is a variation

of a problem treated by [ 2 ] .

Consider a steel mill whose rate of steel production at time t is

given by z2(t) . Let z^(t) denote the rate of stockpiling of produced
steel. The rate of production of steel is limited by the initial capacity

of the mill b2 ( - 1) and the time integral of the rate z2(t) - z-At) at
which produced steel is allocated to increase the capacity of the plant.

Since the rate of stockpiling of steel can never be greater than the rate

of production we have the constraint that z,(t) - zJ^t) can never be

positive. Over the time interval [ 0, 1 ] it is desired to maximize the

net output of steel, the time integral of zx(t). Stating the above as

equations we have

zx(t) - z2(t) 1 0

z2(t) ^ 1+ z2(t) - zx(t) , 2l(0) = 0, z2(0) = 0.

Under the assumptions that steel will never be destroyed and that steel

once stockpiled cannot be used to increase the capacity of the plant we have

zx(t) > 0

z^t) 2 0

In the vector notation of the primal problem I we then have

Bz(t) £ b(t) + Cz(t)

z(Q) = 0
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where

Il-a.

z(t) = (z^t). z2(t))

c =

(0, 1) a(t) = (1, 0)

0 0

B =

Hl -1

-1 1 0 1
__ •

To solve this problem we shall make use of duality theorem

The inverse of the matrix B is

If1-

,-1and satisfies the hypothesis of the theorem that all the elements of B

be non-negative. It is readily verified that

6X = 1 - t
t€ [0,1]

62= t-1

satisfy Eq. (28) where for this case

B_1C =
•1 1

•1 1
A(t) = i
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The solution to Eq. (33) is verified to be

z,-(t) = t + 1

t € [0,1]

z^(t) = t + 1

and u°(t) =0.

Also, the solutions are feasible and consequently (z ,u ) is the

solution to the problem. The physical interpretation is that at least

over the interval [ 0, 1 ] it is to the greatest advantage to directly

stockpile all of the produced steel, and use none of it to increase the

capacity of the plant.

IN REMEMBRANCE

The authors would like to express their indebtedness to the

late Professor Edmund Eisenberg for many stimulating and fruitful

discussions concerning the field of mathematical programming.
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