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SUMMARY

Sufficient conditions for the stability of feed

back systems containing a single linear time-varying

element are obtained by using the method of Popov.

A frequency-domain criterion, which utilizes infor

mation on the time derivative of the time-varying

element, is developed. In this paper, the linear

time-invariant subsystem is described by a convo

lution integral, that is, no assumptions are made

concerning the internal dynamics of the linear time-

invariant part. An application of the main result to

a parametrically excited system is given to illustrate

the improvement of the new stability criterion over

the existing results.
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INTRODUCTION

With the advent of parametric devices and the control problem

encountered in the design of space vehicles, the need has arisen for

stability criteria which can be applied easily in the design of linear and

nonlinear time-varying systems. Consequently, in the past few years,

the development of sufficient stability conditions has been of great

interest in the study of feedback systems containing a single nonlinear
1-5 7 14 15and/or time-varying element. * ' ' These stability conditions

have been sought in terms of the real-frequency characteristics of the

linear time-invariant subsystem and the bounds on the nonlinear and/

or time-varying element in a manner analogus to the Nyquist stability

criterion for linear time-invariant feedback systems.

Frequently, in the practical analysis of nonlinear time-varying

feedback systems, more information is known about the time-varying

nonlinearity than the fact that it lies in some finite sector. When more

information is available, it is expected that better stability results will

be obtained. Rekasius and Rowland have investigated this problem by

taking into account the rate at which the characteristic of time-varying

nonlinearity varies. In this paper, a different approach is made to the

stability problem of linear time-varying systems using the method of

the Popov theorem. A new stability criterion is derived which shows
4 7

the improvement over the existing results. '

In this paper, the linear time-invariant subsystem is described

by a convolution (i.e., input-output relation), no assumptions are made

concerning the internal dynamics of the time-invariant part.



Description of the System

Consider the following system:

Fig. 1. Linear time -varying feedback system.

where N is a linear time-varying memoryless elennent, G is a non-

anticipative, linear-time invariant subsystem. N is assumed to

satisfy the following conditions:

(N.l) a(t) = c(t) r|(t), c(t) is continuous and differ entiable

over [0, oo) such that there exist positive real numbers

€ and k with the property that

0 < € < c(t) < k - € for all t > 0 .

G is characterized by the following:

(G. 1) If a is its input, its output y is given by

y(t) = z(t) +
Jo

g(t - t) <*(t) dT for t > 0

-2-

(1)

(2)



where g is the unit impulse response of G, z is the

zero-input response of G.

(G.2) For all initial state, z(0) is finite, z exists on [0, co)

and z, z are elements of L?(0, co) and z(t) -> 0 as
t -»co.

(G.3) g€ L^O, oo)nL2(0, oo), g exists on [0, oo) and belongs
to L2(0, oo).

The input u is assumed to satisfy the same conditions imposed on z.

Note that from (G.2) it is readily seen that z is bounded on [0, oo).

From Fig. 1

trft) = u(t) - y(t)

= u(t) - z(t) - \ g(t - t) a(r) dr-r

• -zi(t)-r g(t - t) a(r) dT for t > 0 (3)
0

where z, = - u + z.

Define G(s), the Laplace transform of g, by

oo

G(s) = \ g(t) e"Stdt .-fJ0

Theorem 1: Let Fig. 1 be the single-input, single-output linear

time-varying feedback system under consideration, where N is a

linear time-varying memoryless element which satisfies (N.l), and G

is a nonanticipative linear time-invariant subsystem satisfying (G. 1),

(G.2) and (G.3). If there exist real numbers 6, q and m such that

(i) c(t) I1- -^ - -| c(t) > m> 0 for all t > 0 (4)
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and

Then for any initial state, the output

(ii) Re(l + icoq) G(ico) + F > 6 > 0 for all coe (-00, 00). (5)

ye L2(0, oo)/n Lqo(0, 00), and y(t) -> 0 as t-»oo (6)

Proof: By Lemma 2 (see Appendix), in the proof of the theorem, q
may be assumed to be nonnegative.

The system is characterized by (3), i. e.,

r|(t) = -z,(t) - \ g(t - t) a(T) dt for t > 0 .
1 Jo

Let orT be defined by

a(t) for 0 < t < T

«T(t) =<J (7)
0 otherwise

where T is a finite positive number. Denote -nT(t) by

-HT(t) = -zx(t) - ( g(t - T) <xt(t) dr for t > 0 (8)

then

*lT(t) =-z2(t) - g(0+) aT(t) - f g(t - T) arT(T) dr for t >0.
° (9)

Define

*T(t)
^T(t) = •H.pCt) + q fjx(t) — (10)

r(t) = zs1(t) +q Z;L(t). (11)
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Our assumptions (G.2) and (G.3) on the differentiability of z,, and q

imply that they are continuous and hence bounded for finite t. By taking

absolute values of both sides of (3) and using (1); the Gronwall-Bellman

lemma implies that

| <h(t) | < max | z,(t) | exp
0<t<T

max I g(t)
0<t<T J0

c(t) dT

(12)

which is finite for finite T, therefore, aT is bounded and belongs to
L2(0, oo). Thus from (8), (9) and (11) we see that n™, f|T as well as r
are elements of L2(0, oo). Let AT(ico), AT(ico) and R(ico) be the
Fourier transforms of a~, \T and r respectively.

Then from Eqs. (8) - (11)

Let

AT(iw) = - (1 +itoq) G(iw) +^ AT(ico) - R(ico)

pOO
p(T) =j \T(t) aT(t) dt.

(13)

(14)

Since Re(l + icuq) G(ico) + *- > 6 < 0, by Lemma 3 (in Appendix) we

have

P(T)
Jo

^l(t) - ^ !> "(t) dt +q f a(t) r
J0

T!(t) dt < C1 (15)

1 C 2 1 C 2where C]L =-~ I | r(t) |c dt =^ I | z^t) +q Jfc^t) |c dt, is finite
and independent of T. Since a(t) = c(t) *n(t), by adding and substrac

T 2q f c(t) r\ (t) dt in the left_hand side of (15^ we have

-5-



O'trft) -^fipeij C(t) „<t) dt -f£T £(t) n2(t) dt
+I (T) r,2(T) <C: +| c(0) !!2(0) (16)

or

rp ^^_ ^^

io IC<t) L1 "~^] "̂ M ^ dt +2C(T) i2<T> ±cf (17)
where C," =C, +^ c(0) r\ (0) is finite and independent of T, since
r\(0) = -z,(0), is a finite number.

Since c(t) [_ 1 jT"^ J " 7 ^(*) ;L m > 0 anc^ <1 *s nonnegative,
each integral in the left-hand side of (17) is nonnegative. Therefore

J {c(t) T1 -"IT1] "7i{t)] ^2(t) dt ±c* (18)
and

$c(T) n2(T) < C*. (19)

From (18) and from the fact that C,' is independent of T we have

r°° 2 ci
\ r\ It) dt < , a finite number,JQ - m (20)

i. e. , r| e L?(0, oo). Hence a(t) e L?(0, co). From. (3), as t-»oo

t](t) = - lim I g(t - t) a{r) dT . (21)
t -* oo ^0

lim

t -» co

By Lemma 1 (in Appendix)

lim -n(t) = 0. (22)
t -» oo

-6-



Hence t| e L2(0, co) and T|(t) -• 0 as t -♦ oo. But T|(t) is bounded for

finite t, it is readily seen that r|(t) is bounded for all t > 0. Thus, in

view of (3)

y e L?(0, oo) O L (0, oo) and y(t) -» 0 as t -* oo.

V2C*
(from (19)). Q. E. D.

In the theorem we observe that as | c(t) | approaches zero for
5

all t > 0, the Popov condition is obtained. Moreover, if e is chosen

to be arbitrarily small, q must be chosen small accordingly. In the
4

limit, Theorem 1 coincides with the results obtained by Rozenvasser
7

and Sandberg.

Corollary 1: Let m. and m, be two positive real numbers such that

-m, < c(t) < m? for t > 0. Then if, in the theorem, the condition (i)

is replaced by (i)1:

w,-ir(i-^)<^<^(i-E) <»)
the same conclusion holds.

Proof: Since 0<e<c(t)<k-e, we see that

c(t) 1- £(*) >e(1- ~ ) for all t > 0. Hence for q such that

is positive for all t > 0. By Theorem 1, the same conclusion holds.
Q. E. D.

Frequently, in the study of parametrically excited dynamical

systems, the variation of the time-varying gain is sinusoidal. We have

the following:

-7-



Corollary 2: Consider the same feedback system as shown in Fig. 1,
in which the time-varying gain is of the form:

c(t) = j [1 +a sin(co0 t + 6)] (24)

for all t > 0 with co > 0, 0 < a < 1.

Let the hypotheses of Theorem 1 be satisfied with

, | . 2VI - a2 ., 1 . .| q | < if -_. < a 1
0 77

or (25)

q I <—— if 0 < a < l
'oa co„ - - -^2

If Re (1 +i co q) G(ico) + i > 6 > 0 (26)

is satisfied for all co e (- oo, oo), then for any initial state,

y eL2(0, oo)/0 L (0, oo) and y(t) -» 0 as t -+ oo .

Proof: Let h(t) =c(t)|l-^} | - f c(t) (27)

then, by putting (24) in (27), we have

h(t) = ^ 1- a2 sin2(coQ t +0) - qa toQ cos (coQt +9) . (28)

After the general result stated in Theorem 1 had been obtained,
the author noticed that a similar result for sinusoidal case (stated in
Corollary 2) was obtained by Rekasius and Rowland-^ for lumped
systems only in an unpublished report. However, our approach and
results are different from theirs and our results hold for lumped as
well as distributed systems.
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It is shown in Lemma 4 (in Appendix) that h(t) > 0 for all t > 0 if

and only if (25) is true. Hence by Theorem 1, we conclude that

y e L-(0, oo)fl L^ (0, oo) and y(t) -» 0 as t -» go . Q. E. D.
Ct OO

Suppose that the linear time-invariant subsystem G includes

an integrator. Then with slight modification on the system, we have

Corollary 3: Consider the same feedback system as shown in Fig. 1.

Suppose that 1) 0 < e < c(t) < k - e for all t > 0, 2) G has the unit

impulse response of the form g(t) = d + g,(t) for t > 0, where d is a

positive real constant and g, satisfies the condition (G.3), 3) z,(0)

is finite, z,(t) -»z, as t -»>co and (z, - z. ), z, are elements of
V ' 1 oo * 1 1 oo 1

L0 (0, oo) where z, is a finite number. Then the conclusions of
2 ' 1 oo

Theorem 1 still hold.

Proof: As shown in Lemma 2, the original system is equivalent to the

system with a, G replaced by a, G respectively, where

3(t) = 2(t) T,(t), S(t) = k - c(t) (29)

and °<s> =i ;?&,) • <30>
o

It can be shown that the equivalent system satisfies all the conditions

of Theorem 1. A direct calculation shows that for all co

Re(l - i co q) G(ico) +£-i-
€0

1

| 1 + k G(ico) |
7JRe(l +i Wq) G(ico) +̂J +̂ -^ ^
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where e > 0 and is sufficiently small. We see that, for all to

Re (1 +icoq) G(ico) +^ > 0 (32)

A 1
implies that Re (1 - icoq) G(ico) + t-^ > 0 . (33)

K "€o

Now, we observe that

6(t) [l --|̂ ] -§kt) =c(t) [l -£gf\ -I c(t) (34)
for all t > 0 .

Since £(t) is a bounded function, it follows that, for all t > 0,

c(t) J1- -^n - \ c(t) >m>0implies that

c(t) [-
A_ , , g(t)

^^0
q a- -J c(t) > m > 0. (35)

A

By Theorem 1, the equivalent system G is stable with

e < £(t) < (k - e0) - e for all t > 0. This then implies the stability
of the original system with c < C(t) < k - € , which is precisely what

was to be proved. Q. E. D.

Note that from (31) we can weaken the inequality (32) to

Re(l +icoq) G(ico) + ^ > 0 provided G(ico) t - ^ for all co.

Application: We now apply the main result to the following

parametric circuit (Fig. 2):
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/-S(+):S0(l-/3coscopt)

Fig. 2. A simple time-varying circuit.

Let T| be the charge on the time-varying capacitor. Applying

Kirchhoff!s laws to the circuit, we have

AJl+R*l+S(t!o fort>0
dt1 L3F

(36)

where S(t) = SQ(1 - p cos co t) for t > 0, and R, L, SQ, (3, co are
positive, co and |3(0 < |3 < 1) are the pump-frequency and the index

of modulation respectively. Let

A _ R v _ 0
A ~ L ' D0 " X" '

Then (36) can be rewritten, by adding Db. t] to both sides, as

follows:

j? +Aa? +Dbo" =-*-D> bo [} -irl-uj cos v] "
for t > 0 (37)

-11-



where 0 <D<1 such that t^q < 1.

From (37) we obtain

-fn(t) = z(t) - \ g(t - t) [ c(t) ti(t)] dt for t > 0 (38)

in which z is the solution of

and

TT +Aa£ +Db0z =° (39)
at

c(t) =(1 - D) bQ 1- (1 Pp) cos cop t"j (40)

g(t) =^-"1{G(s)} =^-"1 {-g 1 } . (41)
s +As+Db0s

In accordance with our assumption that A and Db. are

positive, it follows that z, g satisfy the conditions of Theorem 1. Thus,

by Corollary 2, if there exist 6 and q such that

and

2 „.-.„. x;"\A-(t4o)
CO

p vr
<*) Iq I < — i£ -T^r < j^r-jy < 1 (42)

or W <lixr- if °<T^<^ <43>

.... „ , 1 +icoq I , 1 > 6 > 0
(11) i i axm/ix-A f *(* - D) bn -I (-co +DbQ) +iAco J 0

for all co . (44)

-12-



Then for any initial state, r\ is bounded and approaches zero as

t -» oo.

Let Q = Vbg/A, the quality factor of the resonant circuit
with S(t) replaced by SQ . By a straight-forward calculation, it can
be shown that if

q > q,
2Q2[1 -VD(2 - D)' 1-1

2VbQ ' Q(l - D)
(45)

then condition (ii) is satisfied for all co. Let us take |3 = 0.16,

co = 2 Vb- , D = 0.8 as an example. Using (42) (since p/1 - D = 0.8)

and incorporating with (45) we find that if Q < Qfl = 8.68, then there
exist q and 6 such that both (i) and (ii) are satisfied. For values of

D other than 0.8, the corresponding values of Qn are obtained and

plotted in Fig. 3.

9--

Q
0

6-

3-

0

0 0.2 0.4 0.6

J_
l-D

max.Q0=8.68otD^0.8

0.8 1.0

Fig. 3. P=0.16, u, =2"\f\
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Figure 3 shows that, with p =0.16 and co =2VbQ, QQ attains its
maximum for D - 0.8. In other words, if Q =lj h'/A is less than

8.68,. then the circuit is stable.

Table 1: Q~ is computed for co = 2~vbrt
0 p 0

p 0.024 0.04 0.06 0.08 0.12 0.16 0.20

Ql

59

41.7

35

25

23

16.7

17.8

12.5

11.8

8.3

8.68

6.3

6.8

5

Q2 100 50 33 25 17 12.5 10

The values of Qft given in Table 1 are obtained in a similar
manner with <o =2VbQ and p ranging from 0.024 to 0.20. It says
that if, for a given p, "V bQ/A does not exceed the corresponding value
of Qn, then for any initial state the solution of (36) is bounded and
approaches zero as t -*co. For comparison, it is of interest to con-

11sider the recent results of Sandberg concerning the solutions of

second order differential equations similar to (36) with the exception

that S(t) is no longer a periodic function of time. Sandberg finds that
if, with a given p, "\jbjA does not exceed the corresponding value of
Q, in Table 1, then for any S(t) (not necessarily periodic) such that
S (1 - p) < S(t) < SQ(1 +P) for t > 0, all solutions of (36) approach
zero as t -»oo. We observe that, for the special case of (36) with
ui = 2Vb our results show the improvement over Sandberg's results,

p 0* |
In the above example we have chosen co to be 2~vb0. This is

*• . 12
because we also want to make comparison with the results of Phillips
concerning the determination of the values of reactance variation in
order that parametric oscillations can just be maintained in the same

-14-



circuit of Fig. 2. Using a semigraphical technique and the results of

McLachlan concerning the Mathieu equation, Phillips finds that if, with
a given p < 0.2, my\fb7%/A exceeds the corresponding value of Q- in
Table 1, then there exists co , in the neighborhood of 2"\/bn, for which
all solutions of (36) do not approach zero as t -*oo. Observe that the

values of Q^ are only roughly 1.5 times the corresponding values of
Q0.

It must be noted that if co is reduced, then, with a given p,

the corresponding value of QQ will be increased. For example, let
P=0.16, co =-j VDo» the corresPonding QQ is obtained to be 21.5,
which is much larger than 6.3 as was obtained by Sandberg for the

general case. Moreover, as co approaches infinity, values of Qn
approach the corresponding values of Q,.

CONCLUSION

In this paper we have obtained sufficient conditions for the

stability of feedback systems containing a single linear time-varying

element whose input-output characteristic lies within a finite sector.

An improved frequency-domain criterion, which utilizes information

on the time derivative of the time-varying gain, is developed. The

main-result stated in Theorem 1 together with its corollaries holds for

general distributed systems as well as lumped systems. A restricted

class of inputs, which satisfies all the conditions imposed on the zero-

input response, is also allowed.

An application of the main result to a parametrically excited

system is given to illustrate the improvement of the new stability

criterion over the existing results. In general, when more information

about the time-varying element is available, better stability results

can be obtained.
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APPENDIX

Lemma I: Let f,, f2 be real-valued functions and elements of

L2(0, co). If h(t) = f f^t - t) f2(T) dT for t >6, then

lim h('t) = 0 .
t -♦oo

Proof: Let F,(ico), F2(ico) be the Fourier transforms of f,, f2

respectively. Then

h(t) = J?- I F:(ico) F2(ico) eltor dt (A-l)
J-oo

But F.(ico) and F-(ico) are elements of L2(0, oo), it follows by
Schwartz inequality that F,(ico) F2(ico) is an element of L,(0, oo),
Thus by Riemann-Lebesque lemma,

Q. E. D.

lim h(t) = 0. (A-2)
t -» oo

Lemma 2: Let the hypotheses of Theorem 1 be satisfied with q > 0.

Then the same conclusions hold if the same hypotheses are satisfied

with q < 0.

Proof: Let a(t) = kti(t) - a(t)

= c(t) n(t) (A-3)

where £(t) = k - c(t), which satisfies the same condition on c(t),

i. e.,

0 < e < c(t) < k - e . (A-4)
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>

Then it is readily seen that (3) is equivalent to:

where

= -si(t) - r
Jo

n(t) = -z\(t) - \ g(t - t) a(r) dT for t > 0 (A-5)

g(t) ^"^(s)} =^1{r^riy} (A-6)

= -g(t)+kf g(t - t) g(T) dT for t>0 (A-7)
J0

and

rt
zx(t) = zx(t) +k \ g(t - t) z^t) dT for t > 0. (A-8)

3 5Next, the geometric interpretation of the condition (5), ' which is

satisfied by G, implies that the Nyquist diagram of G does not

encircle the critical point ( - *-, 0) and G(ico) ^ - t- for all co, i.e.,

1 +kG(s) ^ 0 for Re s > 0. Then g€L,(0, oo) implies that
— 8g€ L.(0, oo) by appealing to a theorem of Paley and Wiener. By a

theorem in Ref. 10, it follows that g, z,, g and z.. are elements of

L2(0, oo). Moreover, from (A-8), z,(0) = z,(0) is a finite number,

and as t-»oo, lim zJt) = lim k \ g(t - t) z.(t) dT = 0 by
t-*oo t-»oo JO

Lemma 1. Thus the equivalent system (A-5) satisfies the same con-
3

ditions of the original system (3). A direct calculation shows that for

all co

Re(l - icoq) G(ico) + i = - 7 { Re (1 +icoq) G(ico) + *- }
K |l+kG(ico)r

(A-9)
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Since G(ico) is bounded for all co, Re (1 +icoq) G(ico) + r- > 0 implies
a 1 K

that Re (1 - icoq) G(ico) + *- > 0. Furthermore, we observe that

(t) fi -4r] -fa(t) =c(t) i--££>! -§c(t>. (A-io)
Therefore, if (4) and (5) are satisfied by G for some q < 0 and some

k, then the same conditions (4) and (5) (with a different but still positive
A

6) are satisfied by G for - q > 0 and the same k.
Q. E. D.

Lemma 3: Let f,, f2, f^, h be real-valued functions and elements of

L?(0, oo). Let F,(ico), F2(ico), F-(ico), H(ico) be their corresponding

Fourier transforms. If

F^ico) = -H(ico) F3(ico) + F2(ico) for all co (A-ll)

and if there exists a real number 6 such that

Re H(ico) > 6 > 0 for all co (A-12)

then

2

00 1 f °° IF2*iw) Ij0 V*> f3<*» dt ±Wym fee H(M d» *Cl (A-13)

Cl =8¥6 f°° IF2<iu> 12 da =lif P If2<*> I2dt ' <A'14>

Proof: The proof is a straightforward application of the completing

the square technique (see Refs. 3 and 5).
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Lemma 4: The function,

h(t) =£ 1- a2 sin2(coQt +8) - qacoQ cos(coQt +8) (A-15)

with con > 0, 0 < a < 1, is positive for all t >0 if and only if

and

, . 2V 1 - a2' .-1 * * *q < if —= < a < 1
W

q < —
a co.

if 0 < a <

VT

Proof: Differentiating (A-15), we have

(A-16)

£i^ =^ sin(to0t +8) -2a2coQ cos(coQt +8) +qaco2 . (A-17)

Let t be some time such that *. ' . . =0. Then from (A-17)
m dt t=t

1 m

one obtains either (i) cos(coQtw +8) =qcon/2a or (ii) sin^t^ +8) =0.

For case (i) we have

qco
0

2a
< 1 or

2a

cort

and from (A-15)

h<tm) = I

k

2 2

1 - a* 1 -

1 - a'

4a'

2 2
<1 <*>n

-19-
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qco,
- qa co

0

(A-19)



If 1 - a -

2 2
<1 WA

> 0, i. e., I q I < V77

then h(t ) > 0. But
m

d2h(t)
~7^~ t=t

m

,22

2 sin (o>0tm + 8) > 0,

we conclude that at t , h(t ) attains minimum. Hence for
m * m'

(A-20)

(A-21)

q <
V2 V 1 - a' 2aand | q | < —, h(t) > 0 for all t > 0.

For case (ii), sin(cont + 8) = 0, or cos(cont + 8) = + 1, then
'0 m 0 m

from (A-15)

flu7 [1-qawJ for cos(coQt + 8) = 1 (A-22-a)

h^m) = <

[ j [1 +qacoQ] for cos(w0tm +0) =-1 (A-22-b)

Taking the second derivative of h(t), one obtains

d2h(t)
t=t

m

k 2 2 3= -r [ -2a con cos 2(coftt + 8) + qacon cos (cont + 6) ]
4 L 0 x0m /n0 * 0 m ' J

kco,
(-2a + quQ) for cos(coQt + 8) = 1 (A-23-a)

=

kco,
-j— (-2a - qcoJ for cos(coQt +8) = -1. (A-23-b)

Corresponding to cos(coflt +8) =1, if qacoQ < 1 and qcoQ > 2a, then

h(t
. . _ , d*h(t)
) > 0 and j-*

m ,^c.
dt

> 0. Hence h(t) > 0 for all t > 0.
t=t

m
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Corresponding to cos(co0t + 8) = -1, if -qacon < 1 and -q<*>0 > 2a,
2

then h(t ) > 0 and d h-(t)
dtT

But (A-24) is equivalent to:

> 0. Hence h(t) > 0 for all
t=t

m

t > 0. Combining the two, we see that if | q | aco^ < 1 and
| q | o>0 > 2a, then h(t) > 6 for all t > 0.

Thus we have shown that h(t) > 0 for all t > 0 if and only if

either

. (i) 1*1 <^ ' ^ and |q| <g.
^0 0

or (A-24)

(ii) |q| <-L- and |q| > g .
0 0

ii.2vl-a .r 1 ^ .. ,
I q I < r: lf TT=* < a < 1

"0 7T

or (A-25)

|q|<4 if °-a<77 •
Hence, the lemma is proved. The family of q - a curves of (A-25)

with equality sign is shown in Fig. 4.
Q. E. D.

-21-



Fig. 4. Family of {
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