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SUMMARY

The purpose of this paper is to establish the stability of

single-loop feedback systems with one differentiable

nonlinear element. In those cases where the Popov

criterion fails to guarantee stability for the entire sector

predicted by Aizerman's conjecture, new results can be

obtained by restricting the slope of the nonlinear function.

A new frequency domain stability criterion is obtained

which, like the Popov criterion, has only one unknown

parameter. Thus, a simple graphical interpretation is

possible. Examples are given which show a considerable

improvement over the Popov criterion.
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INTRODUCTION

Recently, several authors [1-5] have recognized the fact that

Aizerman's conjecture is not true in general [ 6] and that in some cases

the V. M. Popov theorem [7] does not guarantee absolute stability for

the entire Hurwitz sector as predicted by Aizerman's conjecture. In

these papers [1-5], additional restrictions on the slope of the nonlinear

element are used to guarantee absolute stability in cases where the

Popov criterion is not satisfied.

In [1, 2, and 4] the authors have used a Lyapunov function

approach to the problem and have confined their attention to systems

whose linear plants are described by a set of ordinary linear differential

equations. In [3, 5, and 8], assumptions are made concerning the

input-output relation of the linear part of the system but its internal

dynamics are not specified. This allows consideration of rather general

distributed parameter systems.

In [1, 2, and 5] the stability criteria have two unknown param

eters and thus the graphical procedure is more complicated than that

for the Popov criterion which has only one parameter. In [3] the
criterion has three unknown parameters and a graphical interpretation

is virtually impossible. In this paper assumptions are made similar to

those in [3] and a stability criterion is obtained with only one unknown
parameter. Thus, the criterion has a simple graphical interpretation
and it can readily be applied to frequency response data which may be

obtained experimentally.

DESCRIPTION OF SYSTEM

The class of nonlinear feedback systems considered will have the

configuration of Fig. 1. The block labelled N is a time-invariant
memoryless nonlinear gain element whose output £(t) is given by

€(t) = <j>[o-(t)] (1)
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where p(cr) is a differentiable function of a,

4>(0) = o

and for all cr i- 0,

0 < 4l£} < k (2)
— or —

or fE!2J > 0 is the case when k is infinite.
(T —

These inequalities restrict the nonlinear function to a sector in

the o-, 4> plane and we will refer to this as a nonlinear ity in the sector

[0, k].

The further following restrictions are made on N:

a) $(&) is uniformly bounded, that is

| cJ>(o-) | < M , -co < cr < co, (3)

where M is a finite constant independent of or. In practical examples

such a bound will always exist.

b) -k, <ii < k? (4)
' 1 dc 2

This will be referred to as a slope restriction (-kp k2) and will clearly
be consistent with (2) only if

k, > 0 and k2 > k. (5)

The block labelled G is a linear time invariant subsystem

described by the equation

rt
y(t) = z(t) + \ g(t-r) g(T)dT, t > 0, (6)

where z(t) is the zero-input response of G which depends on the

initial state, and g(t) is the impulse response of G.
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Under the following assumptions the system of Fig. 1 will be

referred to as a principal case:

a) for all initial states z(t) is bounded on[0, co), z(t) is bounded and

uniformly continuous on [0, co).

b) for all initial states z(t) and z(t) are elements of L^O, oo).

The above assumptions guarantee that z(t) and z(t) are elements of

LJO, oo) and that g(t) and g(t) are elements of L^O, oo).

c) the input to the system, u(t) satisfies all the conditions imposed

on z(t).

The above assumptions imply that z(t), z(t), u(t) and u(t) all tend to

zero as t-» oo.

Let G(s) be the Laplace transform of g(t), then, in the principal

case, G(s) is analytic for Re s > 0. The theorem is extended to par

ticular cases where G(s) has simple poles on the imaginary axis of the

s-plane. In this case it is assumed that the conditions for stability in
the limit are satisfied. 2 z(t) and g(t) are modified accordingly but the
assumptions on u(t) are the same as for the principal cases. Also, in
place of inequalities (2) and (3), the nonlinearity is restricted to the
sector [e, k] and is such that 4>(cr) - € o- is uniformly bounded, where
€ > 0 is arbitrarily small. The case where the only imaginary axis
pole is a simple pole at the origin will be called the simplest particular
case.

*For an asymptotically stable linear differential subsystem, assump
tions (a) and (b) are always satisfied.

2 These conditions require that the system of Fig. 1be asymptotically
stable for a linear gain <J>(o-) = € cr where e > 0 is small. This is a
linear problem and graphical conditions for stability in the limit are
given by a theorem in [7]. If the residues at the imaginary axis poles
have positive real parts, then these conditions are satisfied.
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STABILITY INEQUALITIES

Theorem

For the system shown in Fig. 1, if there exists a finite number
q such that for all w > 0,

a) H(io) =Re jo)qG(jw) +u>2 {l +(k^k^ Re G(jco) -k^ |G(jco) | } > 0,
(7)

b) G(jco) *-i , G(0) > -i, (8>

then in the principal case, for all nonlinearities with slope restriction
(-k , k ) in the sector [0, k] and for all initial states, the response
y(t) is bounded on [ 0, oo) and tends to zero as t -> oo.

In the simplest particular case the theorem remains true for all
nonlinearities cj>(cr) in the sector [c, k] such that c|>(cr) - €cr is bounded on
(-co, co), where € > 0 is arbitrarily small.

When k is infinite, condition (b) becomes

G(0) > 0. (9)

Corollary 1: With the slope restriction <|>« > -k^ condition (a) becomes

Re juqG(jco) +co2 {Re G(jco) -kjcyco)!2} > 0. (10)

Corollary 2: With the slope restriction 4>« < k£, condition (a) becomes

Re jwqG(jco) - J {Re G(jto) +k2|G(jw)|2} > 0. (11)

Corollary 3: With the slope restriction (0, k2), condition (a) becomes

Re jcoqG(ja)) +co2 {Re G(jco) +j±- } > 0. (12)

In this and the following corollaries, all the particular cases may

be considered (see Remark 1).
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Corollary 4: With the slope restriction <j) * > 0, condition (a) becomes

Re (j to q +co2) G(jco) > 0. (13)

The inequalities may be tested analytically or graphically as is

done with the Popov theorem. Inequalities (7), (10), (11), and (12) are

useful mainly for analysis problems where at least the values of k^ and
k are known. Inequality (12) may be used to find the maximum value of

k for stability with a strictly monotone increasing nonlinear ity.
The graphical technique is similar to that used with the Popov

criterion. For inequality (7) we plot

Y = oo Im G(jco) co > 0

against

X= w2{l +(k2-kx) Re G(jco) - k^ |G(jco) |2 } .

Then (7) becomes

X - qY > 0.

If there exists a straight line of slope 1/q through the origin such that

the X - Y plot lies to the right of it, then inequality (7) is satisfied.

The other inequalities are handled in a similar manner.

Remark 1. In the particular cases, inequalities (7), (10) and (11) can

only be satisfied for the simplest particular case. If G(s) has a pole

at s = j w0, then for coQ ^ 0

lim |i.co I G(jco) J = + oo .
to -» CO-.

Since H(co) contains the term -jito | G(jco) | , it is impossible to satisfy

H(co) > 0.
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Remark 2. Conditions (a) and (b) of the Theorem (or inequality (9) for
the case k = co) guarantee the satisfaction of the Nyquist criterion for
linear gains in the interval [0, k]. Let {u>.} be the frequencies for
which Im G(jto) = 0 and let w be that frequency for which G(jtoi) is a
minimum over i. Then from (7),

2
co

m

that is,

{1 +(k2-k]>) G(jtom) -kjfcjGU*^) I2} >°>

"Lk2<G(J^+4> U"". GU<-m> } >0.
Now G(jto ) < 0 and ^ <^ so for u>m t 0 this implies that

G(j"m> > " £ • •

which, when combined with condition (b) or inequality (9), is the Nyquist

criterion.

Remark 3. In the proof of the Theorem we may restrict ourselves to
the principal case since the particular cases may be reduced to the
principal case by the transformation \ =£- €cr . This transformation
changes the characteristics of the nonlinear function d>^to <|> = 4> - €tr
and the frequency response of the subsystem G(jco) to G(jto), where

* - r^ • (14)

It must be noted that the transformed system differs from the original

system only in notation. Now £' =V - c and Ucan be shown t8l that
the transformed system G satisfies all the conditions of a principal

case.

Hence, forming the expression
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H(to) = Re jtoqG

•+to2 {1 +(k2-kx - 2€) Re G- (k^K^-e) |G | } ,

and substituting for G from Eq. (14), we have

H|1+€G|2 = H, where H is given by Eq. (7).

Thus, H(to) > 0 immediately implies H(co) > 0. Also from Eq. (14)

G(jto) t - £ implies G(jco) t - k _€ ,

and

G(0) > - i implies G(0) > - ^--^j .

Once the theorem is proved for the principal case, this implies
that for 4> bounded on (-oo, co) with slope restriction ( -k^c , k2~e)inthe
sector [0, k - €], the output of the transformed system is bounded and
tends to zero as t -» co. This then implies that the theorem remains
true for the original system G for cj> with slope restriction (-kr k2)
in the section [e, k] such that <)> - ecr is bounded on (-co, co) where
€ > 0 is arbitrarily small.

On the strength of the above remarks only the proof of the
theorem for the principal case will be given.

Preliminaries

From Fig. 1 o-(t) = u(t) - y(t),

and using Eq. (6)

o-(t) = u(t) - z(t) - \ g(t - t) 6(t) d t, t > 0. (15)
J0

Let cr(t) be a solution of Eq. (15) with an arbirary fixed function cj>(<r)
which satisfies Eqs. (2), (3) and (6).
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Then £{t) = <j> [ tr(t) ] is a fixed function of time. Let

£(t) for 0 < t < T

eT(t) = < (16)

£x(t) for t > T,

where T is an arbitrary fixed positive number and £ (t) is the system

trajectory obtained by replacing, for all t > T, the nonlinear function

4>(cr) by the linear function her, where

h =-iiji and clearly h€[0, k] .
o-(T)

(17)

Then £T(t) is continuous at t =T, and from the Nyquist criterion [9],
§T(t) cL?(0, oo). Let the Fourier transform of £T(t) be

Let

,00XT(jco) = f eT(t) e"JW"dt .•jcot

crT(t) = u(t) - z(t) - \ g(t-T) 6t(t) dr, t > 0-fJ0

= u(t) - z(t) + <rT

Then it is clear that

cr(t) for 0 < t < T

o"T(t) = J

i*T*> for t > T.

(18)

(19)

(20)

(21)

o-T(t) is continuous at t = T and, by the same reasoning as before,
trT(t) €'L2(0, co).
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Let

then

Let

0_(t) = ST(t) - £(0) e^*, a > 0, t > 0, (22)

9T(0) = 0, and

0T(t) =^ 9T(t) =§T(t)+a 6(0) e""* t > 0. (23)

VT(t) =-J g(t-r) 6t(t) dr (24)

= - f g(t-T) 6t(t) +|(0) f
Jo J0

Jo
«rT(t) +§(0) \ g(t-r) e~aTdT

Jo

= crT(t) - f(t) ,

g(t - T) 6T(T) + |(0) \ g(t - T) e^ Td T

crT(t). - u(t) +z(t) +g(0) \ g(t - t) e~a Tdt

(25)

where

-a tf(t) = u(t) - z(t) - £(0).\ g(t-T)e" dr. (26)rJo

From the assumptions on G, it follows that 8T(t), 6T(t), YT(t), and
y (t) are all elements of L£ (0, oo). So let C7T(jto) and TT(jto) be the
Fourier transforms of 9T(t) and yT(t), respectively.

From Eq: (26) it follows that

FT(jco) = -G(jco) 0T(jco) ,
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and \T(0) = 0.

PROOF OF THE THEOREM

Let

p(T) =J fqvT(t) eT(t) +{k^t) +eT(t)} {k2vT(t) -eT(t)}| dt .

Then using Parseval's equality,

p(T> -*n oqjwrT(jto) UT(jco)

+{k1JcorT(jco) +jtoOT(jto)} {k2JcoTT(jco) -jcogT(jco)}

J^ \ <1 {-JwG( Jw) 0T(Jw) > 0T(JW)

d co

+ {-k^coGfjco) 0T(jco) +jco0T(jco)} {-k2JtoG(jco) 0T(jco) - jtot7T(jco)}

CO

CO
2tt y

co2{l +k2G(j^)-k1G(jto)-k1k2|G(jco) |2} |0T(jco) |2dco.

jtoqG(jco) +

Now p(T) is real, so

P(T) =-i f H(co) |0T(jco) |2dco,

where H(co) is given by Eq. (7) and is honnegative. Hence it follows

that p(T) < 0.
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Thus, from Eq. (27)

C°Tq* (t) eT(t) +{kxvT(t) +eT(t)}{k2vT(t) - eT(t) }~|dt <o.
J0 L J (28)

It is shown in the Appendix that this inequality results in the inequality

f (k, + tt>!)(k7 - 4>») o-(t)2dt < C* < oo,
Jo l L

where the constant C" is independent of T. Hence, it follows that

^oo ->
I (kx + cj>')(k2 - <t>') o-(t) dt < oo. (29)

Since we have assumed that |d>(cr) | < M, it follows that
| £(t) | < M. Since g(t) is an element of L^O, oo), it then follows that
y(t) and hence cr(t) are bounded on (0, oo). Let |cr(t)| < My

Now it was assumed that -kj < '̂(o") < k2» therefore, in the
bounded region |tr| < M1 this implies that -(^ - €^ < '̂(cr) £ k2 "c1
where €, > 0 is a small number which depends only on M^.

So from Eq. (29) we have

r°° 2oo > I (kx +4>f)(k2 - 4>') S-(t) dt

00 2
o-(t) dt.

,2 rw .

-fel \ °1 ^0

That is, cr(t) is an element of L2(0, oo) .
Since g(t) is an element of L^O, co) it follows from Eq. (15)

that cr(t) is uniformly continuous on [0, oo). From a lemma in [8] it
then follows that, for all initial states,

lim cr(t) = 0.
t -» oo
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This implies that as t -> oo, cr(t) -» cr and £(t) -> H^q)' Now from
Eq. (15),

^0
cr(t) = u(t) - Z(t) - \ £(t - T) g(T) d T.

Let t -*co, then

pOO
0-q = - \ <t>(0-Q) g(T) dT .

that is,

o-0 + G(0) *(cr0) = 0.

Since G(0) > - f- (> 0 when k is infinite), this is impossible unless
k —

a0 = ^^O^ = °*

Hence

lim cr(t) = 0.
t -> oo

It then follows that lim £(t) = 0 and lim y(t) = 0 which completes
t -*co t-* oo

the proof of the theorem.

The proof of the corollaries is identical to that of the theorem
except that in Eq. (27) for p(T), some of the terms are deleted.

EXAMPLES

1. Consider the system shown in Fig. 1 where the linear subsystem G

has the transfer function

~, v s a, b, c, > 0
G(s) = -5 2

s+as+bs+c ab-c>0.
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The frequency response function G(jco) is given by

2 2 '
(c-aco ) +jto(b-co )

The system is asymptotically stable for all positive linear gains.

For a = 2, b = c = 1, the modified Nyquist plot and Popov line

are shown in Fig. 2. The Popov sector is found to be [ 0, 3 -€ ] where

€ > 0 is arbitrarily small.

Using Corollary 4, we first note that G(0) = 0.

_. .. , 2. ,-,.. v qco (b - to ) + to (a to - c)Re(jtoq + co ) G(jto) = -^ i j-£ ^ j-f-
(c-ato) +to (b-to)

Choose q ~ t-» then

to [ (a + q) to - (c + qb) ]
. 2.2^ 2., 2.2 '
(c-aco) + co (b-to)

6
CO2 • - (a"f)Re (j to q + to ) G(jto) = ^ 2 2~2 "

(c - a to ) + to (b - to )

> 0 for all to

The graphical interpretation of this inequality, for the above numerical

values, is shown in Fig. 3.

Hence, for all bounded nonlinearities with slope restriction

<j>' > 0 and for all initial states, the response y(t) is bounded on [0, co)
and tends to zero as t -*co.

Actually, for the given numerical example, a stronger result

can be obtained using Corollary 1. From inequality (10) with

kx = 1,

-14-



HM = Re jwqG(jw) +^ {Re G(jco) - kj_ | G(jto) | }

-qto4(l - to2) +to4(2to2 - 1) - to
(1 - 2co2)2 +coZ(l - coV

oo4 [ (2 +q- 1) to2 - (1 +q)]
(1 - 2to2)2 +co2(l- to2)2

Choose q = - 1, then H(to) = 0.
Hence, for all bounded nonlinearities with slope restriction

cp' > - 1 in the sector [0, oo) and for all initial states, the response
y(t) is bounded on [0, oo) and tends to zero as t -* oo.

2. Aparticular case given by Aizerman and Gantmacher [7].
Consider the system shown in Fig. 1 with

G(s) = s -b b >0, c > 0, b >c2 .
(a* + 1) (s - c)

Conditions for stability in the limit are satisfied [ 7] and the system is
asymptotically stable for linear gains the sector (0, c/b).

The frequency response function G(jto) is given by

m- \ - (to2 +b) (c - jto)
G(jto) - —2 2?27 *

((/ - 1) (w + c )

The Popov sector is found to be [e, 1/c], where € > 0 is
arbitrarily small and 1/c < c/b. In [6] it is shown that for all non-
linearities with slope restriction [0, c/b] in the sector [e, c/b - e]
which satisfy the condition
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lim

cr I -*co

cr 4> (a-)| 4,(0-) dcr -^| = + CO

and for all initial states, the response y(t) is bounded on [ 0, 00) and

tends to zero as t -» 00.

Using Corollary 4, we first note that G(0) = -b/c. Hence,

k < c/b

2, r,. v qto2(co2 +b) +ceo2 (to2 +b)
Re(jcoq +co ) G(jto) =^ 2 T~7~2 2T

(to - 1) (to + c )

(o2(q +c) (to2 +b)
_ —= = 2~

(to - 1) (co + c )

Choose q = -c, then

Re(jtoq +to2) G(jto) = 0 for all to.

Hence for all nonlinearities tj>(cr) with slope restriction <J>' > 0
in the sector [e , c/b - €] such that cj>(o-) - € cr is bounded on (-00, co)
and for all initial states, the response y(t) is bounded on [0, 00) and
tends to zero as t -»co.

CONCLUSION

It has been shown that in certain cases stability results can be
obtained for systems where the Popov criterion fails to verify Aizerman's
conjecture. By bounding the slope of the nonlinear function, new fre
quency domain stability criteria are obtained. These criteria have a
simple graphical interpretation and the theorem can readily be applied
to experimental frequency response data. Further examples are
required to illustrate these criteria, since only by example can it be
shown that an improvement over the Popov theorem is possible.
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Fig„ 1. Nonlinear feedback system.
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Y=totJmG(jto)

X= ^G(jco)

Popov line

Fig. 2. Modified frequency response for example 1.
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Y =co3mG(jco)

X=w2(Ra.G {')(*))

Fig. 3. Graphical interpretation of the new criterion,
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APPENDIX

Substituting for \T(t) in Eq. (28) gives

/-»oo

q I { fr (t) - £(t)} eT(t) dt

oo

+ \ {\&T{t) - kxf(t) +eT(t)} (k2o-T(t) - k2f(t) - eT(t)} dt < o

that is, substituting for ©T(t),

q I tr (t) (eT(t) - 6(0) e""*} dt
J0

eOO m i * _ nY*.
{k,fr«(t) + £T(t) +^(0)e-fft}{k?L(t) -Ut)-«5(0)e }dt

J0
rp\L/ x b-p\w T " m^j <= j 1^2 Tv/ T

q I f(t) 0T(t) dt + 2kx k2 \ f(t) crT(t) d

OO

+(k2 - kp I f(t) 0T(t) dt - kx k2 ^ f(t) dt (30)

Since | £(t) | < M, it follows that | £T(t) | < M2 and | 0T(t) | < My
From Eq. (15)

o-(t) = u(t) - z(t) - g(0) £(t) - f g(t- t) g(t) dr
Jo

so

/•»00

IS-(t) | < | u(t) | + | z(t) | +M| g(0) |+M | g(t) | dt
— Jo

< M4
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and | trT(t) | < M .

Now

£(t) = 4>'(cr) ft-(t) so \i(t) | < max(kr k2) M4,

I^T(t) I - M6 and l6T(t) I = I^T(t) + a ^(0) e I 1 M7

So from inequality (30),

n i />oo

qj 5T(t) 5-T(t)dt +qj eT(t)crTd

+j {^ o-T(t) +eT(t)} {k2 arT(t) - eT(t)} dt

Coo

{kx 5-T(t) + |T(t)} {k2 tVT(t) - iT{t)} dt

-q£(0) j e"ftIo-T(t)dt +(k2 - kx) a 6(0) J e_QrCo-T(t)d

-2a £(0) f e~at lT(t)dt -a2 £(0)2 y e"2flftdt

OO i^CO

< | q| M3 I | f(t) | dt +2kx k2 M5 j | f(t) | dt

+|k2 -kx |M? y |f(t) |dt +k1k2 J f(t)2dt

Now f(t) is bounded on (.0, oo) and is an element of L,A0, co) and hence

is an element of 1^(0, co). So
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r c °° i t -t •q \ $(<r) 5-(t) dt +q.\ i £X(t) £1 dt
Jo Jt

pi 2 r.oo k,
j (kx +c|>,)(k2 - «>') *(t)^dt +I ^+1 - 1

"T ?
£Vr dt

{ (k2 - kx) a- q} £(0) j e""1 o-^t) dt

-2a £(0) J0 *~at hM* 2t - "-HOT <

where C is finite and independent of T. The fourth time in this

inequality is positive and hence may be discarded. So we have

<C+qj <t>)o-) do- +|(k2-kx) a- q| |£(0) |Mg J e""0^ dt
•o-(O)

2a | £(0) | M6^ e"atdt +| £(0)

that is

T^ (kx +cj>«) (k2 - <j>') o-(t)2dt

< C - q K
(T)

0)

»(cr)d<r- ^T)^o-(T)]"j

M,

CO

a ^^2+ | (k2 - kx) a - q | | £(0) | --2 +2 | £(0) | M6 +\ £(0)
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-•*^--.-.«r-,-;'."^r?f':

Now 4* (or) and tr(t) are bounded and hence the right hand side of this

inequality is bounded uniformly in T. That is,

T

(kn +tj>«) (k2 - $') 6-(t)2 dt < C' < oosS
where C is independent of T,
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