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NONLINEAR PROGRAMMING AND OPTIMAL CONTROL

Pravin Pratap Varaiya

ABSTRACT

Considerable effort has been devoted in recent years to

three classes of optimization problems. These areas are non

linear programming, optimal control, and solution of large-scale

systems via decomposition. We have proposed a model problem

which is a generalization of the usual nonlinear programming pro

blem, and which subsumes these three classes. We derive nec

essary conditions for the solution of our problem. These condi

tions, under varying interpretations and assumptions, yield the

Kuhn-Tucker theorem and the maximum principle. Furthermore,

they enable us to devise decomposition techniques for a class of

large convex programming problems.

More important than this unification, in our opinion, is

the fact that we have been able to develop a point of view which

is useful for most optimization problems. Specifically, we show

that there exist sets which we call local cones and local polars

(Chapter I), which play a determining role in maximization theories

which consider only first variations, and that these theories give

varying sets of assumptions under which these sets, or relations

between them, can be obtained explicitly.
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INTRODUCTION

HISTORICAL BACKGROUND

Many problems in engineering and industrial planning can be reduced

to the maximization of functions under constraints. These problems can

be mathematically formulated as follows:

Maximize (f(x) | g(x) >0, x >0J (1)

where x =(x, , . .. , x ) is an n-dimensional variable, g =(g^, ... gn>

is an m-dimensional function of x and g(x) > 0, x > 0 (which means

g. (x) > 0, x. > 0 for each i) represents the constraint on x. f is a real-

valued function of x and is the performance index or profit function.

Methods for solving such problems in nonlinear programming almost

invariably depend on some use of Lagrange multipliers. These methods

are extensions of the classical theory of Lagrange multipliers, and use

only the first variations of the functions involved. The first satisfactory

theoretical solution of (1) was presented in the paper by Kuhn and Tucker [1].

They show that under certain qualifications on the function g (which insure

the adequacy of the first variations), the solution of (1) is related to the

determination of a saddle-point of the Lagrangian function:

$ (x, X) =f(x)+<X, g(x)> (2)

-1-



-2-

Some papers [2J have since appeared which deal with the situation where

the variable x in (1) ranges over more general spaces. An essential

weakening of the constraint qualification of Kuhn and Tucker, and a

clarification of its role was given by Arrow et al [3]. Cases where x

is subjected to more general constraints than in (1) have been investigated

by Arrow et al [4].

It should be noted that the situation discussed above is a static sit

uation. Time does not enter into the formulation of these problems. In

contrast to this, control engineers are frequently faced with problems

which are essentially dynamic in nature. These problems may be ab

stracted into the following general form. We are given a system which

can be represented as a difference equation

x(n+l) - x(n) = f (x(n), u(n)) , n>0 (3)
n —

or as a differential equation

dx (t) = f(x(t), u(t), t) , > 0 (4)
dt

where x(n) and x(t) represent the state-vector of the system at time n

(in the discrete case (3)) and at time t (in the continuous case (4)), re

spectively. u(n) and u(t) represent the control vectors. We are given

certain constraints on the state and on the control and we are required

to find a control sequence (u(n), n>0) or a control function (u(t), t>0),

such that the constraints are met and some scalar-valued performance

index is maximized. The main theoretical solution to the continuous-

time problem (4) is the "maximum principle" of Pontryagin et al [5]. In

his dissertation, Jordan [6] gives a maximum principle for the discrete

case (3). His approach is essentially a translation of the methods of

Pontryagin. The situation envisaged in (3) and (4) can be further com

plicated if we introduce randomness into the picture so that x and u are
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now random variables [7]. It should be remarked that these methods also

limit themselves to first variations. In the formulation of the "maximum

principles, " an important part is played by a vector y which is the solu

tion of the adjoint equations of (3) and (4). It is intuitively clear that this

y/ vector is the ubiquitous Lagrange multiplier, and if so, we should be

able to derive these results from suitable generalizations of the Kuhn-

Tucker theorems, for example. So far, however, no such contributions

have appeared in the literature.

The practical applicability of nonlinear programming to engineer

ing and industrial problems has been limited to a certain extent by the

size or "dimensionality" of the problem. In an attempt to meet this con

tingency, a considerable amount of effort has been directed to obtain a

sort of "decomposition theory. " The basic idea is the following. Many

large problems can be "decomposed" into a number of autonomous smaller

problems which are coupled either through constraints or through the pro

fit function or both. Is it possible to reformulate this problem in such a

way that the modified problem can be decomposed and solved by its parts

as it were, so as to yield a solution to the original problem? In the lin

ear case (i.e., where f and g of (1) are linear), one may use the Dantzig-

Wolfe decomposition technique [8]. A dual approach to a more general

class of problems has been presented by Rosen [9], Lasdon [10], in his

dissertation, has suggested a decomposition technique which can be ap

plied to a different class of problems.



PURPOSE OF THIS PAPER

While the three classes of problems referred to above--namely,

constrained maximization, deterministic and stochastic optimal control

and decomposition techniques--appear to be more or less unrelated, we

hope to show that they are different versions of the same constrained

maximization problems. Our model is a slight generalization of the

Kuhn-Tucker model (1). Namely, we wish to

Maximize (f(x) | g(x) e A, x e A'J (5)

where A' is an arbitrary set and A is any convex set. We shall show

that (5) is related to a saddle-value problem. We also hope to show that

the solution to (5) rests upon a very elementary and well-known geometric

fact that under certain conditions two disjoint convex sets can be separated

by a closed hyperplane. In order to account for certain applications, we

have found it useful to allow the variable x in (5) to be an element of a

Banach space, rather than the more usual, but slightly less general,

Euclidean space. We feel that the proofs are not appreciably complicated

or prolonged by this generality.

Far more important, in our point of view, is the fact that for all

these maximization problems there exist pairs of "dual" cones which we

call local cones and local polars, which in a sense convey all the informa

tion about first-order variations. The various maximization theories

(viz., Kuhn-Tucker theorem, the Maximum Principle) then, give various

conditions under which these sets and the relationships that they satisfy,

may be determined. We thus hope to show that through the introduction

of the notions of a local cone and a local polar we have presented a common
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framework with which we can deal with maximization problems. In in

dividual cases, furthermore, these sets may have a more intuitive struc

ture. Thus, for example, in Chapter V, we show that the so-called

"cone of attainability" (see Reference 5) is an approximation of the

local cone.

The structure of this paper is as follows: In Chapter 0, we ac

cumulate (without proof) some of the well-known results of the theory of

linear topological spaces. Details and proofs of these statements can be

found in Dunford and Schwartz [11]., In Chapter I, we introduce some

terminology and discover sets (the local cone and the local polar) and re

lations between them which are essential to a maximization theory which

limits itself to the first variation only. Theorem 1. 1 demonstrates the

relevance of these sets. In Chapter II, we hope to make transparent the

necessity of some sort of constraint qualification. Chapter III gives an

extension of the Kuhn-Tucker theorem. We tackle problem (5) and the

related saddle-value problem in Chapter IV. A maximum principle for

both the deterministic discrete case (under more general conditions than

in [6]), as well as the stochastic case, is obtained in Chapter V. A sec

tion of Chapter V is devoted to an extremal problem in differential equa

tions. This section is heavily dependent on the papers by Gamkrelidze [13]

and Neustadt [14]. The connection between the problem that we consider

and a class of continuous-time optimal control problems with state tra

jectory constraints is shown in Neustadt [14].

Finally, the relation of (5) with classes of decomposition techniques

is presented in two papers [15, 16] which will soon be available. We

therefore omit this material here.



CHAPTER 0

PRELIMINARIES

In this chapter, we collect (without proof) some of the well-known

facts in the theory of linear topological spaces. Throughout our discus

sion, the field associated with a linear space will be the field of realnum

bers. For a detailed explanation and for the proofs of these statements,

the reader may refer to Dunford and Schwartz [11]. We shall assume

also that all the topologies which we encounter are Hausdorff.

1. Separation theorem in linear topological spaces.

(a) Let X be a linear topological space and K. and K2 be disjoint

convex sets in X with K1 open. Then there exists a non-zero continuous

linear functional f which separates them, i.e., there exists a number a

such that

f(x1)>or> f(x2) Vxx e K: , VXg e Kg

(Remark: The existence of f is equivalent to the existence of a proper

closed hyperplane [x | f(x) =or} which separates Kj and K2- )

(b) Strong separation theorem. Let X be a locally convex linear

topological space and Kj and K2 be disjoint closed convex sets in X with

K, compact. Then there exists a continuous linear functional f, real

-6-
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numbers a and c, c > o such that

f (x^ a > a - c > f (x2) Vxj e Kx , Vx2 e K2

2. Def. A Banach space is a normed linear space which is complete in

the metric induced by the norm.

(a) A Banach space (with the topology induced by the norm) is a

locally convex linear topological space.

Def. If X is a Banach space, the space of linear continuous functionals

on X is a Banach space and will be denoted by X* = [x*J

(b) The Hahn-Banach theorem. Let X be a B-space and X, a sub-

space of X (i. e., a closed linear manifold of X). Let xj e X* . Then

there exists x* e X* such that

x* extends xr and

||x*j| = ||xf||

(c) The Open Mapping theorem. Let X and Y be B-spaces and f

a linear continuous function from X onto Y. Then f is open, i.e., if U

is an open set in X, f(U) is an open set in Y.

(d) Derivatives in Banach space. Let X and Y be B-spaces and

f a map from X into Y. We say that f is differentiable at a point

x € X iff,

3 a linear continuous function f (x) from X to Y such that

lim f (x+h) -f (x) -f (x)(h)ll= 0 , Vh e X
||h||-»0 ||hj|

f (x) will be called the derivative (the Frechet-derivative) of f at x.

V (x) is unique if it exists and the usual differential calculus applies [12].

(e) Weak topologies in Banach Spaces. Let X be a Banach space

and X* its dual. The usual topology on X is the one induced by the norm.
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It is also called the norm-, or uniform-, topology. However, we can

also induce another topology on X which is weaker than the norm-topology.

Def. The weak topology on X is the weakest topology on X which keeps

all the elements x* e X* continuous.

Alternately, a net fx I in X converges weakly to an element x e X

(i. e., in the weak topology of X) iff

x*(x )-»x*(x) Vx*e X*

Now let x be a fixed element in X. We can consider x as a function 'x'

on X* as follows:

x" (x*) = x* (x)

Thus the map x-» xT is an imbedding of X onto X £X**. Dually we have,

Def. The weak* topology of X* is the weakest topology on X* which keeps

all the elements x of Xf continuous.

Alternately, a net {x*} in X* converges weak*ly to an element x* e X*

(i. e., in the weak* topology of X*) iff

x* (x)-»x* (x) Vx e X

(f) The weak topology on X and the weak* topology on X* are

locally convex topologies.

Def. A B-space X is reflexive iff X = X**.

Def. If X is a B-space and x* e X*

<x*, x> = x* (x)

If X and Y are B-space and g: X-» Y is a linear map,

< g, x> = g(x)



CHAPTER I

Here we introduce some terminology and define sets which we call

local cones (LC) and local polars (LP) that are essential to a maximiza

tion theory that only takes into account first variations. We shall obtain

some relations between these sets using elementary manipulations. One

of the more important results will be an analog of the Bipolar theorem in

the theory of dual spaces, and which as a special case yields Farkas'

Lemma. The relevance of the local cones and local polar is given by

Theorem 1. 1 which gives necessary conditions for the maximization of

a function when the variable ranges over a subset of the entire space.

Let X be a locally convex (real) linear topological space and X*

its dual (X* is given the uniform topology).

Def. 1. 1-M Let A be a non-empty set in X (X*). Let x e A (x* 6 A).

By the closed cone—'generated by A at x (x*), we mean the intersection

of all closed cones containing the set A-x = (a-x | a e AJ (A-x* =
{a-x* t a € A] ). We denote this set by C(A,x) (C(A,x*)).
Remark 1. 1: If A is convex, C(A,x) (C(A,x*)) is convex.

Def. 1.2: Let A be a non-empty set in X (X*). Let x e A (x* eA).

By the polar of A at x (x*), we mean the set

1J A set C is a cone if (Vo>o) (Vxe C) [axe C]

2/De£. 1. 1, 1.2, 1. 3, 1.4 are not necessarily standard in the
literature.

-9-



-10

P(A, x) =| x* |x* eX*, <x*, x> =x* (x) < 0\/x eC(A, x)/

(P(A,x*) ={x | xe X, <x,x*> =x* (x) < 0Vx*e C(A,x*)})
If A is a cone, P(A) = P(A, 0)

Remark 1. 2: (a) P(A, x) is a closed convex cone in X*.

(b) P(A, x*) is a closed convex cone in X.

Def. 1.3: Let A be a non-empty set in X and x e A. Let//(x) be the

neighborhood system at x (i.e., the class of all neighborhoods of x).

By the local closed cone generated by A at x, we mean the set

LC(A,x) = C\ C(A/>N,x)
N e/vf(x)

Remark 1.3: (a) If A is convex, LC(A,x) = C(A,x)

(b) We are not interested in local cones in X*.

Def. 1.4: Let A be a non-empty set in X and x e A. By the local polar

of A at x we mean the set

LP(A,x) =(x*| x* €X*, <x*,x>< 0 \/xe LC(A,x)J
Remark 1.4: (a) LP(A, x) is a closed, convex cone in X*.

(b) See Fig. 1.1 for an illustration of the objects defined

above.

Def. 1.5: Let A be a cone. Then Co(A) is the intersection of all the

closed convex cones containing A.

Fact 1. 1 (Analog of the Bipolar Theorem). Let A be a cone in X.

Then (P(P(A)) = Co(A). In particular if A is closed and convex,

P(P(A)) = A.

Proof: (a) P(P(A)) £ Co(A).

By Remark 1.2 (b) it is sufficient to show that P(P(A)) 3 A.

Let x e A be fixed and x* e P(A).

Then<x*,x>< 0 Vx* e P(A). .* . x e P(P(A)).
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(b) P(P(A)) £ Co(A).

Suppose x e P(P(A)) and x ^Co(A).

Then by the strong separation theorem, 3 x* e X*, x* / 0,

a real and e > 0, such that

<x*,x> > a > a-e > <x*,x> Vxe Co(A) (1)

Since Co(A) is a cone, 0 e Co(A)

.' . a - e > <x*, 0> = 0

= > 0.

Again since (Co(A) is a cone, .*. Ax e Co(A) V X> 0, Vx e Co(A).

.'. <x> <x*,x> Vxe Co(A)

=4 0> <x*,x> Vxe Co(A)

. *. <x*, x > > a > 0 > <x*, x> Vxe Co(A)

.'. x* e P(Co(A)) by definition.

Moreover A c. Co(A)=» P(A) o_ P(Co(A)).

.*. x* e P(A) and since <x*,x>> 0, x ^ P(P(A)).
Q. E.D.

Corollary 1.1 (Farkas'Lemma). Let ar . . ., aR, b be vectors in a

finite-dimensional Euclidean space. If,

<a.,x><0 V.=^<>,x> < 0, then
n

3 Xy .. ., \ > 0 such that b = E X.a.

Fact 1.2 Let A be a cone in X. Then

P(A) = P(Co(A))

Proof: (a) ACCo(A) P(A) ^ P(Co(A)).

(b) Letx* e P(A) .*.<x*,x><0 \/x e A.

Let (xr . .., xnj c A and \y ..., \ be positive.
n

Then <x*,x.> < O Vt=4 <x*, Z Xx.> < 0.
i L i=i



By continuity we get,

<x*,x> < 0 Vxe Co(A)

.*. x* e P(Co(A)).

Q.E.D.

Corollary 1. 2 LP(A, x) = P(Co(LC(A, x))).

Proof: LP(A, x) = P(LC(A, x)) by Def. 1.2 and Def. 1.4.

= P(Co(LC(A,x))) by Fact 1.2.
Q.E.D.

Fact 1. 3 Let A., and A„ be closed convex cones in X. Then

P(AxnA2) = P(AX) + P(A2)

Proof: (a) P(A^ Ag) ^ P(AX) + P(A2)

Let xx * e P(A1), x2* e P(A2) and xe A^ A2

.*. <xx*,x> < 0 and <xg*,x> < 0 so that

<xx* +x2*,x> < 0. .*. (X]>* +x2*) e P(A1/n A2)

P(Axn A2) £ P(AX) + P(A2).

Since P(A,nA2) is closed, the assertion follows,

(b) P(Ain A2)C P(AX) + P(A2).

Let x* e P(A1HA2) and x* ^ P(A1)+P(A2>.

By the strong separation theorem, 3 x e X, or real and £ > 0

such that

<x*,x>> a>> a -6> <x*,x>Vx*e P(AX) +P(A2)

.\<x*,x>> 0> <x*,x>Vx*e P(AX) + P(A2)

.\(x*,x><0 Vx* e P(AX) +P(A2)

.'. xe P(P(A1))/lP(P(A2)) =AinA2 by Fact 1.1

But x* e P(A,/1A9) so that <xV,x>< 0.
— 1 * Q.E.D,

-12-



-13-

Corollaryl.3 Let Aj and A2 be cones in X. Then

P(A1AA2) =HA1) +P(A2) (D

iff Co(A1/>A2) =Co(A1)nCo(A2) (2)

Proof: (a) (2)^^(1).

By Fact 1. 3,

P(Co(Ain A2)) =HCo^)) +P(Co(A2))

By Fact 1. 2,

P(Co(A1HA2)) =P(A1^A2) and

P(Co(At)) =P(A.)i =1,2.

(b) (1)=*(2).

(l)=^P(P(A1OA2)) =P(P(AX) +P(A2))

By Fact 1. 1,

P(P(A1/0A2)) =Co(AinA2) (3)

By Fact 1. 3,

P(Co(A1)nCo(A2))= P(Co(A1)) +P(Co(A2)) =P(AX) +P(A2) by Fact 1.2

.'.P(P(A1) +P(A2)) =P(P(Co(A1MCo(A2)))

Co(A1)/^Co(A2) by Fact 1.1 (4)

From (1), (3), and (4) we obtain (2).
Q.E.D.

Corollary 1.4 Let Ax and A2 be non-empty sets in X and x e A^Ag.

Then, LP(A^ A2, x) =LP(Ar x) +LP(Ag, x)

iff Co(LC(A1/1A2,x)) =Co(LC(A1,x))r)Co(LC(A2,x))

Remark 1.4 (a) The previous corollary will be useful in obtaining results

both in "decomposition techniques" as well as in "optimal control. " Sup

pose we have a variable x which is constrained to lie in two sets A1 and
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A2, i.e., x e A^D A2- Now, as will be demonstrated in Theorem 1.1,

the important set for maximization is the set LP(A1 nA„, x). If x were

constrained to be in A. only, the relevant set would be LP(A.,x), i = 1, 2.

Under what conditions canwe obtain the set LP(A1OA„,x) from the de

composed pieces LP(A^ x), i = 1, 2? This corollary gives a partial

answer to this. It may be noted that LP(A,^ A»,x) is not always equal

to LP(A,,x) + LP(A2,x). A simple counter-example is the following:

Let X=E2 ={(x1,x2)j

Let A. be the x.. axis, i.e., A, = ((x., 0) Ix. arbitrary]

and A2 = /(xrx2)| x2 +(x2 +l)2 < l]

Let x = (0, 0)

Then LHA^A^x) =E2

but LP(A1,x) + LP(A2,x) =x2 axis.

(b) It is also interesting and important to determine conditions under

which LP(Ar x) + LP(A2, x) =LP(Ar x) + LP(A2, x). Stated differently,

let A. and A„ be closed convex cones. When is A1 + A2 =A^ + A2?

Unfortunately we have been unable to find a satisfactory solution to this

problem.

Local Maxima

Let X be a real B-space and f a real-valued differentiable function

on X. Let A be a non-empty set in X.

Def. 1.6 f has a local maximum at x in A iff

(i) x e A

(ii) 3 a neighborhood N of x such that
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f(x) = sup |f(x)| xe NnAj
Theorem 1.1 f has a local maximum at x in A=^

>V f' <£> e LP(A,x)

Proof: Let N be a neighborhood of x such that

f(x) = sup[f(x)/ xe N/1AJ
Let M be a sufficiently large positive integer such that

Sn = fx I II x-x I < _L ? C N and define
u I I II • MJ

S =/x| xtxI<_1? n=0, 1,...
nil fl M+nJ

Then, N£S02S1 ... and ft Sn={xj>

v .«.

Now, for each x e AfiS^ we have
n n

f(x )<f(x) n = 0, 1 (1)
n — —

and since f is differentiate

f(xn) =f(x) +<f» (x), xn-x> +o (|| xn-x ||) < f(x)

.*. <f (x), xn-x) =f(xn) - f(x) +o( ||xn-x ||) < o( ||xn-x ||)

.\<f (x), xn-x > < o( ||xn-x||) for xne AnSn n =0, 1, ...

iv^ll llxn-^il
.*. lim sup (V (x), xn-x>< 0

n-*co xne AHSn P^\\

.'. lim sup <f» (x), xn-x>< 0
n-»oo xn-xe C(AnSn,x) |pv"x||

.-. sup (<f» (x), x >l xefi C(A0Sn, x) =LC(A,x] < 0I ||X|| n=0

.*. <f (x), x><0 VxeLC(A,x)

.'. f (x) e LP(A,x) by Def. 1.4 q.e.D.

Corollary 1.1 Let A be convex and f a concave function.
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Then f has a maximum at x in A (i.e., f(x)>f(x) Vxe A)

4=* f (x) e LP(A, x)

Proof: l,=*n follows from Theorem 3.1.

M<~" LP(A, x) = P(LC(A, x)) = P(C(A, x)) since A is convex

.'. f (x) e P(C(A, x)) ==»<f (x), x-x) < 0 Vx e A (1)

Now since f is concave,

f (x) < f (x) + <f» (x), x-x> Vx e A

< f (x) Vx e A by (1)
Q.E.D.
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Fig. 1.1 Def 1.1 to 1.4



CHAPTER II

CONSTRAINT QUALIFICATION

In this chapter, we study the notion of constraint qualification. Two

definitions are presented. One is that of Kuhn and Tucker [1]. The second

is a weaker requirement, first suggested by Arrow et al [3]. We shall

demonstrate the sufficiency of these requirements in terms of the sets

introduced in Chapter I. Since we shall be dealing with derivatives of

functions, we shall restrict ourselves to Banach spaces, because there is

no adequate theory of differentiation in more general spaces. For a defi

nition of the Frechet derivative, the reader may refer to Chapter O.

(For details, see [12]). It should be clear that the discussion of Chapter I

is valid for B-spaces.

Let X and Y be real B-spaces; g:X—»Y a differentiate map.

Let Ay be anon-empty subset of Y, and Ax =(x | g(x) e A^U g |AY|.

(Note: The definitions given below closely parallel Arrow et al [3], )

Let x e Ay..

Def. 2. 1 We say that a vector x e X is an attainable direction at x. if

if there exists an arc fx (0) |0<6< lj CAx such that

(1) x(0) =x

(2) x(0) is differentiable from the right at 9 = 0

-17-
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and B |e-o '= x' (0) =Ax-
Let AD(x) =JAx | Ax is an attainable direction at x j
Clearly AD(x) is a cone.

Let A(x) = Co(AD(x)) = closed, convex cone generated by AD(x).

Def. 2. 2 We say that a vector Axe X is a locally constrained direction

at x if <g» (x), Ax) =g« (x) (Ax) e LC(Ay, g(x)).

Let L(x) = ( Ax J Ax is a locally constrained direction at x X

Clearly L(x) is a closed cone.

Fact 2. 1 AD(x) C LC(AX, x) hence

A(x) C Co(LC(Ax, x))

Proof: Let AxeAD(x)

.'. Ax =x1 (0) where [x(0) | 0<6< lj £ Ax and x(0) =x

.*. x{0) = x(0) +0x' (0) +o(6)

= x+0Ax+o(0). (1)

Let N be an arbitrary neighborhood of x and 0(N) > 0

be sufficiently small so that

x(0) e A^-HN V0<0(N)

.*. x(0) - x e AX/0N - x C C(Ax0N, x)

.*. Ax+o(0) e C(AY0N, x) by (1)
T x

.'. Ax eC(Ax.HN, x) since it is closed.

As N was an arbitrary neighborhood of x we have

AxeDC(xflN, x) =LC(AX, x) by Def. 1.3

N^> Q.E.D.

Fact 2. 2 LC(AX, x) C L(x) hence,

Co(LC(Ax, x))cCo(L(x)).



Proof: Let Ax e LC(AX, x) =N/w(x)C(AxON, x)
oo

n=l C(AX^Sn' -J where

Sn= |x | jjx -xj| <i j n= 1,2, ...

( >oo . ^ oo
x, / C A^-flS and a sequence { A? £, ,

of positive numbers so that,

lim X? (x, -x) = Ax n = 1, 2, . . .
k->oo

* v 00 , j 00

By a diagonal argument, 3 sequences 1x ! and j An |
k n=l kyn=l

so that,

lim X* (xn -x)= Ax andxn eA^/OS .'.lim xn =x
n->oo nk nk " nk ^ n n-»oo nk

Now, g(x* )=g(x) +<g'(x), xn - x >+o (||x" -x\\)
nk k Tc

Let N be an arbitrary neighborhood of g(x) in Y. Let n(N)

be sufficiently large so that g(xn ) e AvfiN for all n>n(N).
nk

.'. (g(xn ) - g(x)) e (AY0N - g(x)j C CtAy/lN,^)) \/n >n(N)
nk C ]

.-. g(x" )- g(x) =<g'(x), xn - x) +o(|fxn - x)|) e C(AYflN, g(x))

lA~T\ W\--W W\--W Vn>„(N)by(l)
Also, Ax =lim Xn (xn - x) so that if Ax f- 0 we have,

n-»oo nk nk

Ax .lim Xn (xn -x) „lim x* -x
jJATTl ~n->oo nk nk n-»oo 'k

»Xnk(Xnk^« »Xnk^ll

-19-
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In (2) letting n-»oo we get

^g1 (x), Ax)e C(AYHN, g(x)) for Ax /= 0.

Since 0 always belongs to C(Ay AN, g(x)) we have for any neighborhood

N of g(x) that

<g'(x), Ax) e C(AynN, g(x))

.\<fef(x), Ax>e C\ C(AVDN, g(x)) = LC(A-,, g(x))
Nc/rtg(x)) ^ Y

•'• Axe L(*>- Q.E.D.

Combining Facts 2. 1 and 2. 2 we obtain

Lemma 2.1 (a) AD(x) C LC(AX, x) Q Ux)

(b) A(x) Q Co(LC(Ax, x)) c Co(L(x))

Def. 2. 3 We say that (g, A^., Ay) satisfies the Kuhn-Tucker constraint

qualification (KT) if

AD(x) 2 L(x) Vxe Ax<

Def. 2.4 We say that (g, A^ Ay) satisfies the weak constraint

qualification (W) if

A(x) -O L(x) Vx e Ax

Remark 2.1 KT=^W since AD(x) c A(x).

Corollary 2.1 (a) If (g, Ay Ay) satisfies KT, then

LC(AX, x) =L(x) =[Ax | <g'(x), Ax) e LC(Ay, g(x))J
(b) If (g, Ax, Ay) satisfies W, and if Ay

is a convex set in Y then

Co(LC(Ax, x)) =L(x) =[Ax|<g»(x), Ax)e LC(Ay, g(x))J
Proof: (a) follows from Lemma 2.1 (a) and Def. 2. 3.
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(b) follows from Lemma 2.1 (b), Def. 2.4 and the fact that Ay convex

implies Ay - g(x) convex so that

LC(Ay, g(x)) =Co(LC(Ay, g(x))) Q E D

Remark 2.2 It was demonstrated in the last chapter that the sets important

for our discussion are LC(AX, x) and LP(AJC, x). Now usually the set

Ax is given indirectly as Ax =g /Ay j and cannot be explicitly deter

mined. However, the set Ay is given and LC(Ay, g(x)) can be easily

computed. The constraint qualifications, presented above, enable us to

determine the unknown sets LC(AX, x) from the sets LC(Ay, g(x)). In

fact, as is shown in the next result, the set LP(AX, x) has an even

simpler form if a constraint qualification is satisfied.

Theorem 2.1 Let Ay be a convex set in Y and assume that

(g, Ax, Ay) satisfies W. Let x e A^ then
LP(A^, x) = LP(Ay, g(x)) o g'(x) where

LP(Ay, g(x)) og'(x) =[y* og'(x) J y* e LP(Ay, g(x)))
Proof: (a) LP(AX, x) C LP(Ay, g(x)) o g'(x) =B say.

First notice that B is a closed convex cone in X*. Suppose

x* e LP(A»., x) and x* ^ B. Then, by the strong separation theorem,

3Ax e X, a real ande> 0, such that

(x*, Ax>= a> or-e^^x*, Ax) Vx*e B.
Since B is a cone, we have

/x*, Ax) > 0 > <x*, Ax) Vx*e B. (D
. .*. Ax^ Co(LC(Ax, x))=4<g»(x), Ax>=Aj^ LC(Ay, g(x))

by Corollary 2.1 (b)
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By hypothesis, Ay is convex, so that LC(Ay, g(x) is a closed convex

cone, not containing Ay. Once again using the strong separation theorem,

3 y* e Y*, 0 real and 6 > 0 so that

<y*, Aj >=P> 0 - 6><y*, Ay> VAy e LC(Ay, g(x))

Again,

<y*, A^> > 0> <y*, Ay> VAy e LC(Ay, g(x))

.'. y* eLP(Ay, g(x))

.*. y* o g'(x) e LP(Ay, g(x)) o g'(x) C- B.

But <y* o g'(x), Ax)=<y*, Ay) > 0 which contradicts (1)

(b) LPfA^., x) 3 LP(Ay, g(x))og'(x)

First notice that it is sufficient to show that

LP(AX, x) £ LP(Ay, g(x))og»(x).

Suppose Jy* e LP(Ay, g(x)) such that y* o g'(x) £LP(AX, x).

Then, 1 Ax eX, a real and e> 0 such that

/y*o g'(x), Ax) =Q> a -e> (x*, Ax) Vx*eLP(Ax, x)

.'.<y* o g'(x), Ax)> 0> <x*, Ax) Vx* e LP(AX, x)

Ax eP(LP(Ax, x)) =Co(LC(Ax, x))

Moreover <y* o gf(x), Ax) =<y*, g»(x) (Ax)) =<Y*> Ay)=<*> 0

.*. Av ^Co(LC(Ay, g(x) =LC(Ay, g(x)).

But by (1) and Cor. 2.1(b) <g'(x), Ax) =A£ e LC(Ay, g(x)).

Corollary 2.2 If in the hypothesis of the above theorem, Ay is a convex

cone then

LP(AX, x) =LP(Ay, g(x))og'(x) £ P(Ay) o g'(x).

Proof: Since Ay is a convex cone and g(x) e Ay,

(1)



.*. Ay. CAy- g(x)

.*. Co(Ay) C LC(Ay, g(x))

.*. P(Ay) 2. LHAy, g(x)). The rest follows by Theorem 2.1
Q.E.D.

Corollary 2.3 In the hypothesis of Theorem 2. 1 let Ay ={o).

Then LC(AX, x) =(Ax|<g'(x), Ax) =oj and

LP(AX, x) =Y*og'(x).

Remark 2. 2 It is necessary to determine conditions under which

Y*o g'(x) = Y*o g'(x). If this were true, then in Corollary 2. 3, any

element x* e LP(AX, x) could be expressed as x* =y*o g'(x) where

y* e Y*. A partial answer to this is given in the following assertions.

Fact 2. 3 Let X and Y be real B-spaces and f:X—>Y be a linear

continuous function. Define 7: Y*—*X* by ?(y*) =y*of.

Then

(a) f has closed range =^f has closed range i.e., Y*o f =Y*o f.

(b) f has closed range and X is reflexive =^ f has closed range.

Proof: (a) Let N£X be the null subspace of f, i.e., N ={x | f(x) =0^

Let X.* CX* be the subspace of all elements x* e X* such that

x e N=^ x*(x) = 0. Then by Corollary 2. 3 (taking g = f) we have,

Xx* =Y*o f.

Let Y.CY be the range of f. Then by hypothesis Yj is a (closed)

subspace of Y. We give Y1 its relative (induced) topology and regard

it as a B-space, so that f:X—» Y- is a linear continuous onto map. By

the Open Mapping Theorem f is an open map of X onto Yj.

-23-



Let xx* e Xx*

<^<

Define a function y1 onY. as follows:

y1(y1) =x-*(x) where x e X such that f(x) =y1.

(i) y1 is well-defined. V f(x:) =f(x2)4=*f(Xl - x2) =0

x1*(x1 - x2) =0 since x^ e X1*«=^x1*(x1) =x1*(x2).

(ii) y^ is linear

(iii) y. is continuous. Let jy i °° CY. and y —> 0.
*• 'n=l n

Since f is an open map, it can be easily shown that 3m < oo

and {xn} - CX with ||xn||<m||yn|| and ffc >=y
n=l

•••ly^yj - |x*(xn)| <|x*| ||xn|| <m||x*| ||yn
.'. y- is continuous at 0 and so y. e Y-*.

(iv) By the Hahn-Banach Theorem Jy* e Y* which extends y.. so that

x * = y*0 f. .-. x * e y*o f.

\ (iv)—^Xx* =Y*o f =Yx* o f.

•>0 as n—*oo
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(b) Let Xx* =Y* o f =Y* o f. Then f : Y*—>X^ is onto.

Let y e Hx)

Define a function x1 onX^ as follows:

x^Xj*) =y*(y) where X]* =7(y*) y* e Y*.

By the same argument as before, we see that x^^ is a linear continuous

function on Xx*, i.e., xx e (X^)*.

Now X is reflexive and X1 is a subspace of X. .'. X1 is reflexive.

.'. ]x1 e X1 such that Xj (x^*) =<xx*, x^ .
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y*(y) =x^x^) =xx(7(y*)j =<7(y*), xj =<y*, f(Xl)> Vy* e Y*

.*. y = f(x1)-. .'. y e f(X).
Q.E.D.

Corollary 2.4 Suppose (g, A^., Ay =fo) ) satisfies W. Let

x e Ax. Then if g'(x) has closed range,

LP(AX, x) =Y* og'(x) dif /y* og'(x) | y* e Y*j



CHAPTER III

AN EXTENSION OF THE KUHN-TUCKER THEOREM

This chapter may be considered to be a straightforward application

of the results derived in Chapters I and II. Theorem 3. 1 is a slight ex

tension of the Kuhn-Tucker Theorem. The proof of this theorem demon

strates the need for some sort of constraint qualification.

Let X, Y be real B-spaces; g a differentiable map from X—>Y,

f a real-valued differentiable function on X. Let Ay be a convex set

in Y and A^. = jx g(x) e Ay J =g (Ay} • We shall assume that

(g, A„, Ay) satisfies the weak constraint qualification (W).

Theorem 3.1 (Extended Kuhn-Tucker Theorem)

(a) With the above hypothesis, if f has a local maximum at x in A-,,

then,

f'(x) e LP(Ay, g(x))o g'(x)

(b) In addition to the above hypothesis, suppose that Ax is convex and

f concave. Then f has a maximum at x in Ax iff

f'(x) e LP(Ay, g(x)) o g'(x)

Proof: (a) By Theorem 1.1, f has a local maximum at x in A~,

=^ f»(x) e LP(AX, x).

By Theorem 2. 1, since (g, A^ Ay) satisfies W

-26-



LP(AX, x) =LP(Ay,. g(x))og»(x)

(b) By Corollary 1.1, f has a maximum at x in AY

4=» ff(x) e LP(AX, x)

-27-

«==» f'(x) e LP(Ay, g(x)) o g'(x) by Theorem 2.1.
Q.E.D.

Suppose now that X is a real B-space and Y =Em. Let

Ay= [y =(yr , ym) y.>0 yij. L*t g(x) =(g^x) , gm<x)),
so that A-^ = jx g.(x)> 0 1<i <m> . Let x e A_^ and suppose that

gAx) = ... = g.(x) = 0 and )
1 l L (1)

gi+1(x)> o, . . . , gm(x)> 0. J

Then it should be clear that

LC(Ay, g(x)) =|r(y1, . . . , ym) | yfc >0 Vk<ij
so that LP(Ay, g(x)) = ((Xy . . . , Xm> | ^ <0, k<i; ^

=0, k> i / (2)

Furthermore, LP(A , g(x)) o g'(x) will be closed. Hence, if f has a

local maximum at x in A^, we will have

f'(x)€ LHAy, g(x))og«(x) so that
m

f'(x) = L X.g.'(x) where (X,, . . . X ) satisfies (2).
— . , i°i — 1 m

1=1

m

Also E X.g. (x) = 0 from (1) and (2).
i=l 1 1

We thus have the

Kuhn-Tucker Theorem: Let X be a real B-space and g = {g^, . . . , gm>

be a differentiate mapping from X—>Em. Let f be a real-valued,

differentiable function of x. Then



(a) A necessary condition that x- solves the problem

Maximize jf(x) g-(x)> 0 -} i =1,. . . ,m j is

(i) g.(x) > 0 and there exist numbers X. < 0 * < i < m

such that

-28-

m m

(ii) E X.g.(x) = 0 and (iii) f*(x) = E X.g.' (x).
i=l x 1 i=l 1 l

(b) If the functions f, g., . . . , g are also concave then, the

conditions given above are sufficient.

Remark: We have demonstrated why we need some sort of a constraint

qualification. By Theorem 1.1, we see that f'(x) e LP(AX, x). However,

in order to relate LP(AX, x) with LP(Ay> g(x_)) and g'(x), we need a

constraint qualification. This condition is sufficient but not necessary

for LP(AX, x) = LPCAy, g(x)) o g'(x).



CHAPTER IV

A GENERALIZATION OF THE KUHN-TUCKER THEOREM

AND THE RELATED SADDLE-VALUE PROBLEM

We recall the problem treated by Kuhn and Tucker [1].

Maximize Cf(x) f g(x) >0, x>0? (1)
where xe X(=E ), g:X—> Y( = E ) isa differentiable map and f is

a real-valued, differentiable function of x. Equivalently,

Maximize [f(x) J g(x) e Ay, xe A

where Av is the non-negative orthant in Y and A is the non-negative

orthant in X. The related saddle-value problem is to find x > 0, %> 0

such that

$ (x,y_) < (f> <x,y_) < <j? (x,y) Vx> 0, Vy > 0

where <j? (x, y) =f (x) + <y, g(x)> . We note that x> Q£=±x e A and

y > 0^=»y e -P(AY).

We shall consider the following generalization of this problem,

Maximize £f(x) | g(x) e Ay, xe Aj (2)

where Av is any convex set in Y and A is any set in X. This problem,

however, does not have a natural corresponding saddle-value problem. If,

however, we restrict Av to a closed convex cone, there is a related

saddle-value problem. Namely find x e A, y* € -P(Ay) such that

§ (x,y*) < $ (x, y*) < $ (x,y*) Vx e A, Vy* e -P(Ay)

and where $ (x, y*) = f(x) + <y*, g(x)) .

-29-
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In the first part of this chapter, we shall consider (2) with A,,, as

any convex set. Then we shall specify the case where Av is a closed

convex cone and put forward the corresponding saddle-value problem.

A. Let X and Y be real B-spaces; g, a differentiable map from X

to Y and f, a real-valued, differentiable function of x. Let Av be a

convex set in Y and Ax =|x | g(x) e Ay) . Assume that (g, A^, Ay)
satisfies W. Let A be an arbitrary set in X.

Consider the following problem:

Maximize ff(x) | g(x) e Ay, x e A^ (2)
Theorem 4. 1 (Generalized Kuhn-Tucker Theorem)

(a) Suppose x solves (2). Then

f'(x) e LP(AHAX, x) (3)

(b) If in addition LP(ADAX, x) =LP(A, x) + LP(AX, x) (4)

then ]]x* e -LP(Ay, f(x)) o g'(x) such that

f'(x) +x* e LP(A,x) (5)

(c) If in addition LP(Ay, g(x)) o g'(x) is a closed set in X*,

then ] y* e -LP(Ay, g(x)) such that

f'(x) +y_* o g'(x) e LP(A, x) (6)

(d) Conversely, suppose 3x e A/1AX, 3Z* € -LP(Ay, g(x)) and

suppose A is convex and f(x) + (y_*, g(x)) is concave on A,

then if

y_*, x satisfy (6) and

<£*> g(x)>=0 (7)
then x solves (2).

(e) In any case, if x solves (2), ]#> 0, jy* e -LP(Ay, g(x))
such that

4 f'(x) + y_* o g'(x) e LP(A, x) (8)



Proof: (a) By hypothesis, x solves (2), so that f(x)>f(x)

Vx e A/1AX. .*. Theorem 1.1 ==^(3).
(b) By (3) and (4) we have,

f'(x) e LP(AX, x) =LP(A, x) +LP(AX> x)

=LP(A, x) +LP(Ay, g(x)) o g'(x) by Theorem 2. 1

The last equality =^>( 5).

(c) By (b) we have
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f'(x) e LP(Ay, g(x)) o gf(x) +LP(A, x)

s LP(Ay, g(x)) o g'(x) +LP(A, x) by hypothesis of (c).

.'. 3z* € "LP(Ay, g(x)) such that (6) holds.

(d) By the hypothesis of (d) 3*^ ADAX and 3z* e -LP(Ay, g(x))
such that

f»(x) + y* o g'(x) e LP(A, x).

Moreover f(x) +<y_*, g(x)^ is concave on A so that by Corollary 1. 1

f(x) +<;£*, g(x)> < f(x) +(y.*, g(x)> \/x e A.

Suppose in addition that xe A^ i.e., g(x) e Ay. Then since Ay is

convex, (g(x) - g(x)) e Ay - g(x) c LC(Ay, g(x)).

Also y_* e -LP(Ay, g(x)) so that

<y*, g(x) - g(x)> >0. Vx e Ax.
.*. Vx e ArtAx we have

f(x) < f(x) +<y_*, g(x)> < f(x) + <^y*, g(x)) =f(x)

since /y_*, g(x)) =0 by hypothesis. .'. x solves (2).

(e) This is obvious because 0 belongs to every cone.
Q.E.D.

For purposes of application to optimal control, we wish to strengthen

part (e) of Theorem 4. 1 for the following special situation.
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Theorem4.2. Let X and Y be real B-spaces and g a differentiable

function from X to Y. Let f be a real-valued differentiable function

of x. Let A be a non-empty set in X, and suppose that x solves (1).

Maximize f f(x) I g(x) =0, x € A j (1)
Then under assumptions Al and A2, there is &/f> 0 and a y_* e Y*,

not both zero such that

4 f»(x) + y* o g»(x) e LP(A, x) (2)

Al. Let D = LC(A, x). We will assume that D is convex. Further

more, if D f (oj , there is a subspace Z cX, such that D has a non

empty interior C relative to Z. Finally, if z(e ) for e>0 is an arc in

C, such that lim z(e ) = x and z(e ) is differentiable from the right at
e-»0

e =0 with z'(0) e C, then there is a sequence e ^ 0 such that z(^n) e A.

A2. Let G = g'(x). We assume that if G(D) =Y, then G(D) =Y. Let

N={x / G(x) =OJ . Then we shall assume that if N+D =X, N+D=X.
Also, if LP(N)riLP(D) =(o) we will assume that LP(N) +LP(D) is

closed.

Remark 1: If X is finite-dimensional, then assumptions Al and A2 are

trivially satisfied when A is a finite union of disjoint closed convex sets.

Before we proceed to the proof of Theorem 4. 2, we shall obtain

some preliminary results which we shall need and which also have some

independent interest.

Lemma 4. 1. Let X and Y be B-spaces and G a continuous linear

map from X to Y. Let D be a closed, convex cone in X such that

G(D) = Y.

For e>0, let Pf =/Ax | || Ax |<?, Ax e d] . Then there is areal
number m > 0 such that



where S is the closed sphere in Y of center 0 and radius rap.

Proof: The proof of this lemma is a straightforward modification of the

proof of the Open Mapping Theorem [11] and is, therefore, omitted.

Q.E.D.

Lemma 4. 2. Let D be a closed convex cone in X, and g, a contin

uously differentiable function from X to Y such that g(0) = 0.

Let G =g'(0) and suppose that (3 m>0) (Vf >0) (G(P^) £ S ).

Let z e D, || z \\ - 1 and G(z) =0. Then there is a number eQ> 0,

and a function o(e ) such that for all 0 <e < e Q, the set g( ez +PQ^e j)

is a neighborhood of 0 in Y.

Proof: Let v: X—»Y be the function defined by v(x) = g(x) - G(x).

Then, || v(e z +x^ - v(ez +x2) ||

=|| g(e z+xx) - g(ez +x2) - G(x: - x2) ||

=!|<g«(ez+Xl), x1 -x2) +o1(|x1 -x2|)-G(x1-x2)||
Therefore,

IvUz+Xj) -V(€Z+X2)|| < 1^(62 +XX) "G ||+ O^K -XgH)
xl " x2 •xl " x2

Also, ||v(ez+x)|| = ||g(ez+x) -G(ez+x) || =o2(||ez+x|)

Pick anumber eQ >0 such that if0<e <eQ,
|v(ez+Xl) - v(ez+x2)|j <m for ||x.|| <e i =1, 2

xl " x2

and o„(||6z+x||) =o(€)<m € for ||x. || <e, i =1, 2.
& 4

Fix 0<e<eQ and let yeY with Jy|| <o(e ).
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Let Xq e D such that G(xQ) =y and ||x0|| < 1_ ||y|| <_1_ o(e ).
m m

Let x1 e D such that G(x« - xQ) =-v(e z +xQ) and II x« - xQ II < 1
m

-34-

v(ez +xQ) I <_1_ o(e).
m

For n>l, let x ., e D with G(x ,- -x ) = -v(ez +x )+v(ez+x ,)
— n+i n*ri n n n-i

and II x +1 - x || < 1_ o(e ).
m

We first show that for n > 0, x I < e so that the above inequalities

are valid. Firstly,

|xjl< 1 o(e)<l e and ||x- - x,
011 ^7m

< -L 0<€ )< i €
m 4

.*. «Xl||< x,

By induction on n,

xn+l " Xn

|x . -x
n+p p

xl "x0 I <| e

<(2^Th-oii< a)nih-*oii
/i \p i f II „ n j\p 2

In particular, xn+1 - x1 | < j so that Virs*1^

o(e)

Also x converges. Let lim xr =x. Then
n n->oo

xn < £ o(e ) and x e D.
m

Now,
G(xQ) =y

G(x1) - G(xQ) = -v(ez +xQ)

G(x2) - G(xx) =-v(ez +xx) +v(ez +xQ)

G(xn+1) - G(xn) =-v(ez +xn) +v(ez +xn_1)

Adding both sides we get,



G(xm *) = y-v(e z + x ), n > 0.
n+1 n

y = G(x ,-) - v(ez +x ), n > 0.
n

Also |y - g(e z +xn) J =Jy - G(xn) - v(e z +xn)

=Jy - G(xn) +G(xn+1) - G(xn+1) - v(e z +xn>

" IG(xn+l " xn> U N lxn+l-xnll^°
.*. g(ez+xn) »y as n—*oo

But x —»x so that g(ez +x) =y. Also x e D and Jx|| < 4 o(e ).
n m

.'. g(ez +P, J^S^o(€) - mo(e)
Q. E.D.
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Lemma 4. 3 Let D and N be closed convex cones with D + N = X. For

p > 0, let Sp be the closed sphere in X of center 0 and radius f

Let IJo =Df\Sp and N© =N/OS^. Then there is a number m > 0, such

that I^+N/,2Sm/£,

Proof: X = D +N = u (p + N ). Now P is a closed, convex, bounded
^ n n n

n=l

set and is, therefore, weakly compact. N is closed and convex and, hence,

is weakly closed. Therefore, P + N is a weakly closed, convex set, and,

hence, it is strongly closed. The result follows by the Baire Category

Theorem. Q.E.D.

Lemma 4. 4 Let D be a closed, convex cone in X such that there is a

subspace ZCX with DCZ and such that D has a non-empty interior C

relative to Z. Then, if N is any subspace of X such that N + D = X,

we must have

DON =CTIN U (oj.
Proof: Trivially, DHN 2 CTlN U [o/. To prove the converse, let
z e DAN be any vector such that Jz| =1. Let x € X such that z - x € C.



By lemma 3, there are neN and d e D such that x = n + d and

n||, ||d|| <I ||x|| . Then,
m

z-x = z-n-d

.'. z+d-x = z-n

Since z-x e C and d e D = C, therefore for all X> 0 we must have,

z + X(d-x) = z-Xn e N/1C. Letting X approach 0 we have, z e NOC.

Q.E.D.

Lemma 4. 5. Let g:X—»Y be a continuously differentiable function.

Let Ax =[x | g(x) =o]. Let xe A^. such that G(X) =Y where

G=g'(x). Then (g, Ax, [o j) satisfies the K. T. condition at x.

Proof: Let z e X such that G(z) =0. By Lemma 2, J eQ> 0 such

that for 0 < e < eQ,

g(x +ez +x(e)) =0 and || x(e ) || < o(e ).

Let z(e ) =x + ez+x(e ). Then z(e ) e A^

lim z(e) =x and lim | z(e ) - x - e z || = lim ||x(e)i = 0
e-^0 e—»0 e e-^0

so that dz(e )
d e

= z.

e = 0
Q.E.D.

We now prove that under the assumptions Al and A2, if x solves

(1), then (2) is satisfied with^ 0 or y* /= 0.
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Case 1. Suppose Q = g'(x) (D) $ Y. Then Q is a proper closed convex

cone in Y so that there is a y* e Y*, y* f 0 such that

<£*> q> < 0 Vq e Q

.'•<i** g!(x) Ax) <0 \/Ax e D

.'.<£* o g»(x) >Ax><0 VAxe D

.'. y_* o g'(x) e LP(D) =LP(A, x)
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Hence (2) is satisfied with A=0 and y* £ °-

Case 2a. Suppose Q = g'(x) (D) = Y. Then, by assumption 2,

g»(x) (D) = Y.

For convenience let G =g'(x). Now, if Y*oGn LP(D) / {o}# then there

is a y* f 0 with y* o G e LP(D), so that again (2) holds with/4'= 0, y_* ^ 0.

Case 2b. G(D) =Y and Y* oG/OLP(D) ={o} . Let N=(ax|g(Ax) =o] .
By Lemma 5, (g, A^., \0J) satisfies K. T. so that N =LC(A^, x) and

Y*oG=LP(AX, x). Now since Y* oGP LP(D) =fu] , we have by Fact 1. 3,
nTd = x.

By assumption 2 therefore, N + D = X. Hence by Lemma 4,

NnD=N/TC u [o]
We shall now show that,

LC(Ax/0 A, x) =LC(AX, x)D LC(A, x) =N/lD

Trivially, LC(A<OAx, x) CN/0 D=NO CU[oj where C is defined as

in Al. Let z e N/0 C, || z| =1. By Lemma 2, for 0<e <eQ,
g(x + e z +P / J is a neighborhood of 0 in Y. Also, since e z e C,

we have e z + P , v C C. Let g(x + e z + xe ) = 0 where e z + xf e C

and II x ||<o(e). Let x(e)=x+ez+x . Then x(e)—*x as e—>0 and,

d x(e ) = z. Therefore by Al, there is a sequence e^->° sucn tnat
d e

x (e ) e A. Also g(x(e )) = 0 means, x(e ) e A-. Therefore
n n n a.

x(e ) e A^fl A. Since lim ± <x(en) - x) =z, we have z e LC(AXDA).
n n_»oo en

.'. NOC [o] C LC(A/1AX, x)

.*. W7JC fo] C LC(A/0Ax, x)
N/1D = LC(A0Ax, x)



Now by Theorem 1.1,

f'(x) e LP(AXHA, x)

= LP(LC(AxriA, x))

= LP(NOD)

= Y* o g»(x) + LP(A, x) by Fact 1. 3

= Y* o g'(x) +LP(A, x) by A2

.*. 3y_* e Y* such that,

f'(x) + y* o g'(x) e LP(A, x)

Hence (2) is satisfied with Af f 0.
Q.E.D.

B. Let X, Y be real B-spaces; g, a differentiable map from X into

Y; f, a real-valued differentiable function of x. Let A^. be a closed

convex cone in Y and A an arbitrary subset in X. We assume that

(g, A^., Ay) satisfies W. Consider the following three problems:

Problem 1. Saddle-Value Problem

Find x e A and y* e - P(AY) such that

$ (x,y_*)< f(x,y_)< f(x,y*) Vx e A, Vy* e - PtA^)
where § (x,y*) =f(x) + <y*, g(x)) .

Problem 2.

Find x which solves

Maximize ff(x) | g(x) e A^., x e AJ

Problem 3 (y*)

Find x which (for fixed y_*) solves

Maximize ff(x) +^y.*, g(x)) Jxe Aj.
Fact 4. 1 a) If (x, y*) solves Problem 1, then

(i) 8_£(x,y*) = f»(x) +y* o g»(x) e LP(A, x)
8x

-38-
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(ii) g(x) e A^ and (iii) ^ y*, g(x) >=0.

b) If, moreover, A is convex and $(x, y*) is concave for x e A,

conditions (i), (ii), (iii) are sufficient for (x, Y*) to solve Problem 1.

c) If (x, y*) solves Problem 1, then x solves Problem 2.

Proof: a) $(x,y*)< 5(x,y*) V x e A.

.*. Theorem 1.1 =* (i)

$(x,y_*)< $(x,y*) Vy*e - HA^)

.*. <y_*, g(x)> < <y*, g(x)> Vy* e - P(Ay) (1)

Since - P(A„) is a cone, 0 e - P(Ay.)

."• <£** g(x)> =<*< 0.

Suppose ct< 0.

Then { y*, g(x)> ><2y*, g(x)> and 2y* e - PtA^)

which contradicts (1)0

.'. <y_*, g(x)> =0< <y*, g(x)> Vy* e - PCAy) (2)

This implies (iii) and -g(x) e P(-P(Ay) ) =P(P(-Ay)) =-Ay by Fact 1.1

•"• g<x) e Ay giving (ii).

c) g(x) e Av=^x is a feasible solution to Problem 2.

Again, since (x, y*) solves Problem 1

.'. f(x,y*)< 3(x,y*) Vx e A.

.*. f(x) +(£*> g<x)> < f(x) + <y_*, g(x)> =f(x) by (iii).
Suppose x e A^ i.e., g(x) e Ay. Then since y* e - PfA^)

we must have ^y*, g(x)> > 0.

.\ Vx € ArtAx,

f(x) < f(x) +< y*, g(x) >^ f(x)

.*. x solves Problem 2.
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b) Suppose § (x, y_*) is concave for x e A and A is convex.

Then (i) and Corollary 1. l=^$(x, y*) < §(x y*) Vx e A.

Now <$ (x, y*) =f(x) +{y*, g(x)} =f(x) by (iii).

Also, for any y* e - P(Ay.)

<g(x), y*> > 0 since g(x) e A^. by (ii).

.*. | (x, y*) =f(x) <f(x) +<£*, g(x)> =I(x,y*) Vy* e - P<Ay)
Q.E.D.

Fact 4.2 a) Suppose x solves Problem 2. Then

f'(x) e LP(AHAX, x) (1)

b) If, in addition, LP(An A^ x) =LP(A, x) + LP(AX, x) (2)

Then ]j x* e - LP(Ay, g(x)) og'(x) C- P(Ay) og'(x) such that

f'(x) +x* e LP(A, x) (3)

c) If, in addition, - LP(Ay, g(x)) o g'(x) = - LP(Ay, g(x)) o g'(x) (4)

then J y* e - LPfA^., g(x)) £ - PiAy) such that

f«(x) +y_* o g'(x) e LP(A, x) (5)

d) If, in addition, A is convex, f(x) +<'y*, g(x)} is concave on A

and (y_*, g(x)) = 0, then (x, y*) solves Problem 1.

e) In any case, if x solves Problem 2, there exists a^ > 0, J

y_* e - LP(Ay, g(x)) £ - P(Ay) such that

/(fix) +y_* o g'(x) e LP(A, x) (6)

Proof: a) By hypothesis x solves Problem 2

.'. f(x)>f(x) Vx e ADAX.

By Theorem 3. 1

f'(x) e LP(A(0Ax, x) giving (1).

b) By (2) and (1),
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f'(x) e LP(AriAx, x) =LP(AX, x) + LP(A, x)

= LP(Ay, g(x)) o g'(x) + LP(A, x) by Theorem 2.1.

.'. 3" x* € LP(Ay, g(x))o g'(x) such that (3) holds.
c) By b) we have

f'(x) e LP(Ay, g(x))o g'(x) + LP(A, x)

= LP(Ay, g(x)) o g'(x) + LP(A, x) by (4).

.'. 3y*e - LP(Ay., g(x)) such that (5) holds. >
d) If (5) holds, A is convex and f(x) H-^y*, g(x)y is concave on A,

then by Cor. 1.1

f(x) + </y*, g(x)> < f(x) + <y*, g(x)) V x e A.

= f(x). Since ^y514, g(x) y = 0 by hypothesis.

Now g(x) e Ay so that if y* e - P(Ay) we have

<g(x), y*> > 0.

Combining the above equations we get

f(x) +</y*, g(x)> < f(x) +<y*, g(x)> < f(x) + (y*, g(x)>

Vx e A, Vy* e - P(Ay)

.'. (x, y_*) solves Problem 1.

e) is obvious, since (6) is certainly satisfied for A- 0.

Fact 4. 3: a) Suppose x solves Problem 3(y_*). Then

f'(x) +y* o g'(x) e LP(A, x). (1)

b) If, in addition, y* e - P(Ay) then (x, y*) solves Problem 1

4=$g(x)€ Ay , (2)

<£** gW> = 0 (3)

Proof: a) Suppose x_ solves Problem 3(y*). i.e.,

f(x) +<y_*, g(x)> < f(x) +<y*, g(x)> Vx e A.

(1) follows by Theorem 1. 1.



b) Suppose (x, y*) solves Problem 1. Then

§(x, y_*)< §(x, y_*) Vx e A.

.'. x solves Problem 3(y_*).

Conversely, if x solves Problem 3(y*), then

$(x, y*)< §>(x, y*) Vx e A.

Now by hypothesis, g(x) e Ay so that

<y*. g(x)> > 0 Vy* e - P(Ay).

.'• ?(x, y*) = f(x) +<^y*, g(x)> =f(x) by hypothesis

< f(x) +<y*, g(x)> Vy* € - p(Ay)

=$(x, y_*).

.'. (x, y_*) solves Problem 1.
Q.E.D.
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CHAPTER V

APPLICATIONS OF THE GENERALIZED KUHN-TUCKER THEOREM

Preliminaries: We shall need some notation for the direct product of

B-spaces.

Def. 5.1 Let X. and X„ be B-spaces with norms ll-JL an^|-||9

respectively. Then the direct product X.,®X2 =((x-,, x2) x. e X,, x2 e X„j

is a B-space under the norm

<xr x2)||=max(||x1j|1, |x2|2).

This norm is convenient for our purposes because of the following

elementary fact.

Fact 5. 1 The direct product X.*®X2* is a B-space under the norm

||(x1*, x2*) xl* II +!x2 1I2* In fact' we have

x1*<sx2* =(xx«x2)*

where <(xx*. x2*), (x1, x2)>dif x1*(x1) +x2*(x2).

A. The Case of Discrete Optimal Control

Consider a system of difference equations.

x(k+l) =x(k) +fk (x(k), u(k)) k = 0, 1, ... (1)

where
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x e X is the state vector

u e U is the control vector and

f, : X<2PU—»X is a differentiable map.

X, U are real B-spaces called the state space and control space, re

spectively.

The initial state x(0) belongs to, a subset A(0) cX. The target is a

subset A(N) C.X. The total gain incurred up to time k > 0 is given by

gk(x(0), . . ., x(k); u(0), . . . u(k-l)) where gk is a real-valued differ

entiable map on X ® U.

Let ft(k) C U for k = 0, 1, . .. be subsets. It is required to find

(i) a sequence of controls u(k) e Q(k), k = 0, 1, ..., N-l

(ii) an initial state x(0) eA(0) such that the sequence

(x(0), ..., x(N)) satisfies (1) with u(k) = u(k) and x(N) e A(N) and

such that

gN(x(0), . .., x(N); u(0), ..., u(N-l)) is maximized over all

such sequences.

We can restate the problem in the following way

x(k) +fk(x(k), u(k))-x(k+l)
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Max

or

Max<

gN(x(0), ...,x(N), u(0), ..

u(N-D)

g__(x(0), ...,x(N), u(0),...,
>N

u(N-D)

= 0 k = 0,1, ... N-l

x(0)eA(0), x(N)eA(N) and

u(k)e n(k) k=0,l, ..., N-l

hk(x(k), u(k), x(k+D) = 0

k = 0, 1, ..., N-l

x(0) eA(0), x(N) eA(N) and

u(k) e Q (k) k = 0, 1, ..., N-l

where the functions tu are defined in the obvious way.
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We now assume that the functions h, and the constraint sets fi(k)

and A(0) and A(N) satisfy the assumptions of Theorem 4. 2. Then by

Theorem 4. 2 we form the function

§(/f; x(0), ..., x(N); u(0), ..., u(N-]),0 (1), . . . ,<// (N)) =
N-l

/fgN+ E (ip(k+l), h,> where the tf/(k) eX*.
k=0

Let fu(0), . .., u(N-l) ] be the optimal control and fx(0), . .., x(N)J

the optimal trajectory. Then by Theorem 4.2, the following conditions

are satisfied.

There exist functions j£(l), . .., j£(N) in X* and a^r > 0 not all zero such

that

8xT0)

8x(k)

e LP(A(0), x(0))

0 0 < k < N-l

1^- e LP(A(N), x(N))

|4r\ ^ LP(fi(k), u(k)) 0<k<N-l
8u(k) ~ — —

where the partial derivatives are evaluated at

A=Al x(k) = x(k); u(k) = u(k); tf/(k) =j£(k) Vk.

Expanding these relations we get

l-l^ =A 8*N . , m +/m,yaf0 )e LP(A(0), x(0)) (2)

IxTF) =*S)+4(k+1) +^k+1)o(Sk))^(k) =00<k<N (3)
& ^SW)-^£ LP<A(N), x(N)> (4)

. & =>*i+i(k+Do^E>)eLP(n(k).«(k))0<ksN.i (5)
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Define H(u(0), . . . , u(N-l)) =^gN(x(0), . . ., x(N); u(0), ..., u(N-l))

N-l

+ E <V(k+l), f,(x(k), u(k))> (6)
k=0 K

Then the equations (5) can be expressed as

|S(U) e LP {Q(0)OQ(1) 0 ... <S>ft(N-l) ; u) (7)

where u =(u(0), ..., u(N-l)) e UN (8)

and u = (u(0), ..., u(N-D)

Equation (3) can be written in a more familiar form as

jfr(k+l)=4;<k) -ilk+llog,) -^HTk) 0<k<N
Equations (2) and (4) give us the so-called "transversality conditions"

when A(0) and A(N) are replaced by prescribed sets (e.g., singleton,

manifold, etc. ). These results can be summarized in the following theorem.

Theorem 5.1 Suppose that i u(0),. .., u(N - 1)J is the optimal control

and / x(0),..., x(N)} the optimal trajectory. Then there exist functions

(ijj (1), ,.., ± (N)J £ X* and A not both zero such that

i(k+l)=^(k)-i(k+l)o('§^))-^a||) 0<k<N
The transversality conditions are given by

9glVT / 9fr, \A g^ +HD +£1o(S^o)) e LP(A(0).x(0))

and A g^) - j£(N) e LP(A(N), x(N))

Moreover, if H(u) is defined as in (6) we must have

H»(u) e LP(fi(O)®...0fi(N-l); U)

where u and u are defined in (8).

Remark The maximum principle for discrete optimal control as obtained

by Jordan [6] is a special case of Theorem 5.1. There the x, u are finite
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dimensional vectors and the profit function depends only on one coordinate

of the final state x(N). If we substitute these additional restrictions, we

obtain his result.

It should be pointed out that whereas we obtain Theorem 5.1 as an

application of Theorem 4. 2, Jordan uses a direct argument (which is es

sentially a translation of the argument in Ref. 5) to arrive at his results.

His proof, therefore, has a very great intuitive appeal, unlike ours.

Our main concern for generalizing the state space to an arbitrary

B-space is to treat the case of stochastic control where the x, u are ran

dom variables. The case in which the random variables can take more

than a finite number of values cannot be treated by the result obtained by

Jordan. With very slight modification, however, we can use our result

for this problem. The next section deals with this case and it will be

illustrated by a simple example.

B. The Case of Discrete Stochastic Optimal Control

Consider a system of stochastic difference equations

x(k +1) =x(k) +fk(x(k), u(k)) k =0, 1,..., N-l (1)

where x(k) is an n-dimensional random variable representing the state

at time k; u(k) is an r-dimensional random variable representing the

control at time k. The sample space of these random variables is the

probability triple (ft, A, P) where ft is the sample space, A is a spec

ified a-algebra of subsets of ft and P is the probability measure on A.

We shall assume that the random variables x(k) belong to some

Banach space X of random variables over (ft, A, P). For example,

X may be the Hilbert space of all n-dimensional random variables which

have finite second moments. Similarly, we shall assume that u(k), for
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each k, belongs to some B-space U of random variables. For each k,

the function f, : X<SU—*• X is assumed to be differentiable. We are

given some constraints on the u(k)'s and on the initial arid final states

x(0) and x(N), and we are required to maximize some differentiable,

real-valued function of the x(k)'s and u(k)'s.

It is clear that under this formalism this problem is a special case

of part A. Therefore, instead of repeating the same arguments, we shall

consider a simple example and work it out in some detail.

Example (Ref. 7) :

We are given a linear, stochastic difference equation

x(k + 1) = ax(k) +u(k) +v(k) k = 0,..., N-l (1)

where x(k), u(k), v(k) are scalar-valued random variables representing

the state, control and noise at time k, and a is a fixed known constant.

Let

y(k) =x(k) +w(k) k = 0, ...,N-1 (2)

be the observation at time k of the state x(k) corrupted by the noise

w(k). Let a(Q) be a random variable representing the a priori knowledge

about the initial state x(0). Let (ft, A, P) be the sample space of all these

random variables. We shall make the following additional assumptions:

1) The random variables tf(0), v(0),..., v(N-l), w(0),..., w(N-l)

are independent and all of these except possibly a(0) have zero mean.

2) All the random variables that we shall encounter are square

integrable, i. e., they belong to L2(ft, A, P) =B say. Note that B* =B.

Let U(k), for k = 0,.. ., N-l, be the space of all functions

u(y(0),..., y(k)), of y(0),..., y(k), such that Eu < oo. It is clear

that U(k) is a subspace of B and that U(0) £ U(1)C,.,CU(N-1)CB.

We are required to find u(k) 6 U(k), i.e., u(k) = u(y(0),..., y(k)) so as
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N 2
to minimize 1/2E E x(k) .

k=l

Formally we wish to
f N 2 ax(k)-x(k+l)+u(k)+v(k) =0;

Maximize {-1/2 E Ex(kr
k=l

or(0) - x(0) = 0 k = 0,..., N-l
u(k) e U(k); k = 0,..., N-l (3)

We now apply Theorem 4.1. We first form the Lagrangian function

x A N 2 N_1$ =- 4 E E x(kr + E <#(k+l), ax(k) - x(k+l) +u(k) +v(k)>
^ k=l k=0

+ <tf/(0), or(0) -x(0)> .

where /(> 0 and ip (k) e B* =B and <g, h) =E(gh). Let/ufO),...,

u(N-l)}
be the optimal control functions and fx(0),... ,x(N)y the corresponding

state sequence. Then, by Theorem 4. 1, ^/% > 0, 3fj£ (0)* ..., j£ (N) £ B
such that

8§
ax(k)

0 k = 0, ..., N

and fu7k) € LP(U(k)' u(k)) k=0, ...,N-1
where the derivations are evaluated at /( - /{ , ^(k) =j£ (k),

x(k) = x(k) , u(k) = u(k).

Expanding the first of these relations we get

a j£U) -jfc(O) = 0 (4)

aj£(k +1) -j£(k) =^x(k) k=l,...,N-l (5)

and -jfe(N) =/^x(N) (6)

while the second relation gives us

j£(k+l)€ LP(U(k), u(k)) k =0, ..., N-l (7)

Now, U(k) is a subspace of B, and u(k) e U(k) so that

U(k) - u(k) = U(k).

Therefore, j£(k + 1) € LP(U(k), u(k))
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iff <jfc(k + l), u(k)><0 V u(k) e U(k)
iff < j£(k + 1), u(k)>= 0 V u(k) e U(k)

iff <«//(k + 1), u(y(0), ..., y(k))> = E(tf/(k + 1) u(y(0), . . ., y(k)) = 0

for all square integrable functions u of (y(0), . . ., y(k)).

It is easy to see that this requirement is satisfied iff

E(tf/(k +1) | y(0), . . . , y(k)) =0 k =0, . . . , N-l (8)
Now equations (4) - (6) and (8) can be satisfied ior/U > 0.

.'. Taking^ = 1 we have

ai(l)-jt(0) = 0 (9)

aj£ (M- 1) -j£(k) = x(k) k=l,...,N-l (10)

-j£(N) = x(N) (11)

and E(i(k +1) | y(0), y(k)) =0 k =0, . . ., N-l (12)
From (11) we get

- j£(N) = ax(N - 1) +u(N - 1) + v(N - 1)

Using (12) we have

0=aE(x(N-l) |y(0), ..., y(n-l)) +E(u(N-l) | y(0), .. ., y(N-D)
+E(v(N-l) | y(0), y(N-D)

.*. 0=aE(x(N-l) | y(0)J..., y(N-l)) +u(y(0), . . . , y(N-l))+E v(N-l)
so that

u(N-l) =u(y(0), ..., y(N-l)= - aE(x(N-l) |y(0) y(N-l)) (13)
From (10) we get

aj£(k+l) - j£(k) = x(k) = ax(k-l) +u(k-l) +v(k-l)

Taking conditional expectations with respect to y(0), . . ., y(k-l)

and using the fact that

E (j£(k) Iy(0), ..., y(k-l)) =0by (12) and

E (j£(k+l) y(0),... ., y(k-l)) = E ( E (j£(k+l)

y(0) , y(k-D)

= 0 we have

y(0), ..., y(k))
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0=aE(x(k-l) | y(0), ..., y(k-l)) +E(u(k-1) | y(0) y(k-l))
+E(v(k-1) | y(0), ..., y(k-l)).

.*. u(k-l) = u(y(0), ..., y(k-l)) = -aE(x(k-l) I y(0) , y(k-l)).

k = 1,..., N-l (14)

Combining (13) and (14) we have

u(k-l) =-aE(x(k) | y(0)J..., y(k-l)) k=0, N-l (15)

C. A Maximization Problem in Differential Equations.

The problem considered in this section and the methods employed

for its solution are based to a very large extent on the papers by

Gamkrelidze [13] and Neustadt [14].

Let 7 be a linear space whose elements f(x, t) are n-dimensional

vector-valued functions for x in R and t in I = [tQ, t^]. We assume

that the functions f in 7 satisfy the following conditions. 1. Each f

is measurable in t over I for every fixed x, and is of class C with

respect to x in R . 2. For every f in? , and compact set X in R ,
c n n

there exists a function m(t), integrable over I and possibly dependent on

f and X such that

f(x,t) I < m(t),|af_ (x, t) < m(t) x in X, t in I.
1 * 'ax

where the vertical bars denote the usual Euclidean norm in Rr.

Let Pr denote the set of all vectors or =(a^, . . . , a>r) where

r

a. > 0 and E a. - 1. Let F C J . Then the convex hull [F] of F is
i— .-_i i ""

r

I

i=l

given by

lfi
[F] =(e or. f. e F, (a.,.. ., ffr)ePr, r>0|

Def. The set FC^ will be called quasi-convex if for every compact set



X in R , every finite collection f.,...., f of elements in F, every

e > 0, there are functions f e F, defined for every or e P (and de

pendent on X, the f. and £ ), such that the functions g(x, t; or)

r

= E <*.f.(x, t) - f (x, t) satisfy the following conditions:
i=l 1 l a

1. |g(x, t; a) |<m(t), | || (x, t; a) |< m(t)
V x e X, t e I and a e Pr

where m(t) is some function integrable over I and possibly dependent

on X and the f, (but not on e );

2.
T2j g(x, t;a) dt < e , ^ e I, r2 e I, V x e X
Tl
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3. for every sequence [a J with a e P , which converges

to some a e Pr, g(x, t; a1) converges in measure (as a function of t on I)

to g(x, t; or), for every x e X.

Suppose we are given such a quasi-convex set F. Let f in F, and

let x(t), t in I be any absolutely continuous solution of the differential

equation

x(t) = f(x(t), t) t in I. (1)

We shall regard such an x as an element of the Banach space B of

continuous functions from the compact interval I into Rn- Now let A be

the subset of B consisting of those elements x in B which are solutions

of (1) for some f in F. Let h be a real-valued differentiable function

of x in B and let q:B »R be a differentiable mapping. We wish to

solve the following problem.

Maximize (h(x) | q(x) =0, x in Af (2)
Remark. The notion of quasi-convexity was first introduced by Gamkre-

lidze in [13] where he shows that it "encompasses almost all the extremal
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problems in solving the minimization of integral type functionals which

arise in the classical calculas of variations and in the theory of optimal

control ..." Thus, for instance, suppose that we are given a fixed set

r *~"
ft in E and let ft be the set of all measurable functions on some in

terval I which are essentially bounded. Then the set

F ={ f(x, t) f(x, t) =h(x, u(t), t) , u(») € ftj- (a) is quasi-convex

if h is of class C with respect to x and measurable in (u, t) for every

fixed x. (See [13]. ) The problem considered by Gamkrelidze can be

phrased as follows. We are given a quasi-convex family F of functions

defined on a bounded open interval I. Let A denote as before the set of

functions x(») which satisfy the differential equation

x(t) = f(x(t), t), t e I

for some element f in F. Then the problem is to find an element x(-)

in A, and a pair tQ, t, in I with tQ < t1 such that the (2n +2) -pie

(x(tn), x(t1), tQ, t,) is an extremal of the set Q/1N in E where

Q =((x(tq), x(tx), tq, tx)\ x(-) e A; tq, r^ e I and rQ<iT1 )

and N in some differentiably manifold of E which represents the

constraints on the initial and final values of the trajectory.

The problem that we consider is closely related to the one discussed

by Neustadt in [14]. First of all, the initial and terminal moments tQ and

t. are fixed. He then supposes that the quasi-convex family F is given

via a set of admissible controls as in (a) above. The function q in our

eq (2) above may then be construed to represent a finite number of con

straints on the entire trajectory (rather than just on the end-points as in

[13]. The results presented by Neustadt are very similar to ours. Un

fortunately we do not have a proof of his results so that we cannot compare

our method with his.
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We now return to the solution of the problem stated in (2).

Let x be a solution of (2) and suppose that

x(t) = f_(x, (t), t), t in I

for some f e F. We first obtain an estimate for the set LC(A, x).

Consider the linear variational equation of (2),

-a'x(t) =|| (x(t), t) Ax(t) + *f(x(t), t) (3)

for t in I =[tQ, t«], Af any arbitrary element of [F] - f and x(tQ) =J

any arbitrary vector in R . Let <§(t) be a non-singular matrix solution

of the homogeneous matrix differential equation

§ (t) =|| (x(t), t) $(t)
with J (tn) =I, the identity matrix. Then,

Ax(t) =§(t) fa +/ §~l (t; ^ f(x(r), t) dr ) (4)<. xQ j

Let KCB be the collection of all such solutions A x(t) of (3) for some

\ e R and some A f e [F]-f. Clearly K is convex, 0 e K. Our first

observation is the following Lemma.

Lemma: Since F is quasi-convex, LC(A,x)dK.

Proof: Let Ax(t) e K, § e Rn, A f e [F] - f such that ^x(tQ) =

and

Ax(t) =|| (x(t), t) Ax(t) + Af(x(t), t e I

Let e > 0. Since F is quasi-convex, there exists a function ge (x, t) in

class C with respect to x, and dependent on A f and e such that

f + e A f + g€ e F

|g€(x,t)|< m(t), ^e (x,t)|< m(t) , t e I, x e X
dx

T- 2
S &€ ^Xe ^ ' ^ dr C e

Tl
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for tQ < t^ < t2 < t1, for every solution x (t) of (5) below sufficiently

near x(t) and for a compact set X in R which contains the trajectory

x(t) in its interior. Here x (t) is the solution of

x£ =f(xe, t)+eAf(xe, t)+gc(x€, t) (5)

and x (t^ =x(t^ + e§ f

It can be shown then that

x (t) = x(t)+e Ax(t)+o(e) t in I (6)
e —

where o(e ) >0 as e-—>0 uniformly for t in I.
e

Clearly x belongs to A. Also x (t) >x(t) as e -} 0 and

lim IV^I
e-^0 e Ax*

Hence Ax e LC(A,x).
Q.E.D.

Remark: It should be emphasized that the function o(e ) in (6) is not a

continuous function of e since the function ge is not chosen continuously.

We can now state the main result of this section. Let Q denote

the derivative q'(x) of q at the optimal x.

Theorem 5. 2: If x is a solution of (2), then there isa^> 0 and a

vector X e R not both zero such that
— m

^h'(x)+^Q e LP(K, 0) (7)

where the set K is defined as above.

Proof: Let C be the cone generated by K. C is convex because K is

convex. We proceed as in Theorem 4. 2.

Case 1. Suppose Q(C) f R . Then there is a X in Rm, such that
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/K Q(c)^> < 0 for all c in C.

/XoQ, cS< 0 for all c in C.

.'. X « Q is in LP(K, 0) and (7) is satisfied with /f= 0, X jfe 0.

Case 2a. Suppose Q(C) = R . We know LP(C) = LP(K). If R <> Q
m m

/1LP(C) /= /oj, then there is a Xe Rm, Xfi 0 such that again (7)
holds with /# = 0, X /= °-

Case 2b. Suppose Q(C) =R_, R« QOLP(C) =fo). Since Q(C) =R ,
mm * J m

it can be easily shown that (q, A , jOj ) satisfies K. T. at x. Here A

is the set of all x in B such that q(x) = 0. Then, LC(A , x) = N where

N is the null space of Q = q'(x), and LP(A ,x) = R • Q. We shall now
r - q — m

provej

LC(A/1A, x) 2 CDN. (8)

Since Q(C) = R is finite-dimensional, it is easy to show that

C/1N = CON. Using this fact and that C is generated by K to show (8)

it suffices to prove (9).

LC(A OA, x)3KON (9)
q

Let ax e K/1N, i.e., ax e K and Q(Ax) = 0. Using arguments which

closely parallel those of Gamkrelidze [13], we can show, using condition

3 in the definition of quasi-convexity, that for sufficiently small e, there

is avector x in A such that |xe -eAx| < o(e ) and such that

q(xe ) =0.

It follows then that Ax e LC(Af)A , x).

Now by Theorem 3.1, since x solves (2), we must have,

h'(x) e LP(AqOA, x)



r <*

= LP(LC(A OA, x))
HI
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cP(N/0K)by (8) and (9)

Moreover, we know that P(N)/1P(K) ={oj and P(N) =R^ Q is afinite-

dimensional subspace. Hence, (P(N) + P(K)) is closed.

.\ h'(x) e P(N) +P(K)

= R * Q + P(K)
m

Therefore, there is a X in Rm such that

h'(x) +XfQ e P(K)

and (7) is satisfied with A- 1.
Q.E.D.
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