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ABSTRACT

This paper is concerned with the properties of a

class of nonlinear coupled R, L, C networks. Sufficient

conditions are given which insure a unique response de

fined by a set of differential equations in the normal form.

Next we study the stability of these networks and relate

the property of asymptotic stability with the property of

"weak" observability at the resistor terminals.



I. Introduction and Notation

This paper is concerned with the properties of a class of coupled

nonlinear R, L, C networks. We first impose conditions on the network

topology and on the network elements which insure a unique response

defined by a set of differential equations in the normal form. The

nature of the conditions and of the results is similar to that given by

1 2Desoer and Katzenelson and by Holzmann and Liu. A novel part of the

proof is a "constructive" method of solving a class of nonlinear alge

braic equations. Next we study the stability of this class of networks

and relate the question of asymptotic stability to the notion of obser-

3
vability. We show that for "passive" networks with linear inductors and

linear capacitors, the notion of asymptotic stability coincides with that

of observability at the resistor terminals. For nonlinear passive net

works this equivalence is obtained if we suitably weaken the definition

of observability.

As far as possible, the notation used here is that of Kuh and

Rohrer. Thus let fb be a. nonseparable connected network, and let

J be a normal tree of 0%. We assume that each tree branch is in

parallel with a current source and each link contains a voltage source.

The sources are assumed independent. We denote the link element

voltages (currents) by v„(ip), Vg(ig), v, (i,.) ; the voltage sources -

in the links - by eR, e^, eT ; the tree branch element voltages (currents)

by vr(ir), v —(ip), v-pfi,-,) and the current sources - across the tree

branches - by jG, jc and j-,. Then the Kirchhoff voltage law is given

by (see 4)
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Vs + Fscvc = es

VR +FRC VC +FRG VG = eR (1)

VL + FLC VC + FLG VG + FU Vr = eL

and the Kirchhoff current law is given by

T T T
i - F i - F i - F i = i
XC SC S rRC R LC L JC

T T

lG ~ FRG lR ~ FLG lIa = jG (2)

T
i - F i = i
xr Lr l Jr .

II. Normal Form

The following conditions are imposed throughout. Let jjl stand

for R, L or C. Then there is a normal tree I of 7? such that

CI. jx-elements in the links are coupled among themselves. Dually,

the (x-elements in the tree branches are coupled among

themselves.

C2. The link elements are either voltage-controlled or flux-controlled,

whereas the elements in the tree branches are either current-

controlled or charge-controlled.
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More explicitly, CI and C2 become,

A A A
*R = iR(vR) *L = ilS+l) and qS = qS<vS>

vg = vg^g) ^r = *r^r^ and vc = vc^qc^ •

Equations (1) - (3) can be conveniently rewritten as

VR + FRG ^G^G* =eR " eR " FRC VC

" FRG ^R* + *G = jG " jG + FG 4L •

+L + FLr <MV> " ♦

T A A
" FLr Wi) + V = Jr •

vs + Fsc vc(qc) = es

T A a

- FSC qS(vS> + qC = q'

We also have the differential equation

(3)T

(R)

(L)

(C)

' To avoid notational problems we assume that the network is time
invariant.

-4-



q = FLC *L + FRC *R + JC

P)

+ = "FLC VC -FLG VG + eL

We remark that q is the vector of the fundamental cutset charges and

cj) is the vector of the fundamental loop fluxes. We also notice that the

equations R, L and C are of the form:

x + A f(y) = u

(*)
T

- A g(x) + y = v

where x, u e R ; y, v e R ; f :R -*Rn; g : Rn -* Rm and A is a fixed

n x m matrix. We now state some conditions on f and g such that

(*) has a unique solution in x and y for each value of u and v.

Theorem 1.1 If the functions f and g satisfy conditions HI and H2

or they satisfy conditions HL and H3, then (*) has a unique solution.

HI. f and g are differentiable and the Jacobian matrices

F(y) = tt— (y) and G(x) = -g— (x) are positive semi-definite'

for all x and y.

H2. Either F(y) is a symmetric positive definite matrix for all y or

G(x) is a symmetric positive definite matrix for all x.

' An n x n matrix M is positive semi-definite if \ x, Mx ^> > 0
for all x. It is positive definite if <^ x, Mx ^> > 0 for all x"P 0.
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H3. Either F(y) is diagonal for all y or G(x) is diagonal for all x.

Proof: We wish to determine the solutions (if any) to the set of

equations

x + A f(y) = u

(*)

T
- A g(x) + y = v .

1 2 T 2Define o?(x, y) = ^{iix + A f(y) - uu + n-A g(x) + y - vn } . Then x

and y solve (#) if and only if ar(x, y) = 0. Consider the differential

equation

HF = -fx" = -{(X+Af(y) -u) - [ATG(x)]T(-AT g(x) +y-v)}

^ =- §7 =-{[AF(y)]T (x+Af(y) - u) +(-AT g(x) +y- v)}

Along a solution of the differential equation,

2 2
dor da dx , 9a dy da da ^ n
ar = ^? ar + 57 ar = - V - "37" ± °

T
Define z = - A g(x) + u - v

and w = x + A f(y) - u .
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Then ^- = 0 if and only ifda

dt

(A F(y))

T T- (A1 G(x))1
— —

I— —i
w

A M

w

z z

—— —. —• .

= 0.

(3)

Now det(m) =det (I +AF(y) AT G(x)) = det (I +AT G(x) A F(y)). It is

easy to show that H2 implies det M > 1 and H3 implies det M > 1.

da
Hence (3) holds if and only if w = 0 and z = 0, i. e., -rr- = 0 if and only

if x and y solve (*). Also det M > 1 implies that ar(x, y) -*co as

5
iixii + nyn -*co. A theorem of Liapunov shows that (*) has at least one

solution. We now prove uniqueness. Suppose (x,, y,) and (x2, y2)

solve (#) for some fixed u and v. Then

(xx - x2) + A (f(Yl) - f(y2)) = 0

(4)

-A1 (g(Xl) - g(x2)) + (Yl - y2) = 0

Consider one-dimensional arcs x(9) and y(0), 0 < 0 < 1 given by

x(0) = 0xx + (1 - 0) x2

y(0) = 0Yl + (1 - 0) y2
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Then -«• = x, - x2 and -rrr = y-, - y2. Furthermore, (4) is equivalent

to (5).

^0=0
(xx - x2) + A \ F(y(0)) (Yl - y2) d0 = 0

-AT C1
J0=O

G(x(0)) (xx -x2) d0 + (yx -y2) = 0

(5)

But \ F(y(0)) d0 and \ G(x(0)) d0 have the same properties as
^0=0 ^0=0

F(y) and G(x) respectively so that (5) holds if and only if x, = x2 and

Yi = y2-
1 * Q.E.D.

In the following we assume that f and g satisfy the hypotheses

of Theorem 1.1.

Corollary 1.1: The solution of (#) can be obtained as the limit of the

solution of an asymptotically stable differential equation.

Remark: If we suitably bound the norms of the matrices F(* ) and

G(y), then the differential equation can be replaced by a difference equa-

tion. See Katzenelson and Seitelman.

Let w = g(x) and z = f(y). The proof of the next two corol

laries are straightforward and hence omitted.
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Corollary 1.2: (a) -g— is positive semi-definite. It is positive definite
3zif G(x) is positive definite for all x. Dually ^— is positive semi-

definite. It is positive definite if F(y) is positive definite for all y.

(b) If G(x) and F(y) are symmetric matrices, then ^— and ^— are

also symmetric.

Corollary 1.3: (a) If nun + iivii -*co then iixii + iiyu -»co.

(b) If f and g also satisfy

then

and

<^ x, g(x) ^> > 0 for x ^ 0

< x, f(y) > > 0 for y * 0

<^ u, w^> > 0 for u ^ 0

<^ v, z^> > 0 for v i 0 .

We now impose the conditions of Theorem 1.1 on the network

characteristics.

Theorem 2.1: If each of the equations L, C, and R satisfies the

hypotheses of Theorem 1, then the network response is unique and is

defined by a differential equation in normal form.

Proof: Theorem 1.1 implies that the equations R, L, and C can be

solved giving,
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VG = V>5> #> *R = **<e£» JrT> (6)

iL = iL(+, jr), vc = vc(es, q) (7)

a AT1Furthermore since e*^ = eR - FRC vc and j* = jg + F Qi we

can obtain (using 7), v~ and iR in terms of q, (j), eR and jr. Sub

stituting these functions in (D) we obtain the right hand side of D as

a function of q, <j>, and the sources.

Q. E.D.

III. Stability

a) From now on we assume that all the sources are identically zero.

We also suppose that the network satisfies all the hypotheses of

Theorem 2.1 and in addition the following conditions

H4. The resistors are passive, i. e.,

< VR' W > > ° if VR *°

<v ^G(iG»y> °" ic*°•

H5. The inductors and capacitors are passive, i.e.,
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<i $r(ir)> >0 if i *0

< *L> *L<*L> > > ° if *L' * °

< vs, qs(vs)> >Oifvs^O

and <^ qc, vc(qc) ^> > 0 if qc t 0 .

Furthermore, it will be assumed that the Jacobian matrices

associated with the inductors and capacitors, i. e, the matrices

8<|> 0i aqg 0vc
8ip 8^' W£ and ^ are symmetric.

obtain

7
By the well-known theorem on exact differential forms we

Lemma 3.1. The hypothesis H5 implies that there are real-valued

functions pr, p. , pg, and pc of the variables ip, <j>L, vg and vc

such that,

9pr apL aps 0pc
alp" =*r> d^ =xl' d^ =qs and aq^ =vs •

Furthermore each of the p. > 0 and pi(xi) =0 if and only if xi =0.

We will now make assumption
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H6. The tree-branch capacitors and the link inductors are realistic,

i. e.,

pc(qc) + Pl^l) "*°° as

liqcil + ii<j>t II -*co .

Remark: H5 is equivalent to saying that the inductors and capacitors

represent a conservative system. H6 is equivalent to saying that as the

charge in the tree capacitors or the flux in the link inductors become

unbounded, the energy stored also becomes unbounded.

b) A built-in Liapunov function: Let q and <j> be fixed and consider,

P(q, <t>) =Jq< vc, dq»> +J <iL, d^y . (8)

We first remark that assumption H5 and Corollary 1. 2b imply that

9vC 9iLand -£=- are symmetric matrices so that the integral in (8) is

independent of the path of integration. Therefore p(q, cj>) is a well

defined number.

Lemma 3.2. (a) p(q, <j)) > 0 for all q, <j> and p(q, <j>) if and only if

q = 0 and <{> = 0.

(b) Furthermore p(q, <())-»co as uqu + ii<j>u-^co.
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9vC 9iLProof: (a) By Corollary 1.2a -5— and -^-j- are positive semi-definite
oq 09

matrices. This implies that p(q, 9) > 0. By H5 and Corollary 1.3b

P(q» 9) = 0 if and only if q = 0 and 9 = 0.

(b) By Corollary 1.3a, 11 qn + 11911 -+00 implies that nqrii + iiv^ii -*co.

Now from (8) and the equations (L) and (C) we have

qc qs 9L
P(q, 9) =J < vc, dc£ > +|o < vg, dq« > +j < i^, d^>

9r

J0 <Vd*r>

4s ^4rp(q, +) =pc(qc) +pL(*L) +J <Vg, dq^> +Jq < Y> **T>

Now,

9
r s r r /J0 Os> dqs> +J0 < V d(|>r> =<vs> qs> +<ir» *r>

- ps(vs) - Pr^r^ - °

by H5. Also by H6, Pc(qc) + PL(9L) -*oo as uqcii + 119, 11 -» 00. Hence

P(q» 9) -»co as iiqii + 11911 -*co.

Q. E.D.
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Suppose q(t) and cj>(t) is the solution of the normal form starting

in the initial condition q(0) and 9(0). Let p(t) = p( q(t), <|)(t) ). Then,

dp 8p dq + 9p d§
dt " 8q dt 09 dt

= -<vR(t) , iR(t)> - < vG(t), iG(t)> by (D), (R), (L), (C).

< 0 for all t and

-j- = 0 if and only if vR =0 and ip = 0.

The last two statements follow from H4. We therefore have

Theorem 3.1: (a) The zero-input of a network satisfying the conditions

of Theorem 2.1 and H4-H6 is bounded.

5
(b) The network is globally asymptotically stable if and only if

vR(t) = 0 and ip(t) = 0 for all t implies that q(t) = 0 and <j>(t) = 0 for

all t.

Proof: (a) Let q(0) and (f>(0) be the initial state and p(t) = p(q(t), <J>(t)),

Then since -rP- < 0 we have p(t) < p(0) for all t. Since p(q, 9) -»co

as uqn + 11911 -*co we have q(t) and (f)(t) bounded for all t.

(b) Consider the set of solutions of the normal form for which p is a

constant, i.e., -7^- =0 for all t, or equivalently vR(t) = 0 and
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iG(t) = 0. By (D) and (R) this set is identical to the solutions of the

following pair of equations,

q = FLC *L

* = " FLC VC

and

(9)

FRC VC<*> ~ °' FLG Y - ° • <10>

It is well known that all the trajectories of the network state q and 9

converge to the trajectories which satisfy (9) and (10). Hence the net

work is globally asymptotically stable if and only if (9) and (10) have the

trivial solution q(t) = 0 and (f>(t) = 0.

Q. E.D.

Definition 3.1: (a) The network is observable at the resistor terminals

if v~(t) = 0, i„(t) = 0 over a nonvanishing time interval implies that
(j XV.

q(t) = 0 and (j>(t) = 0 for all t.

(b) The network is weakly observable at the resistor terminals if

vG(t) = 0 and iR(t) = 0 for all t implies that q(t) = 0 and (j>(t) = 0.

Corollary 3. 2: (a) The network is observable => the network is

weakly observable.
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(b) The network is globally asymptotically stable if and only if it is

weakly observable at the resistor terminals.

(c) For networks with linear inductors and linear capacitors but non

linear resistors the network is asymptotically stable if and only if it is

observable at the resistor terminals.

Proof: (a) Follows from the definition; (b) is equivalent to Theorem

3.1b and (c) is a well-known fact about time-invariant linear differen

tial equations.
Q.E.D.

Corollary 3.2(c) gives a useful stability criterion for networks

with linear inductors and capacitors. Suppose that the inductor and

capacitor characteristics can be expressed as i,. = T^> , » 9p = Lip,

qq = C vq where T, L, S and C are positive definite symmetric

matrices. Then simple manipulations yield, 9 -^^i and q =^ vq

whe re eU -
-1 T

r + F LF1 + * Lr Lr
and

Substituting in (9) and (10) yields

&<rC = FLC4L

oC'i " FLC VC

and

FRCVC = °' fL'l = °-

-16-
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Q-l-T
LC RC

Let A^ and B = (13)

-1-^F
LC

0 F
LG

Then (11) and (12) are equivalent to

x = Ax

Bx = 0 .

By the well-known conditions for observability of a linear time-

invariant system we get

Corollary 3.3: If the inductors and capacitors are linear, then the net

work is asymptotically stable if and only if the columns of the matrix

0BT, (BA)T, . . ., (BAn_1)T

>nspans R where A and B are defined in (13) and A has dimension

n x n.
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