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ABSTRACT

A model is developed for treating velocity space instabilities in

bounded finite-temperature plasmas, in which the wave vector is arbi

trary. Density gradients near the plasma boundaries are included.

Solutions are obtained in the boundary layer region by solving the

Boltzmann equation in the presence of an arbitrarily constructed poten

tial, whose coefficients are determined in a self-consistent manner.

The model is used to extend the work of a previous paper, which dealt

with two stream instabilities, to a treatment of instabilities arising

from temperature anisotropy. A bimaxwellian distribution is considered

and the limits of instability are found. The conclusion is reached that

the limits of instability can be approximately determined from the un

bounded plasma analysis provided the correct transverse separation

constant is determined from a simple bounded plasma model.

+

Present address Bell Telephone Laboratories, Murray Hill, N. J.



A Boundary Layer Model for Velocity Space Instabilities
+

J. S. Jayson and A. J. Lichtenberg
Department of Electrical Engineering

Electronics Research Laboratory
University of California, Berkeley, California

I. INTRODUCTION

In a previous paper , we considered the problem of bounded plasmas

with thermal motion in the direction of the applied magnetic field, BQ .

The effects of transverse temperature were neglected because no new

effects were expected for the modes being considered with TM > Tx >

where T|( is the "temperature" parallel to BQ, and Tx is the "temper

ature" perpendicular to the magnetic field. However, even if this condi

tion were satisfied, there exist an infinite number of modes near the

cyclotron harmonies which disappear if Tx is neglected. Furthermore,

if Tx > Th , a mechanism exists for instability due to the anisotropy in

2-6temperature. ~ The purpose of this paper is to extend the results of
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ref. (1) to examine the stability limits for a plasma with both transverse

bounds and finite transverse temperature. More generally, we wish to

develop a boundary layer model which enables one to obtain a dispersion

relation for a hot plasma slab in the presence of a uniform magnetic

field. The model considered in ref. (1) was a homogeneous plasma

column in a waveguide, which in the general case did not fill the guide.

The boundary conditions applied to the model did not differ from those

applied to a cold plasma because the transverse plasma temperature

was zero. In the present case, the concept of a surface charge is no

longer meaningful. The "surface" is now a boundary layer with a thick

ness of the order of a Larmor orbit. The first-order charge density at

any particular position cannot be computed with the local electric field

but must take into account the effect of the electric field experienced by

each particle as it travels along its zero-order orbit.

In previous work a number of models were used to describe the

particle motion in the boundary layer. In the second part of Landau's

paper on the oscillations of an electronic plasma, a semi-infinite plasma

was considered with an external longitudinal field of frequency, go,

impinging on the plasma. The problem was to find an expression which

described the penetration of the field into the plasma. Among the boundary

conditions utilized was the condition of perfect particle reflection at the

interface or wall separating the plasma from the vacuum. This condi

tion states that at the wall, i. e. , at x = 0, fn(v, 0) = fi(-v, 0) , where f,

is the first-order distribution function, and v is the velocity in the

direction perpendicular to the wall. Although this assumption is an

idealization that must be treated with some skepticism, it does give the
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physically acceptable conclusion that there is no particle current through

the wall. A problem similar to Landau's, involving the penetration of an
g

electric field into a metal, was treated by Reuter and Sondheimer. In

this situation a semi-infinite configuaration was also assumed, but both

spectral and diffuse reflections were permitted at the boundary. In

9 10studying the Tonks-Dattner resonances, Weissglas assumed a uniform

plasma situated between two perfectly reflecting walls. He found that

asymptotically in time, the expressions for the resonance frequencies

are the same as for an infinite plasma; the effect of the walls is to

restrict the wave number to specific discrete values. Montgomery and

Gorman found the same result and stated that the addition of an exter

nally imposed magnetic field would not alter the result. At first glance

this conclusion may seem surprising, because a finite hot plasma in a

magnetic field is diamagnetic. It would appear therefore that in the

zero-order distribution function, a spatially-dependent term must be

included for the surface current. However, if the plasma is uniform and

bounded by perfectly reflecting walls, the particles that are reflected by

the walls result in a current equal and opposite to the surface current

from the non-reflected particles and the zero-order distribution is in

12 13
fact the same as in an infinite medium. '

It can be concluded from these analyses that the infinite plasma

model may, in certain instances, lead to the same results as the finite

plasma model with perfectly reflecting walls. This statement is demon

strated in Appendix A. These solutions have been limited, however, to

situations in which the propagation is perpendicular to the boundary

surface, and the plasma is uniform.
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Expansion techniques have also been utilized in bounded plasma

problems. These techniques have had some success both for uniform

and non-uniform plasmas. In studying the Tonks-Dattner resonances,

14
Parker, Nickel, and Gould used the first two moments of the Boltzmann

equation as their basic equations, i.e. , the equations of continuity and

momentum conservation. The retention of higher terms in the moment

2
equations is equivalent to retaining higher terms in powers of (kc^p/co) ,

thermal speed over wave speed squared, in the dispersion relation.

2
Retaining terms of the first order in (ka^/oo) results in the familiar

dispersion relation for an infinite uniform plasma,

p p

where co is the plasma frequency, and a^ is the thermal speed. By

using the moment equations and the quasi-static approximation, V x E = 0,

a fourth order differential equation is obtained for the potential. In a

cylindrical configuration, two solutions are discarded since they are

singular on the axis. Hence, two boundary conditions are necessary :

the first matches the potential across the plasma surface, and the second

is a condition on the particle motion. Parker, et al. assumed that the

plasma was contained in a glass tube and considered the normal particle

current at the walls of the tube as zero. The problem was solved

numerically for a non-uniform plasma and the results were in close

14
agreement with the experimental data.

The hydrodynamic equations do not include the resonance effects

of the particle motion and hence such phenomena as Landau damping and,
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in the presence of a magnetic field, cyclotron harmonics, are not

accounted for. In addition, solutions have only been obtained for k =0.

If instead of taking moment equations, the Boltzmann equation is re

tained and utilized in conjunction with Poisson s equation, an integro-

differential equation may be obtained for the potential. For a strong

dc magnetic field, this equation may be expanded in powers of ka' /u, ,

where co is the cyclotron frequency. The resonance nature of the

particle is still accounted for and the integro-differential equation is

reduced to a differential equation, the order depending upon the order

retained in powers of kaT/u> . (The parameter ko' /o>c is the ratio

of the Larmor radius to wavelength.) This approach has been taken by

several authors. ' Buchsbaum and Hasegawa solved for the per

turbed distribution function in the usual manner but carried through an

operator, d/dy, rather than the wave number, k , of a homogeneous

plasma. They expanded in the parameter {a /go )(d/dy) and retaining

terms of fourth order the result was a fourth degree differential equation

for the potential. By taking k equal to zero the equation reduces to a

second-degree differential equation and for certain density profiles this

equation can be solved in terms of known functions. Using the boundary

condition of zero-particle current at the wall, they derive a dispersion

relation. For a uniform plasma this relation has the form (in our nota-

*• ^ 16tion),

2

2 2.. 2 2 2. x 2 . rnr. -. /ox(4„c -u )(<,c +Up -„ ) - _J-Up (_) =0, (2)

where 2 a is the width of the plasma. The model used to obtain this

relation is reminiscent of the model employed in Appendix A for the
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derivation of Eq. A-10. In that situation the boundary condition was

perfect reflectivity at the wall. This boundary condition not only spec

ified the velocity at the wall, but all other moments too. If, however,
4

Eq. A-10 is expanded and only terms through order (k a> /wj are

retained, the information concerning the higher moments is lost and the

equation reduces to Eq. 2. (There is a small numerical difference but

this is due to the fact that Eq. A-10 satisfies only the even modes, while

Eq. 2 satisfies both odd and even modes.)

If k is finite, we must consider the fourth degree differenital
z

equation. For an inhomogeneous plasma this equation has non-constant

coefficients and numerical methods must be used to obtain solutions.

For the homogeneous plasma, on the other hand, we obtain a fourth-degree

polynomial, for the dispersion relation. There are two wave numbers

that satisfy this equation, and an attempt was made to obtain its numerical

results. However, in the process of searching for solutions it was dis

covered that the expansion used to derive the two wave numbers fails.

One of the wave numbers apparently is always large enough so that

k ff /(o takes on a value in the neighborhood of unity and the expansion
y x c

is not valid. Physically this result may be explained as follows: In order

to keep the expansion parameter small, one selects a small value of

a /aw . In a cold plasma the first-order velocity is proportional to the
x c

local electric field. In the present problem there is a normal electric

field at the wall. As a —0 the plasma becomes nonthermal in the per-
i.

pendicular direction, and the particle, spiraling in a circle of decreasing

radius, becomes less dependent upon distant electric fields and more

dependent upon the local fieli. To meet the condition of zero velocity at
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the wall in the presence of a finite electric field requires that the

electric field oscillate rapidly with distance; in the limit of a - 0 , one

of the wave numbers goes to infinity, i.e. , its corresponding wave length

goes to zero.

In all of the above bounded configurations, in which solutions

have been obtained by imposing boundary conditions on the particles,

k =0. Furthermore, the particle boundary condition in all cases was

that of zero current at the plasma boundary. In order to relax these

stringent assumptions it appears necessary to consider a plasma boundary

in which no explicit assumptions concerning the particle velocity at a

boundary need be introduced. One such configuration is clearly an

inhomogeneous plasma in which the density falls to zero at the boundary.

In the following section we introduce variation in the z direction and

consider such an inhomogeneous plasma, thus eliminating the necessity

of a boundary surface. In Section IJI a dispersion relation is derived

and numerical results are given.

II. BOUNDARY LAYER MODEL

Consider the model of a homogeneous plasma slab between two

conducting walls, but not filling the space between the walls. In an

earlier discussion we concluded that the concept of a surface charge on

the slab is without meaning if there is thermal motion in the direction

perpendicular to the slab surface. Not only is the surface distributed

over a distance of the order of Larmor orbit, the perturbed charge at

any one point also depends upon the electric field over all space. Com

puting the charge within this inhomogeneous boundary layer, from Gauss's

law we relate the field in the plasma to that in the vacuum. Thus, the
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boundary layer serves as the equivalent of a surface charge. In Fig. 1,

three regions are considered: a homogeneous plasma, a boundary layer

region, and an outlying vacuum. We assume the following hierarchy,

^ <i <A.
c

(3)

where J.\. in this instance is the transverse wavelength within the homo

geneous plasma, and i is the width of the boundary layer. The boundary

layer is taken to be several Larmor diameters in extent. This assump

tion is physically acceptable, and at the same time, as we shall show

in the discussion below, it will enable us to obtain a solution by utilizing

the dispersion relation for the infinite homogeneous plasma.

A qualitative discussion is now given of the physical situation.

Consider a particle in the homogeneous region in the vicinity of the

boundary; the particle's orbit extends into the boundary layer region.

Although there is a small class of particles which traverse the entire

boundary layer, for all practical purposes the largest depth of penetra

tion is a Lamor diameter. Since the boundary layer is several times

greater than this distance, and since we will consider a density profile

with a zero gradient at the plasma interface, the density at the deepest

point of penetration is still of the same magnitude as the density within

the homogeneous plasma. Therefore, as far as all particles within the

central region are concerned, the plasma is homogeneous and infinite

12
in extent; hence the dispersion relation for a uniform infinite plasma

1, 2 J. v2k + k
y z

00

I-p2 ^exp<--^)i™(V)
m=-oo

2

2

2

ml 2
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is valid in the central region for small \ , where

w + moo

'm k a
z z

k a

00
C

We have introduced the function

Y2 C& 2Z(£) = 2je *» \ exp(-t ) dt
J-00

which is the Fried and Conte plasma dispersion function, and a is the

thermal velocity in the z direction. We consider a solution in the cen

tral core with a single wave number which necessitates retaining terms

2
through \ in an expansion of Eq. 4. By doing so we limit ourselves to

a study of only the fundamental mode and neglect the higher harmonics.

Since the fundamental mode is the most unstable for anisotropic insta

bilities, this is the mode of most interest to us.

Equation 4 can be used directly to verify the assumption of ref.

(1) that transverse temperature can be neglected in treating two stream

instabilities. Assuming an isotropic temperature, and substituting the

parameters used in the previous calculations, we find that if the dispersion

relation is computed for the two lower modes, the difference in the results

obtained from Eq. 22 in ref. (1) is negligible.

We now consider the solution in the boundary layer. The solution

in an inhomogeneous plasma cannot, in general, be obtained in terms of

known functions. To surmount this difficulty we consider i\./4 > £ .
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The potential variation through the boundary layer can then be expected

to be a slowly varying and monotonically decreasing function. This being

the case, we need not solve for the potential in the boundary layer but

can construct it from an arbitrary set of independent functions. If the

potential and the normal electric field are matched across both inter

faces, the constructed potential should closely approximate the true

solutions. Furthermore, the potential will appear only under an integral

sign, and hence the solution is rather insensitive to the exact shape of

the potential profile.

Using the above prescription we proceed to solve for the per

turbed distribution function in the boundary layer region, and from this

quantity compute the charge density. The zero-order Boltzmann equa

tion for an inhomogeneous plasma is

e

v'vfo +irdXBo»'Vo = °- (5)

If density variation is considered only in the y direction, the general

solution to this equation is

2 2e<pC)
fA = f n(v , v + - , v - y to + C ) . (6)

0 0X z x rn x , ' c

where the independent variables are the constants of motion of a particle

in the presence of a potential <pQ, and a constant magnetic field, Bq ,

(a low p plasma is assumed, (3 being the ratio of particle pressure to

magnetic pressure, and therefore the magnetic field is constant through

out the inhomogeneous region) , and C is an arbitrary constant. We will

consider a neutral plasma, in which case the zero-order potential is
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constant. Zero-order electric fields may occur in laboratory plasmas

but they depend upon the diffusion process. Since we are considering

a collisionless plasma, the inclusion of a zero-order electric field

would not necessarily reflect the actual physical situation.

Any combination of the independent variables may be used to

construct a zero-order distribution function that satisfies Eq. 5. We

choose a density variation in the boundary layer of the form,

n(y) = nn(l - (y-a + I)'
).

where nn is the density of the homogeneous plasma. Let,

fn = Aexp

r 2
v

X

a a

2-i

z

"2
z J

a

(1 - b(vx - (y-a +i)wc) )

The constants A and b are to be evaluated subject to the condition

imposed by Eq. 7. We have for the density

n(y) =y0d3v =AnyZaza^(l - -^- -b(y -a+ I)2 co2)
and from Eq. 7 we find,

b =

A =

l2* 2+^
c 2

n,

3/2 2
it a a

z x
(1- -rM

= (1 +

-11-
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± x 0

24 w

\

•371 Z
it a a

(7)

(8)

(9)
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We note that this distribution function leads to an average macroscopic

current density in the x direction. The j_ X B force resulting from this

current balances the force due to the pressure gradient.

To find the first order distribution function we use the linearized

Boltzmann equation:

9f

Ttt1 +I-Vfl +m-(rX^0>' Vl =mVV VvV (11)

The left hand side of the equation is the total derivative of ^ in time

along the zero order path of a particle in phase space. The solution to

this equation is

%=s f v"i<y> •vvf0
-00

After applying the equation,

d<p dr b<p d<p
eft " HT 8r + 8t '

dt1 (12)

(13)

integrating by parts, and using the transformation s = t -1' , the per

turbed distribution function is,

2e

fl= -
ma

^y)fo +̂ T
r

-2v

X e
J(" ~kzvz)s f0<P(y')ds

2 ;jkz+l^Jlj(u-kZvz'
z ' x J

B)(
1

(14)

Variation in the x direction has not been included although this variation

may also be taken into account in the present theory. There is no
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zero-order electric field and the zero-order particle orbits are there-

17
fore the same as in a homogeneous plasma. From Stix, y' is thus

given by

-v v
X r 1 V

y1 = [ 1 - cos co si - sin co s + y
' co L c J co c

c c

(15)

The potential <p(y) is still to be specified. We will assume that <p{y) is

a sum of independent exponential functions with a characteristic wave

number (3, where the coefficients are to be determined by the boundary

conditions, and (3 will be determined from the solution of the dispersion

relation. For ease of calculation we assume <p(y) is eJpy and substitute

the full expression into the final results. Following the procedure used

17for a uniform plasma, we substitute the value of y1 into Eq. 14, and

integrating over v and v we obtain,

u dv dv = -J* e^y CCf.dv dv +£- Cxy ma2 JJOxymJ0
00 -2v

— Jkz +
a x a

z x

(*-Vz))
j(a,-kzvz)s / p«

6XP [-1^

a a

«)

P2a42 2

(pVXexp ( "^ cos cocs
.co

1 + x _ x + x

2co 2i 2 2<o 2&Z 4i2co 4

2 JP*.X(l + cos co s- 2 cos (os) r^y (y - a +j^)( 1 - cos cocs)
co i

c

(y-a + i)

i2

/-vz2\ n0eJ^
exP ( —%T I t ds

U2ot a.

-13-
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The integration over s may be performed after use of the identity,

oo

a cos 0 jn6

•!•. (a)e (17)

n=-oo

In performing this integration we use the usual assumption that our

integrals are defined for growing waves and are analytically continued

for damped waves. A final integration over v gives the charge density

for the nonuniform plasma, assuming that the potential is known,

^ x n=-oo

- (Y-* +&)Z) (PD +2)
a2i2 J n

1 + 3 V
71 * l2<*2 n2 2

I co
c

(y-a + i)

+ \ 7 (PD 2+PD2+4) +(-!)( _1— - -J|_ (y-a +l)
l6i2co 2 n+ n \4co 2iZ 2co 2i2 >

X <PDn+l + PDn-l + 4>

where

Pa

Y =
co

and

2<x 2nco

PD = ±- f 1 + t, Z(t, )) + -,-—- Z(C )
n 2 * n x n' / k a x n'

or

-14-
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If the charge density is integrated over the width of the boundary layer,

the result to be utilized in Gauss's law to relate the electric field in the

plasma with that in the vacuum, we obtain a dispersion for the plasma
2

waves. Expanding and retaining terms through order v , we obtain

a f !i dy =aQe^a +jpab^e^ - e^<a "'>) +jPac0 e^<a "<>. (19)
Ja-i 0 u u

where

2
aco 7

a0 =7^-2t--2PD0]
a co v

c T

•>«-M;wPD°)
2

co

c =-£-
0 2

CO
c

(-T'l) PD0 +X<PDl +PD-l)

Before proceeding further we shall demonstrate that this expression

is equivalent to the surface charge found on a homogeneous cold plasma

beam. To verify this statement the following limits are taken; first a

is allowed to go to zero, then I is reduced to zero. The resulting

expression should be the surface charge found on a beam with thermal

motion only along the axis. Letting a -* 0, we have
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4a 2

a -* 0 K z

4.2
bo =-^2(1+^oz^o)) '

a -0 f P"z
X

-2co 2 to.
co =W^^M +r-E—(z«i>-z«-i>) • (20)

R a 2k a co
o<-Opz zzc

To take the limit of i-0, the exponential e"J ^ is first expanded,

f ?dy.^(a0+bo0e^2-P2la) +JPac0) ,
'a-i 0

and upon collecting terms and allowing ^0 we find that

^a-i 0 z z c x '
i-*0

Since the potential was taken as e^a, -j(3eiPa is the component of the
electric field at y = 0. In comparison with ref. (1), Eq. 12 reveals that x

2

2k Z» (Za-1} • Zai0 ' isthatPartof eyy <€rr is identicalto eyy)
zzc

representing the surface charge. Therefore the expression representing

the charge in the boundary layer reduces to the proper value in the limit

of a cold plasma with a sharp boundary.

-16
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III. DISPERSION RELATION AND NUMERICAL RESULTS

The boundary conditions are now discussed. The normal elec

tric field and the potential are continuous at the boundaries and these

properties give four boundary conditions. These conditions assure us

of a properly behaved potential in the boundary layer region. A fifth

condition relates the field in the plasma to that in the vacuum through

Poisson's equation. Consider an element of volume extending through

the boundary layer. From Gauss's law we have

E - E + P || dy = P ?-l dy . (23)
yvac yplasma ^a-i ^a-i 0

The solution in the homogeneous plasma is A cosk y where k is given

Y-Kv Y
by Eq. 4. The solution in the vacuum region is Be . Since there are

five boundary conditions, the solution within the boundary layer is con

structed from three independent functions and is taken as

<p(y) = dQe"ay cosk y +d.e'^sink y +d2 e~ay cos 2k y. (24)

We now have five homogeneous equations and five unknown constants, and

a non-trivial solution is found by equating the characteristic determinant

of these constants to zero.
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where

and

a „__ i|j(k +jor) i(j(-k + j<*)
S - -»L- "" I ^""y o^eV ,r Ait _ Z 1!~ - ak \ e" ^ cosk ydy -0 z J y*

a _r ^(k^ +j*) lK-ky +JQ')2 Pa -ttv H^k+J")
S, = ak \ e y sink ydy y- +
1 z Ja-i y 2j

S0 = ak \ e_ary cos 2k ydy -
2 z J„ « y

pa PX(P)

i|i(2ky +jor) vM-2ky +ja)
T

a-.

i|i(p) = a \ -1— dy. (25)
"a-i 0

If instead of three regions, two regions were considered with the density

falling off to zero at a conducting wall, the dispersion relation would be

simplified somewhat, the result being a fourth-order determinant rather

than fifth order.

We see from the above dispersion relation that the fields in the

plasma are related to those in the vacuum by a distributed "surface"

charge in a boundary layer region. The potential throughout the boundary

layer must be known if the charge is to be computed. This potential is

expressed in terms of a set of independent functions, and their coefficients

are evaluated by matching the potential and normal electric field at the

boundaries. The computed charge retains information concerning the

resonance effects of the particles. The zero-order moments in the

boundary layer are equal to those in the homogeneous plasma at their
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common interface. However, the same is not true of first-order

moments. To match these moments at the boundary, the potential in

the inhomogeneous plasma would have to be expanded in additional

functions, and thus the result of matching these moments is a further

refinement in the specification of the potential. The resulting disper

sion relation is very unwieldy and we choose not to make this refine

ment.

For an infinite plasma the boundary between stable and unstable

regions in parameter space for an anisotropy in temperature has been

2-6 6studied by many authors. " Ozawa, Kaji and Kito computed curves

giving the limits of instability for the fundamental mode in a single

species plasma, after first expanding the dispersion relation in powers

of the parameter a k /co . The limits of instability were computed for

the fundamental mode. However, they only examine the limits of

stability for large k . This limit is a result of increased Landau
z

damping. For a bi-Maxwellian distribution, growing waves are found

only for finite k . This statement may be easily verified by allowing
z

k to go to zero in Eq. 4 . The dispersion relation then depends upon
z

only T and hence must be valid for a plasma in thermal equilibrium

which, from thermodynamic considerations, does not support growing

waves. Therefore, before proceding to treat the bounded plasma, we

inquire whether an additional region of stability also exists for small

k for an infinite plasma. A typical curve of the instability limit is
z

extended to smaller values of longitudinal wave number by numerically

solving Eq. 4 . (Ozawa, etal. , arrived at a different form of the

dispersion relation, but the two forms are equivalent.) The results

are given in Fig. 2. We find that the plasma is stable for small k and
z
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the region of stability for this particular example occurs at angles of

propagation greater than 60° with respect to the magnetic field.

To obtain similar curves for the finite plasma, it is necessary

to solve the set of Eqs. 4 and 25 simultaneously. The procedure is as

follows: We fix parameters a /to a, or/or , i/a and v2w^/kiTQ- .
j_CZj_ czz

2 2
From Eq. 4 we solve for the parameter co /co as a function of the

fixed parameters and the variables ak and co/co , where to/cj is
r y c c

taken to be real. To satisfy the condition that to /to must be real, we
J p c

equate the imaginary part of the right hand side of Eq. 4 to zero. From

this equation we obtain to/to as a function of ak . Turning our atten-
c y

tion to Eq. 25 the only unknown parameters now are the transverse separa

tion constants from Eq. 24, k and a. We map the dispersion relation

in the complex plane as a function of these variables. Where the map

passes over zero we have a solution. The value of ak found from this

solution is substituted into the expression for co /co and a point is ob

tained for the instability curve. The value of v2co /k a is varied, the
1 c z z

process is repeated, and further points are found. In keeping with our

approximations, only the lowest order spatially varying mode is inves

tigated. The results are plotted in Fig. 3. The dashed curve gives the

limits of stability for a constant wave number as in Fig. 2 . For this

curve a /aco = 0.1 and k a = tt/2. A direct comparison between these
x c y

results and the finite plasma cannot be made since in one situation we

fix the transverse wave number, while in the other we fix the radius of

the plasma. For large values of k the value of k a for the fundamen-
r ° z y

tal mode lies near tt/2 ; as k is decreased the eigenvalue of k also
z y
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decreases, and thus qualitatively the behavior of our dispersion rela

tion may be explained. The effect of the boundary is to quantize the

transverse wave number. We may conclude that the dispersion relation

for an infinite plasma, in conjunction with a simple model to determine

an approximate transverse wave number, would be adequate to predict

the regions of instability due to temperature anisotropy. It should also

be noted that the instability examined here involves a different wave

interaction (4) from that treated previously. Thus a two-stream sys

tem could exhibit both types of instability each derived from a separate

facet of the departure of the distribution function from equilibrium.
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APPENDIX A

It is to be shown that, with certain restrictions, Eq. 4 satisfies

the boundary condition f.(v,a) = f,(-v,a). It is assumed that there is

only propagation across the magnetic field, i. e. , k =0. In this situ-
z

ation

E =Acosky,k = (2n +l)* (A_1}
y yy y 2a x '

The perturbed distribution function is,

iQ[<P(Y) +§ jcoejto%(y')ds] (A-2)f = -(-**-
1 \ma 2I " ^0

The zero order distribution function frt, is even in v , hence the first
0 y

term on the RHS of (A-2) is even. We must now show that,

I =f f0ejus^(y«)ds (A-3)
J0

is an even function in v at y = + a . To express y' in terms of s we

utilize Eq. 15. Taking the form of <p from Eq. A-1 and assuming fQ to

be bi-Maxwellian, upon integrating over v we obtain

k v
• y y •_ ., -j—^—- smco s

P°° -A P°° icos jkvy "c CH(v y) -\ Idvx =7^L e^S(e y e
y ° (A-4)

k v

j ——— sinto s - jk y ,.2 2
"c C y \a 2- e e ) exp - ( —-—— (1 + cos co s - 2 cosco s) ] ds

\ to 2 C /
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&

From the identity,

oo

ejZSin5 =£ Jn(z)eJn5. (A-5)
n=-oo

We transform Eq. A-4 to

where

v / jk y .k v . -jk y .k v .\H(Vy) =I (e ^Jn(^l)(-Dn-e T̂ Jjrjj ^, (A.6)
n= -<xr '

2 2
. A poo . jnco s /~k or 7 \

C = Il£ V eJa)Se c exp y x (1+cos w s - 2cosco ) ds ,
n 2ky J0 \ to 2 c C/

and we have employed the identity

Jn(-z) = (-l)nJn(z).

For H(-v , y) we have,

-v-ir'V^)-H^\(^)k. <-,
n=-oo *

Equations A-6 and A-7 may be written in the form,

oo , oo ,

H(vy.y) =£ J„(-Xi)cn2jsinkyy+^ Jn( -J&) Cn 2cos (kyy)
n= -oo n= -oo
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&

H(
k °° V

-Vy) =1 Jn(lF)C„2JsinV "1 Jn(lF) Cn2cos <V> '
n=-oo n=-oo

(A-8)

Hence from Eq. A-1 ,

H(vy,a) = H(-vy,a). (A-9)

Thus the dispersion relation for the infinite medium may be applied to

the case of perfectly reflective walls. Substituting

, (2n + l)
k = -— ir

y 2a

into Eq. 4 and letting k go to zero, we obtain the dispersion relation,
z

/(2n + l)ir\
oo \ 0

2 V "TT x2
-co / e I —-

P Li n 2
n=-oo

-25-
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Fig. 1
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