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Coffee Machines and a Quadratic Equation

by

Elwyn R. Berlekamp

The late John L. Kelly, Jr. , of Bell Telephone Laboratories

was a member of that set of mathematicians who could no more work

without cigarettes and coffee than without paper and pencil. These

essential supplies are commonly purchased from vending machines,

those primitive computers which accept coins as inputs and dole out

coins and essentials as output. Coffee is sold for ten cents per cup.

The coffee machine accepts only nickels, dimes and quarters, and

gives change only in nickels. If the machine has less than three nickels,

then it is unable to make change for a quarter. The more advanced

machines turn on a light to notify the customer of this situation.

The light was on one day in the summer of 1962 when Dr. Kelly

and I approached. We both wanted coffee, but we could muster only

two nickels and one quarter between us. "What odds will you wager, "

he asked, "that inserting these two nickels will turn the light out?"

To that question we devote this paper.

The research herein was supported in part by the Air Force Office

of Scientific Research under Grant AF-AFOSR-639-65.
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We must first introduce some appropriate assumptions in order

to make the problem more precise. Since the insertion of dimes does

not affect the machine's nickel supply, we may consider customers who

use dimes to be inconsequential. We assume that, if the light is out,

each consequential customer will insert a quarter with probability q or

two nickels with probability n. If the light is on, however, we assume

that each potentially consequential customer will insert two nickels with

probability n', or he will go away (or get a dime) with probability q'.

Since n' > n, we may set n' = n + q(b); q' = qa . If we consider the

unfortunate customer who finds the light on when he arrives with a

quarter in hand, we may interpret a as the probability that he will go

away (or use a dime) and b = 1 -a as the probability that he will use

two nickels. We further assume that different customers behave

independently of each other. We also assume that the machine is

capable of holding an infinite number of nickels. We wish to determine

s, , the probability that the machine has k nickels. Finally, we assume

that this probability distribution has reached a steady state. This

assumption will be valid if the machine is allowed to operate for a long

time without internal tampering with the number of nickels. If the

vendor inserts or removes large numbers of nickels frequently, then we

cannot expect this formulation of the problem to provide a reasonable

answer to Dr. Kelly's question. However, the only vendor with whom

I have discussed the situation stated that he usually confines his activities

to refilling the coffee and removing the dimes and quarters, leaving the

nickel supply unchanged. Under these circumstances our assumptions

are not unreasonable.
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Let us first list all of the notation:

s, is the probability that the coffee machine contains k nickels.

00

We require that s, > 0 and that > sk = l.
k=0

P, is the probability that the light is on. PL = s0+ si + s2*

Pn, P,, and P7 are the conditional probabilities of finding the
0 1 "

machine with 0, 1, or 2 nickels, given that the light is on.

P0 = S0/PL; Pl = S1/PL: P2 = S2/PL-
q is the probability that a consequential customer uses a quarter

when the light is off.

n is the probability that a consequential customer uses two

nickels when the light is off. n = 1 - q.

q' is the probability that a potentially consequential customer

does not put in two nickels when the light is on.

n' is the probability that a potentially consequential customer

uses two nickels when the light is on. n' = 1 -q'.

a is the probability that a potential customer who arrives with

quarter in hand and finds the light on goes away (or uses a dime), a = q'/q.

b is the probability that a potential customer who arrives with

quarter in hand and finds the light on uses two nickels. b = l-a = (q- q')/q =

= (n' -n)/q.
oo

V
S(z) = ) s, z is the generating function for the state probabilities.

:=0

m = n/q is another parameter useful in subsequent calculations,

h = 1/m = q/n is likewise subsequently useful.
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According to ous assumptions, the generating function S(z) must

satisfy the equilibrium equation

2 2-3 2 2S(z) = [S(z) - (sQ+ s,z + s2z )][nz + qz" ] + [s0+ siz + S2Z Hn'z +^ ]

Solving for S(z) gives

2 -3 2
(s7z + s,z + sn)(-qz + qbz + q')

S(z) =-i ° -g
1 - nz - qz

3 2 2Multiplying by z , substituting s2z +s,z + sn = P. (P2z + R + P0)

and cancelling the common factor of (z -1) from both numerator and

denominator, we obtain

PL[P2z2+ Pxz +PQ][b(z4+ z3) +(z2+ z+1)]
S(z) =

[ -m(z4+ z3) + (z2+ z +1)]

Since the probabilities must sum to one, we require

S(l) = 1

PL(2b+3)

(3 -2m)

From this we deduce that the probability of the light being on

must be

„ _ (3 -2m) _ (5q - 2) _ (3 - 5n)
^L " (2b + 3) " q(Zb +3) " (l-n)(2b + 3)

This expression is valid only when m < 3/2, or n < 3/5. If

n > 3/5, then we expect the number of nickels in the machine to increase
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indefinitely, and the steady-state distribution for which we are searching

will not exist. As n approaches 3/5, then P, approaches zero, corre

sponding to the fact that if nickels are inserted almost as often as they

are needed for change, then the machine should rarely run out. As n

approaches zero, P^ approaches l/(l +2b/3). Again, this agrees with

our intuitive expectations. If b is 0, then nickels are never inserted

and once the light goes on it will remain on forever. On the other hand,

if n= 0, b = l, then the machine states will follow the cycle: 0, 2, 4, 1, 3,

0, 2, 4, 1, 3 ... # Since there are five states in this cycle, and three of

them have the light on, P, must be 3/5 in agreement with the formula.

We also note that the conditional state probabilities when the light is on

must be given by Pn = R = P2 in this limiting situation. For other values

of n and b, however, our problem is far from solved. We have a

formula for S(z) in terms of the parameters P, , Pn, R, P?, m, and b.

m and b are presumed known; L and we have just derived an equation

for P, . But the conditional probabilities Pn, R, and'P? remain

unknown, except for the obvious restriction that they sum to one.

How can they be determined? Taking additional moments of the

generating function (i. e. , S'(l) = the average number of nickels, etc.)

will accomplish nothing since no information about the moments of the

distribution are known. The original equilibrium equation already

embodies all relations between the state probabilities. It appears that

we have already used all the available information, and yet our answer

still contains two undetermined parameters. Is the problem inadequately

specified? The reader is invited to stop and ponder our predicament

before continuing.
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As the experienced reader familiar with queing theory will readily

deduce, the key to the resolution of our difficulties lies hidden away in a

condition that we have not yet exploited, namely, that s, > 0 for all k.

Because of this requirement and the already-exploited condition that

00

y s,= 1, we conclude that S(z) must be analytic within the unit circle

k=0

in the complex plane. For, if |z| < 1, then |S(z)| < > |s,||z| < > s, = 1.

Thus, any poles of S(z) must have magnitude greater than one. The

4 3 2complex roots of the polynomial m(z +z)-(z + z + 1) for real m are

plotted in Figure 1.

The plot of Figure 1 shows the location of possible roots of both

4 3 2
the denominator and the latter numerator factor [b(z +z ) + (z + z + 1)].

For positive m, the denominator has one real positive root, one real

negative root, and a pair of complex conjugate roots which have negative

real part and lie within the unit circle. For b between 0 and 1, all

four roots of the latter numerator factor are complex and lie outside the

unit circle. Hence this latter numerator factor cannot have any roots in

common with the denominator.

For positive m greater than 3/2, the real positive root of the

denominator as well as the pair of complex roots lies within the unit

2
circle. Since the former numerator factor, (R2Z + Pxz + ^q) is onlY a

quadratic, it can cancel out at most two of these three roots. Thus, for

m > 3/2, the requirement that S(z) be analytic within the unit circle

cannot be satisfied. This verifies our earlier observation that if m > 3/2
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m=0"

m=0+J m=oo

303+602+ 40+2-0

4 3 2
Fig. 1. Roots of the polynomial m(z + z ) - (z -1- z + 1) for real m.
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the nickel supply will increase indefinitely and no stationary state can

exist.

On the other hand, if m < 3/2, then S(z) will be analytic within

the unit circle iff the coefficients PQ, P,, and P2 are chosen so that

the two roots of the former numerator factor cancel out the pair of

complex conjugate roots of the denominator. This requirement will give

us two additional equations, which will then enable us to determine

Pq, R, and P^.

Notice that PQ, P., and P2 depend only on m = n/q (and not

on a and b).

Since the general quartic equation is solvable, we may find

these conditional probabilities explicitly. We start by reducing the

4 3 2
quartic to a cubic. If z + z = hz + hz + h, then, for any value of y,

((8z2+ 4z) - (4h+ y))2 = I6(l-y)z2+ (32h - 8y)z + 64h - l6h2 - 8hy - y2

We may now choose y in such a way that the right hand side of this

equation is a perfect square. This will happen iff y satisfies

(32h - 8y)2 =4-16(1 -y)(64h +l6h2 + 8hy +y2)

This equation can be simplified to

y3+ 8hy2+ (l6h2 +48h)y - 64h = 0

or equivalently,

m2y3 + 8my2 + (16 +48m)y - 64m = 0
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It may readily be verified that this equation has a real positive root and

that

and

and

y < 4m with equality as m -*• 0

-1/3y < 4m with equality as m -** co

y < 1 with equality when m = 4

If y is chosen to satisfy this cubic, then we have

((8z2+ 4z) - (4h +y))2 = (4\/l-y z + [sign(4h -y)] • N/64h + (4h +(4h + y)- )

Taking square roots of boths sides reveals the two quadratic factors of

the original quartic, with h = 1/m = q/n.

2 1 |1±r . ... ., r, r\ , \/(4h +y)2 + 64h - (4h +y)
z +* 1+ [ sign(4h - y) J N/1 - y z + —* *-« *-

L \ I 8

and

2+i ll - [sign(4h-y)] \flT7 z -
^5(4h + y) + 64h + (4h + y)

8

For positive h, the first of these two quadratics has complex conjugate

roots within the unit circle; the second quadratic has real roots. Since

the first of these two quadratics must be cancelled by the former

numerator factor, we have
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0 N/(4h+ y) + 64h - (4h + y)p_ = 1 =
*2 8

8

Nfl4 + %2(4 + ym) + 64m + (4 + ym)

\_ _ 1 + [sign(4h -y)] \/l -y ] _ 1 + [sign(4 -m)] N/l-y

The cubic may be solved for y by setting x = 3y/4 + 2h. In terms

of x, the cubic becomes

x3 - 3Ax - 2B = 0

where A = h(h - 9)

B =H(H2+ 27h+ 27/2)

Setting D=B2 -A3 = 27h2 (3h3 +19h2 +S£h +27/4) and introducing u

and v defined by u + v = x, uv = A, one obtains quadratic equations for

u and v whose solutions are B ± \/D. Hence

4
Y = 3 -2h + n/b + n/d*+ n/b - n/D

This equation is too cumbersome to be of much value. For

numerical calculations, it is much easier to deal directly with the

cubic

(I) -*\l) -2(f)+l n2 + 2(£) +(l) -A^\V\ - o

Although cubic in y, it is only quadratic in n. This makes it
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fairly easy to obtain plots of PQ, P-, and P2 vs n, using y as a

parameter. The resulting graphs are shown in Figure 2. The graph

has been continued for n between 3/5 and 1, even though the problem

makes sense only if 0 < n < 3/5. It is seen that Pn, R and P2 all

start from 1/3 when n = 0, in accord with our earlier observations.

PQ and R both have an initial slope of -1/9 ; P2 starts with an initial

slope of 2/9 and remains very nearly linear for 0 < n < 3/5 .

The answer to Kelly's query is given by Pn, which represents

the probability that his two nickels will not turn the light out.
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Fig. 2, y vs^ n
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Fig. 3. The conditional state probabilities when the light is one versus n,
the consequential customers probability of using two nickels.
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APPENDIX 1

Table of q, PQ, P,, and P2 for certain values of y,

y <3 P2 Pl ,

a 1/34€ € l-c1/3 c1'3 e2/3

4/10 0.0015 0.89 0.10 0.01

2/3 0.0103 0.79 0.17 0.04

4/5 0.024 0.74 0.20 0.06

8/9 • 0.046 0.69 0.23 0.08

1 1/5 0.55 0.28 0.17

0.948 2/5 0.48 0.29+ 0.23

8/9 0.502 0.44 0.30" 0.26

4/5 0.612 0.42 0.30+ 0.28

2/3 0.726 0.395 0.31 0.295

4/10 0.881 0.36 0.32 0.32

4c l-€ I +ii
3 + 9

1 €

3 " 9
1 c

T "9
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