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1. INTRODUCTION AND NOTATION. The problem of boundedness of

solutions of the differential equation

x = f(x,t) (1)

has been studied by Yoshizawa [1], He gets necessary and sufficient

conditions for various kinds of stability of (1) using the techniques of the

Liapunov direct method. We have extended the definitions and the methods

of Yoshizawa to the study of the bounded-input bounded-output stability of

the differential system

x = f(x,u,t) (S)
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Here x eR is the state of (S), ueR is the input or control and

tel = [0,oo) is the time. f:R XR X I -»• R is the instantaneous velocity

function which satisfies the following conditions. For fixed tel, f is

continuous in the pair (x,u), whereas for fixed (x, u) it is measurable

in t. Moreover, for bounded sets X Q R and UC R there exist

measurable functions L(t) and M(t) (dependent on X,U) which are

summable over every finite interval and such that,

|f(x,u,t)| < M(t) (2)

and

|f(x,u,t) -f(x',u,t)| < L(t)|x-x'| (3)

for every x,x' in X and u in U. In general, |x| and |u| denotes the

Euclidean norm of x and u respectively. Also if x(t) (u(t)) are

measurable functions of time, then

||x(t)|| ^ sup|x(t)| (||u(t)|| ^ sup|u(t)|)
t t

where the supremum is taken in each case, over those values of t for

which the function is defined. The solutions of (S) are to be interpreted

in the sense of Caratheodory [2,3] . Thus let u(t), tel be any bounded

measurable function and let (x0,tfi) be any initial condition. Then a

function

x(t) = xu(T;x0,t0) (4)

is a solution of (S) if it is absolutely continuous in t, satisfies the

initial condition

-2-



x(V = WVV = xo

and satisfies (S) almost everywhere in the domain of definition of (4).

Because of the conditions (2), (3) imposed on f, x(t) is defined on a

nonvanishing interval containing tn and furthermore it is unique [2,3].

For each r > 0 we define the set

Ar = {x|xeRn, |x| >r} (5)

Following Yoshizawa [1] we shall need to consider Liapunov functions

V(t,x) defined continuously on A XI (for some r) and such that VeCn(x).

That is to say, for each a > 0, there is a continuous function L(t) = L (t)

such that

|V(t,x)- V(t,x')| < L(t)|x-x'| (6)

for every x,x' with norm less than a. We also say that V(t,x) is

absolutely continuous in t uniformly at a point (x~,t ) if there is a

positive number p (depending on xn,t-) such that for each e > 0 there is

a number 6 = 6(e) such that for every m,

m

^ lV(tk'xk} -^v^i< €
k=l

whenever

m

Y |t^-tkl < 6; t0-P <t|< t1± ... < tm< tm < tQ+P
k=l

-3-



and

|x, - xn| < 6 for each k.

We will always suppose that the Liapunov functions have this property

so that if x(t) is an absolutely continuous function, V(t,x(t)) is also

absolutely continuous in a neighborhood of t. Then corresponding to

each bounded, measurable function u(t), tel we can define

v'(t,x) = Hm" -J- {V(t +h, x+hf(x, u(t), t) - V(t,x)}
u h-*0+ n

2. DEFINITION. The system (S) is bounded-input bounded-output

stable (BIBO) if for every a > 0, for every a > 0 there is a number

|3 = (3(a, a) such that

lXu(T; x0'Vl - P for a11 T- l0 (7)

for every initial condition (x0,t0) with |xQ| < a and every measurable

function u(t), tel with 11 u 11 < a .

Remarks: 1. Since the definition (7) depend on the solution (4) to

the system (S), it is useful for a large class of dynamical systems. Of

course the nature of the results is such as to be particularly useful for

differential systems.

2. Various weaker notions of boundedness can also be

introduced. In some cases analogous results can be obtained. The

reader is refered to Yoshizawa [l] for a thorough discussion of the

behavior of (1).
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3. CONDITIONS FOR STABILITY.

Definition. We say that the Liapunov function V(t,x) has property

A if there is a positive continuously increasing function a(r) such that

V(t,x) < a(|x|). It has property B if there is a nonnegative continuously

increasing function b(r) with b(r) -*• oo as r -*• oo and such that

b(|x|) < V(t,x).

Theorem 1. Suppose for each a > 0, there is a positive Liapunov

function V(t,x) = V (t,x), defined in A = A . ., and possessing
a. r(a) r °

property A and B. Then if

Vu(t,x) < 0 (8)

for (t,x) in A and for each measurable function u(t), tel with ||u|| < a,

the system (S) is BIBO.

Proof. Let u be any measurable function on I with 11 u 11 < a and

let (x_,t0) be any initial condition with |xfi| > r(a). Since V has

property A, V(tQ,xQ) < a.(a>) for all t0 and all x0 with |x0| = a. By

property B since b(r) -+• oo as r -*• oo there is a p = (3(a) such that

b(P) = a(or) . Therefore,

V(tQ,x0) < b((3) for all tQeI, for all xQ with |x | = a.

Hence by (8),

b(P) > V(t0,xQ) > V(t,xu(t;x0,t0)) t > tQ.
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But,

V(t,xu(t;x0,t0)) > b(|xu(t;X(),t0)|)

and by property B. Since b is increasing we have,

|3 = (3(a) > |xu(t;x0,t0)|, t > tQ
Q.E.D.

The following lemma will be very useful to prove the converse of

Theorem 1.

Lemma. Let (xQ,t0) and (x,,t,) be two initial conditions with tn < t, ,

let u(t) be an arbitrary measurable function on I with ||u|| < a. Suppose

that the two solutions,

xu(t;xQ,t0) and x^tjx^)

can be defined to the left over the interval t < * < ^i t^.t<.ti# (We

assume that 0 < t ). Also suppose that |x (t;x„,t0)| and |x (t;x,,t,)|

are less than a over these intervals. Then

|xu(t ;xQ,t0) - xjt ;x1,t1)| <

t2

l-x0| +Jl
^0

M(T)dT
0

exp \ }.sL(T)dt

where the functions L and M are the same as those in (2) and (3).

The proof of this lemma is very similar to the proof of the

(generalized) Gronwall's lemma given in [2].

-6-

(9)



Theorem 2. If (S) is BIBO, for each a a > 0 there is a Liapunov

function V(t,x) = V (t>x) defined on A = A . . such that V has properties
a r(a) r r

A and B and V (t,x) < 0.

Proof. Fix a > 0. Since (S) is BIBO, for each u, with ||u|| < a,

for each (xn,t.) with |xn| = a,

|xu(T;x0,t0)| < (3(a) = (3(a, a) (10)

for all t > t^ . We can assume that p is a continuous strictly monotonically

increasing function and P(a) -+ oo as a -** oo. Hence the inverse function

a = a(P) is defined for a > p(0) and has the same properties as p.

Let r(a) = P(0). Let A = A , .. Then, for each (xQ,t0) in AX I

and each u with ||u|| < a, define

^W =min{lxu(T;x0,t0)l 1° iTS V (li)

where the region of t is that for which the solution x (T;x„,t_) exists.
° u 0 0

The required Liapunov function is

V(t0,xQ) = Va(t0,xQ) i Inf{Ku(t0,x0)| ||u|| < a} (12)

Clearly 0< K^(t ,x ) < |x | so that

V(t0,x0) < |x0| (13)

Hence V has the property A. We also claim that,

0 < a(|x0|) < V(t0,xQ) (14)
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If this is not the case, then there is a u, ||u|| < a such that for some

xo

Ku(t0,x0) < «(|x0|)

Hence for some t, 0 < t < tn we must have

.-. p(|xu(T;x0,t0)|) < P(a(|X()|) = |xQ|

But P(|x (T;xn,tn)|) > |xn| which is a contradiction. Hence (14) is

true, so that V has property B. It remains to show that V has the

required smoothness properties.

Let (xn,tn) be any element of (A X I) and let u(t), tel be any

measurable function with ||u|| <_ a, and consider the solution x (T;xQ,t )

for 0 < t < t. If this solution is continuable to t = 0 then there is a

6-neighborhood N of (xn,tn) in R X I such that all solutions of

x = f(x,u(t),t) (15)

starting from N and going to the left lie in an e-neighborhood of

x (tjx,,,^). 0 < t < t. This can be easily seen from the lemma. Also
u 0 0' — —

8 just depends on the bound on ||u|| and |x | - In this case, for every

(x,t) in N we consider in the definition (11) of Ku(t,x) the interval

0 < t < t. On the other hand suppose that there is an a > 0 such that

|xu(T;x0,t0)| -> oo as t •* a+ (16)
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In this case we define,

P(ti) = sup{|xu(T;x0,t0)| |xq|<t|, tQeI, t > tQ} (17)

This is a finite number since (S) is BIBO. Now let t be the largest

time smaller than tQ at which we have

for the first time. This is possible because of (16). Again there is a

6-neighborhood N of (xQ,t0) such that every solution of (15) starting

from N and going to the left lies in an e-neighborhood of x ("r;xrt,trt)
o u 0 0

on the interval t < t < tQ. Let (x,t) be a member of N and consider

x (t;x, t). We claim that

|xu(T;x,t)| > 2|X()| for t < t* (19)

Suppose this is not the case. Then for some t < t ,

|xu(r;x,t) < 2|xQ| (20)

But then,

p(|xu(T;x,t)|) > 2P(2|xq|) - e > P(2|X()|)

for e sufficiently small. This follows from (18). But because of (20)

this contradicts the definition (17) of p. Hence (19) must be true.

Therefore for every (x,t) in N we can again consider in the definition

(11) of K (t,x) the interval t < t < t for some 0 < t < t.
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Now let u be an arbitrary measurable function with ||u|| < a.

t) and (x',t») t

Suppose t < t'. Then

Let (x, t) and (x',t') be any two points in the neighborhood N of (x ,t ).

Ku(t,x) -Ku(t',x<) = Ku(t,x) - |xu(T';x'.f)| (21)

< |xu(r';x,t)| - |xu(x';x',t')|

< |xu(T';x,t) -xu(t';x', t')|

nV pt
< (|x-x'| + I M(T)dT)(exp I L(T)dT)

Jt Jf

< (|x-x'| + 1 M(T)dT)(exp \ L(r)dt)

rv
< A( |x -x' | + \ M(T)dT) by the lemma.

Jt

Here in (21), t' is the time at which the minimum in the definition of

K (t',x') is achieved. In a similar manner we can prove that

rt»
|x-x'| + \ y.

Jt
Ku(t,x) - Ku(f,x') > -A(|x-x'| + \ M(T)dr)

Combining the two estimates we get,

|Ku(t,x) - Ku(t',x')| < A(|x-x'| + J M(T)dr)

for every u, ||ull < a and every (x, t), (x', t') in N.
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Therefore by the definition (12) of V we have,
a

|Va(t,x) - Va(t',x')| < A(|x-x'| + \ M(t)dt) (22)

in a 6-neighborhood N of (t0»x0). Trivially from (22) VeC (x). Also

for every m, and

tJ < t, < . . . < t' < t
1—1— — m — m

and every Xj, x2> .. . , xm with (x^t^ and (xk,t^) in N we have from

(22)

r

m m t

) ^a^'V "W^l <A Y J M(r)dt)
^1 fel Jtk

Since M(t) is an integrable function, its indefinite integral is absolutely

continuous. Hence V(t,x) is absolutely continuous in t uniformly at

each point. V therefore has the required smoothness properties. Also

by the definition (11) of K (t,x) we see that K (t;x (t;x, t)) is non-

increasing in t. Hence V (t,x) is nonincreasing along every solution of
a

(S) for each u with ||u|| < a. Therefore V (t,x) < 0. The theorem is
"~~ a ^—

Proved- Q.E.D.

4. A SIMPLE APPLICATION.

We close this paper by a simple application of Theorem 1. Let the

differential system [4,5] be given by
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x = Ax + bf (o-)

(23)

o" = d x - rf(o-) + u

where A is an nXn matrix with all its eigenvalues having negative real

parts, b, d and x are n-vectors whereas cr and u are scalaars. f is

a locally integrable function of cr such that

f(o-) -*±oo as or -*• ± oo

Consider the function,

V(x, o-) = xTQx + r f(<r
J0

)d<r

where Q > 0. Clearly V(x, cr) is positive for |x| + | cr | sufficiently

large and V enjoys properties A and B. Then if y = (x, f(cr)) we have,

V = - yTFy +f(o-)u

where F is an (n + 1) X (n + 1) matrix with

F =

" G g

T
Lg r_

where -G =ATQ +QA, -g =Qb +^d

The following result is a straightforward application of Theorem 1.

Theorem 3. If F > 0 then the system (23) is BIBO.
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