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Let the linear time-invariant systems under consideration be

described either by

rx = Ax + Bu

j£ = Cx + Dui
or

x. ., = Ax. + Bu.
~i+l 1 ~ '-i

y. ,, = C x. ,, + Du. .,
Xx+l ~ -l+l ~ "i+l

(1)

(where A, B, C and D are constant nXn, nXp, r X n and r X p

matrices, respectively). Then it is well known that any state is reach

able from the origin in a finite time if and only if the rank of the matrix

P = [B : AB:
«n L ~

•;An_1B]

is equal to n [1, 2]. Observe that this statement does not assume that

A is nonsingular. In the following we shall not assume that A is

nonsingular.

We use the following notation: if P is a matrix, p(P) denotes

the rank of P and01 (P) the range of P. We also recall the fact that

the rank of a matrix is equal to the dimension of its range [ 3].
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To check controllability in many instances one need not calculate

P but only a matrix with a smaller number of columns. This is based

on the following.

Assertion. If k is the least integer such that

p<?k> = p<?k+i> -f s n

then, for all integers s 5: k,

P<?s> = P<?k>

and

GL (?a) =&<?k> •

Thus in order to check controllability one needs only calculate P, and

check its rank.

Proof. By assumption, (Si (P, ) and ^(Pir+i) have the same dimension
f. Observing that the columns of any matrix span its range and that all

the columns of P. are in Pk+1, we conclude that the subspaces (& (P )

and Go (P, ,) are identical. For simplicity call $1 this subspace.

We now assert A dLC&> where by A <% we denote the image of

(36 under the linear transformation A. Indeed, if x €(3t then x is some

linear combination of columns of P, ; multiplying on the left by A, we

see that Ax is a linear combination of columns of P. ,, and, hence,
~k+l ' *

Ax €(% .

Clearly then for any integer s > k, the columns of A B are

vectors in Si and since all the columns of P, are columns of P it
~k ~s

follows then that & (P, ) = &(P ) .
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Corollary. Let r be the rank of B and k be defined as in the previous

assertion. Let n be the degree of the minimal polynomial of A ,
o ~

then

k ^ min(n - r + 1, n ) (2)

nQ
Proof. k ^ n because A is a linear combination of I, A, . . .,

o — ~ ~

nQ-l rn
A . k^n-r+1 because each time a block of the form A B is

added to P , (m < k), the dimension of the range is increased by at

least one.

The inequality (2) is not the best possible as is shown by the

following example.

A = " * - •• \ B =

Here n = 4, n =2, r = 1, hence min(4, 2) = 2. However k = 1 and

f = 1.

Observability. Invoking the duality theorem of Kalman, we conclude

that either system described by (1) is completely observable if and only

if p(Oj = n where

0.

and k is the least integer such that

PQk) = P(0k+1) •

&

^ m
C : A C
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: A* (m-l) r* m = 1, 2,
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