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ON DETERMINABLE CLASSES OF SIGNALS

AND LINEAR CHANNELS

ABSTRACT

In a recent paper, Root fl] inaugurated a study of the measure

ment and processing problems arising when a signal passes through an

unknown linear channel. Subsequently Prosser and Root [2] character

ized bounded determinable classes of signals and channels which are
2,

Hilbert-Schmidt operators on L t-oo, oo). In this paper we consider

the signal space to be an arbitrary Hilbert space H and a channel to

be any continuous endomorphism on H. We obtain a characterization

of e-determinable convex classes of signals by relating this^ property

to the concept of n- dimensional diameters introduced by Tikhomirov [3]

and thus demonstrating the relevance of our results to the theory of

best approximations. We next generalize the results of Prosser and

Root dealing with bounded determinable classes of channels, and also

obtain some properties of various classes of unbounded sets of chan

nels. The motivation of dealing with abstract space of signals and

channels is the applicability of our results to various problems in

control-system identification and the theory of approximations.



I. INTRODUCTION

In a recent paper, Root [l] has inaugurated a study of

measurement and processing problems arising when a signal passes

through an unknown linear channel. He develops a terminology and

shows that it is useful for formulating a large class of problems which

involve channel identification. Some of the questions provoked by

this paper have been subsequently answered by Prosser and Root [2] .

Specifically, they show that if it is assumed that the unknown signal
2

belongs to a fixed bounded subset of L (-00, 00) or the unknown channej.

belongs to a fixed bounded subset of the Hilbert-Schmidt operators on

L (-00, 00), then that subset is determinable if and only if it is condi

tionally compact. This characterization is exploited to yield a number

of useful, interesting results.

In this paper we remove the condition of boundedness and deter-

minability on classes of signals and impose convexity, i.e., we study

the properties of e-determinable convex classes of signals contained

in an arbitrary Hilbert space. Since the convex closure of compact

sets are compact, this condition does not impose restrictions for

bounded, determinable sets. Furthermore, almost all the classes of

signals appearing in the literature are convex. The main result of

this paper is the relationship between e-determinable convex classes

of signals and their n-dimensional diameters. The concept of the

n-dimensional diameter of a set has been extensively studied by

Russian mathematicians, notably Tikhomirov [3] . As a corollary of

this relationship we show that a convex set of signals is determinable

if and only it is contained in the vector sum of a finite-dimensional

subspace and a compact set. Furthermore, for a convex set of signals

linear determinations are "almost as good" as nonlinear determinations.

These results are given in Section II.

In Section III we study the problem of channel determination. We

allow the channel to be any linear continuous transformation of the
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signal space H into itself. We generalize the results of Root and

Prosser for bounded determinable classes of channels. We also study

some special cases of unbounded determinable classes.



II. DETERMINABLE CLASSES OF SIGNALS
I I I" I ,' I I I

By a signal we mean an element x of a real o? complex,

infinite-dimensional Hilbert space H. By an n-measurement we mean

a fixed n-tuple of vectors (y_, • • •, y ) from H. An n-estimator funcr
1 n ' > " "'

tion is a continuous mapping f from I£ (the n-dimensional vector

space over the real or complex field depending on H), into rj. The

estimator function is said to be linear if f is affine. By a (linear)

n~experiment (y , • • •, y ; f) we shall mean an n-measurement

(yy **"» y ) an(i a (linear) n-estimator function f.

Let C be a subset of signals. C is said to be e -determinable

if there is an n-experiment (y , • • •, y ; f) such that

|x - f((x, yj),*--,(x, yn> | < P, for x in £

where |z| is the norm of z in H. C is said to be determinable if
•" "M"H,||i ) , Ml,

it is s-determinable for each e > 0.

An n-variety L = (a, N) of H is the set L = a + N where

a e H is a fixed vector and N is a fixed n-dimensional subspace of

H0 By the distance of C from L = (a, N) we mean the number

(possibly +00)

d(C, L) = sup inf |x-y|
xeC yeL

= sup |(x-a) - P (x-a)|
X€C

where P is the orthogonal projection of H onto N. By the

n-dimensional diameter of C we mean the number (possibly +00)

d (C) = inf{d(C, L) | L is an nrvariety of H} .

For elaboration on the above definitions the reader is referred to

Root [l] and Tikhomirov [3] .

-4-



#•"•

Lemma 2.1. If the n-dimensional diameter of C is equal to e,

then for each 6 > 0, C is (e+6 )-determinable by a linear n-experiment.

Proof. Let L = (a, N) be an n-variety such that

sup |(x-a) - P (x-a)| <e + 6.
X€C

Let v., «• •, y be an orthonormal basis for N and let f(\„ * • •, X )
Jl 'n In

= (a + \.y.+« "+\ y - P^a). Then for x in C,
rl n'n N '

|x - f((x, yx), ...,(x, yn))|

= |(x-a)-PN(x-a)| <e + 6.
n

x - (x, y.)y.+a - PNa

Q.E.D.

A set C of H is said to be symmetric about a point c if

c + \{c-c ) is in C for c e C and | X. | <_ 1. C is said to be

symmetric if it is symmetric about 0. As a partial converse to

Lemma 2.1 we have Lemma 2. 2.

Lemma 2.2. Let C be a symmetric, convex set oi signals. If

C is s -determinable by an n-experiment, then the n-dimensional

diameter of C is d (C) < e.
n —

Lemma; 2. 2 is a corollary of Theorem 2.1.

Theorem 2.1. Let C be a symmetric, convex set. Let N be

any n-dimensional subspace of H. Then there exists an n-dimensional

subspace N of H (dependent on N) such tjiat

p ,(C)C p L(c On1) (2.i)
NJ" No

where N"^(N.) is the orthogonal complement of N(N.) in H.

Before proving (2.1) let us prove Lemma 2.2 (assuming

Theorem 2.1).
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Proof of Lemma 2. 2. Let C be e-determinable by the n-

experiment (y , •••, y ; f). Let N be the subspace generated by

iy-i* '"J } • Then for x and x in C and P^x -xj =0 we must
have |x.-x j < 2s. Since C is symmetric this means-that for x in

C and P^c =0 we have |x| < e. Now let N be an n-dimensional
subspace which satisfies (2.1). Then

x - P.d(C, N ) = sup
xcC

N,

sup P X

xeC Nf

sup

xeC fl N1 V
by (2.1).

But x eC fl N means that x eC and PN* =0, so that |x| < e.
Hence d(C, N)< e so that dn(C) <£. < Q.E.D.

Proof of Theorem 2.1. The proof proceeds by induction on the

dimension n of N. The case n= 1 is treated in the Appendix.

Let us assume that the theorem is true for subspaces of dimension

m < n > 1 and let N fee any (n+1)-dimensional subspace. We factor

N arbitrarily into N= L© {x} where L is an n-dimensional sub-

space and {x} is a 1-dimensional subspace generated by a vector x

in H. By the induction hypothesis there is a subspace la of dimen

sion n which corresponds to L. It is therefore enough to show that

there exists a vector y in H such that,

P (C) C P , C0 (L ©{x} r1 .
(1^0 {y}) (^e {y})

Now (L e {x} )X =L1 0 x1 and (^ ©{y} )X =^fly, so that we
must show, for some y in H, that

-6-



pTini(c>^pTin JcnLin4 °rL1 fly ^""y

P.P. ,P ,(C)C P ,P , ,P , (c fW Ox1). (2.2)
y1 LjOy1 LX y1 L^/ l[V '•

By the induction hypothesis, P ,(C) CI P (C Ql ). Let
L *

Q = C ( I L . Then (2. 2) is equivalent to

Li

or

or

P.P. P (Q)CP.P. ,p . (q fix1),

pipT xn ip i«Q +Li» ^ pip in ip i (<Q n *x>+ h) •y LjOy Lx y ^ Hy i^

pipin i(Q +Li>Qpipi xt'00^)^)'y LjHy y Ljfly '
or

pxn ipi«Q +Li>^pin x((of\xl) +h).
L 11 y y L. fl y

Hence, it is enough to show that there is a y such that

PX(Q+ Lx) CP±((Q Ox1) +iA or
y y

Q+Lx +{y} C (Q Pi x1) +Lx +{y} . (2. 3)
Now Q= C ' I L is a convex symmetric set so that by the induction

hypothesis, for n = 1, there exists a vector y (depending on x) such

that,

P±(Q)G P^Q/ffx1),
y y

i. e.,

Q+{y}C (Q Ox1) +{y}.

A
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Hence (2. 3) is satisfied by this y so that the theorem is proved.

Q.E.D.

Since the n-dimensional diameter and the e-determinability of a

set is invariant under translation, we immediately have, from Lemmas

2. 2 and 2.1, the following corollary.

Corollary 2.1. Let C be a convex set, symmetric about a point.

If C is e-determinable by an n-experiment, its n-dimensional diameter

is less than e, and for 6 > 0, C is (e+6)-determinable by a linear

n- experiment.

For arbitrary convex sets we have another corollary.

Corollary 2. 2. Let C be a convex set which is e -determinable

by an n-experiment. Then d (C) < 2s and for 6 > 0, C is(2e+6)-

determinable by a linear n-experiment.

Proof. Let the n-experiment of the hypothesis be (y_, • • •, y ; f),

and let N be the subspace generated by {y , • • •, y *} . Then for x

and x_ in C with P„T(x -x„) = 0 we must have |x -x-l < 2e. With-
2 N 1 2' '12' —

out loss of generality we assume that the origin is in C, and we con

sider the convex symmetric closure [C] , of C. If the underlying

field of the Hilbert space is real, then

[C] =[C] R={ k^ -k2x2|x. €C, k. >0, kx +k2 =; l} .
If the underlying field is the complexes, then

[C] =[C]c=(xx|xe[C]R, |\|<l[.
In either case it is easy to see that for any x € [C] with PMx = 0

we must have |x| < 2s. From the proof of Lemma 2. 2 we see then

that d ([C] ) < 2s so that d (C) < 2s. The second assertion follows
n — n —

from Lemma 2.1. Q.E.D.

Our final result of this section deals with determinable sets.

As an alternative characterization of convex, determinable sets we

have Theorem 2.2.
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Theorem 2. 2. A convex set C is determinable iff C CZ N + K

for some finite-dimensional subspace N and some compact set K.

Proof. From the proof of Corollary 2.2 it suffices to prove this

statement for symmetric convex sets. Now C is determinable if and

only if d (C) -*»0 as n -»»oo. rlence for each n there exists an n-
n

dimensional subspace N such that
n

lim suji
n-»oo x«C

x-PNx
n

= 0.

We can assume that N Cn rl for each n. Let nA be such that
n — n+1 0

and let

sup x - P x
xeC ' 0

K X-PN X
no

< oo,

X € C

Then K is bounded and C(Zn + K. It is easy to see that K is
no

also determinable and hence by a result of Prosser and Root [2] , K

is compact. The argument is trivially reversible so that the theorem

is proved. Q.E.D.

Remark. It is conjectured that Theorem 2.2 is true without the

convexity assumption. It is worth noting that we have also shown that

if a set, convex or not, contains a sphere of radius bigger than s,

then the aet is not s-determinable. Furthermore, we have shown that

a symmetric convex set is s-determinable if and only if it is contained

in the.fi-neighborhooiLcf an n-dimensional subspace, for some' n < oo,

and in this case it is s-determinable by a linear n-experiment.
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HI. DETERMINABLE CLASSES OF CHANNELS

Henceforth we take the signal space to be the real or complex

Hilbert space H. As before, we denote the norm of a signal x in H

by |x| and the inner product of x and y in H by (x, y) . By a

channel we shall mean an element k of the Banach space B(H) of

continuous endomorphisms on H. The norm of k in B(H) will be

denoted by ||k|| where ||k|| = sup{ |kx| |x €H, |x| < l} .
By an n-measurement we mean a fixed n-tuple of pairs of vectors

(U,, y,)j (x^, yj* • *(x , y )) in H. The n-measurement is said to be
vx 1 1 2 ' 2 n n

practical if x = x = •• • = x . An n-estimator function is a continuous
£. 12 n

mapping f from E into B(H). The estimator function is said to be

linear if f is affine. An n-experiment is an n-measurement together

with an n-estimator function; it is said to be linear or practical if the

corresponding estimator is linear or practical.

A subset K of B(H) is said to be s-determinable if there exists

an n-experiment ((x , y ),•••, (x , y ); f) such that

|ik - f((kxr yx), •.., (kxn, yn))|| < s, for k €K.

K is e-determinable in practice if there is a practical n-experiment

which satisfies (3.1). K is said to be determinable (in practice) if

for each s > 0 it is s-determinable (in practice). For a motivation

of these definitions and further elaborations the reader is referred to

references [l] and [2] .

We first obtain a generalization of two results of Prosser and

Root [2] .

Theorem 3.1. Let K C B(H) be a bounded set of channels.

Then K is determinable if and only if the closure of K, K, is compact.

Proof. The proof for necessity is the same as that of Prosser

and Root [2], By definition of determinability for each e > 0, there

is a linear map g : B(H)-*E and a continuous map f : E -*B(H)

such that

-10-
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Ilk - f (g (k))|| < s, for all k in K. (3.2)
E E * —

Since K is bounded and g is linear, g (K) is bounded in E and

hence totally bounded. Since f is continuous, f (g (K)) = K is
s s s s

totally bounded and also from (3.2), K C K + S , where S is the
— s s s

sphere in B(H) of radius s. Therefore, K is totally bounded, i.e.,

K is compact.

We prove sufficiency through the following lemma.

Lemma 3.1. Let K be a totally bounded subset of B(H). Then

for each e > 0, there exists an n-measurement ((x , y ), • • •, (x , y ))
11 n n

with |x. | < 1, |y. | < 1 such that for every pair (k, k1) in K

if | (k-k')x., y; | < s, for i=l, •••,n

then ||k-k'|| < 12s. (3.3)

i i ' —

Proof. Let s > 0 be fixed. Let K = {k„--«,k } be
s 1 m

finite set such that K CZ K + S . For each pair k., k. in K let
— s s i j s

x.. be an element of H such that |x..| < 1 and | (k -k )x I
1J. ., ' iJ1 " ' i j ij1

> ilk.-k.ll -s. Now let k, k' be in K and suppose that ||k-k'|| > 6s

By definition of K there exist i and j such that ||k-k. ||^s and

i|k!~k.|j < s. It follows that ||k.-k.|| > 4s. Moreover,

i(k-k')x..| = |(k-k.)x.. - (k'-k.)x.. +(k.-k.)x..|

>|(k.-k.)x..| - |(k-k.)x..| - Uk'-k^Xyl

> ||k.-k.|| -. - ||k-k.|| |x..| - Hk'-k.H |x..|
t

>4s -s-s-s=s. (3.4)

Thus we have shown that if ||k-k'|| > 6s then | (k-k')x.. | > s for
some x... Now, since K is totally bounded, the set Q . = {kx |keK>

-11-



is totally bounded for each i, j, and hence forms a determinable

subset of H. Hence, there exists a finite set Y.. in H such that

|kx.. - k'x. .1 > e implies that I/(k-k')x.., y\| > s/2 for some y
1 ij ij x ij '
in Y... Combining this fact with (3.4) yields (3.3). Q.E.D.

We return to the proof of Theorem 3.1. The n-measurement

of Lemma 3.1 yields a linear mapping g: B(H) -♦ E with the ith

coordinate g. of g given by g.(k) = /kx., y.) . We will construct a
1 1 N 1 v

function f: E -*B(H) with the following properties: (1) f is continuous

and (2) jg.(k) - g.(f og(k)) | < s for i=l, •••,n and for all k in K.

By Lemma 3.1, therefore, ||\fc-f(/kx_, y.) , •••, (kx ,y )) II < 12s
\ i \i v n n' —

for k in K and the theorem would be proved.

Construction of f. Let K = {k_, • • •, k } be defined as in
s 1 m

Lemma 3.1, and let [K ] be the convex hull of K . Let Q = e(K ).
e s s ° s

Then Q is a finite set in E and [Q ] = g([K ]) since g is linear.

Let Q = g(K). For each q in Q let q be the unique point in [Qj
£

closest to q. The mapping d: q -*-q of Q onto [Q ] is continuous,
s

and furthermore jq.-q| ^ s for i»l, "^n. If we treat [Q ] as a
1 e

simplicial complex we can easily construct a continuous map

h:[Ql-[Kj such that g(h og(k)) = g(k) for k in [K]. Putting

f =: g o d we see that f has the required properties. Q.E.D.

The next result characterizes bounded sets of channels which are

determinable in practice.

Theorem 3.3. Let K G B(H) be a bounded set. Then K is

determinable in practice if and only if (1) K is determinable, i.e.,

K is totally bounded, and (2) for each s > 0, there is an x in H

such that for each pair (k, k') in K, the closure of K,

Hk-k'H > s =* |kx - k'x| > 0. (3.5)

Proof. The necessity of the two conditions follows from the

definition. It remains to prove sufficiency. Let s > 0 be fixed and

-12-



let x <= H satisfy (3.5). We can assume that |x| < 1. Since K is

compact in B(H), K X K is compact in B(H) X B(H). The set

PCKXK given by P= {(k, k')|k, k' in K and ||k-k'|| > s} is also

compact. Let it: P -^ H be the map given by ir(k, k ) = (k-k )x.

Because P is compact and from (3.5) we see that there is a number

r\ > 0 such that | Tr(k, k')| > r\ for (k, k1) e P so that we have for

each pair (k, k1) in K that

||k-k'|| > e =#• |kx - k'x| > n. (3.6)

Now the set C = {kx|k e K} is compact since K is compact, hence

there exists a finite set {y , • • •, y } d H, | y. | < 1 such that
1 n — i —

|kx - k'x| > n =-» |<kx - kx, y.\| > ^ , ,„ t
1 ' - X yi'1 ~ 2 for some y.. (3.7)

Combining (3.6) and (3. 7) we get for each k, k' in K

| (k-k5)x, y. j < | i=l,-.,n=> ||k-k'|| < e, (3.8)

i. e., the practical n-measurement ((x, y ), • ••, (x, y )) defined a
n n V

linear mapping g:B(H)—E with the ith coordinate g. given by

g.(k) - (kx, y.) such that for all k, k' in K

|g,(k-k8)| <^ i=l, -..,n k-k' < s.

Let KrW? ~ tki» *' *» k } be a finite set such that K C K ., + S ,„ .
M/^ i m — T^/2 n/2

Using K #2 we can construct a continuous map f: En -•» B(H) (as in
the proof of Theorem 3.1), such that for k in K, ||k - f o g(k) || < e. ,-
Hence, the practical n-experiment ((x, y ), •••, (x, y ); f) constitutes

an s-determination of K. Q.E.D.

The next sequence of results deals with special classes of

unbounded sets of channels.
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Theorem 3. 3. Let N be an n-dimensional subspace in B(H)

generated by the linearly independent channels {k , • • •, k } . Then

N is determinable by a linear n-experiment. Furthermore N is

determinable in practice if and only if there is a vector x in H such

that the vectors {k x, • • •, k x} are linearly independent.

Proof. Since {k , • • •, k } is a linearly independent set there

exist n pairs of vectors ((x_, y_), • • •, (x , y )) in H such that the
11 n n

nXn matrix A= {a..} with a.. = /k.x., y.\ is nonsingular. The
ij ij \ j i ' \t •»

n-measurement ((x , y ), • • -, (x , y )) defines a one-one mapping g,

from N into E as follows:

n

g:k= tf.k.-^kx^ yj), "-,(kxn, yn)) = Act
i=l

where a = (a , •••, a ). Clearly, the mapping f: En -» N given by
n

f(\ , • • ., X. ) = . ot.k.
1 nil

i=l

where a = A \ is continuous and the composite mapping g p f is

the identity operator on N. This proves the first assertion. In the

second assertion the necessity is clear. Thus, suppose x € H is such

that the vectors k^, k2x, •••, k x are linearly independent. Choose
vectors y in H such that (k.x, y.) = 0 for i 4 j and ^k.x, y \ = 1.

i j i' x i i'

Then the matrix A is the identity matrix and the rest of the proof

follows as in the previous case. Q.E.D.

The final result is given without proof. It can be proved by a com

bination of-the techniques used in the proof of the two previous theorems.

Theorem 3.4. Let K be a set of channels contained in the vector

sum of a finite-dimensional subspace and a compact set. Then K is ?

determinable. K is determinable in practice if and only if for each

e > 0 there is a vector x in H such-that for k and k' in K

||k-k11| > £ =^ |kx - kx| > 0.
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•V. APPENDIX

Proof of Theorem 2.1 for n = 1

Let C be a symmetric, closed convex set in H. Let x e H.

We have to show that there exists a vector y in H, depending on X

such that

P±(C)C P±(C Ox1). (1)
y y

Proof. Equation 1 is equivalent to showing that there is a vector

y such that

C+{y}C (cfi xX) +{y}. (2)

Let M be any subset of H. We define the polar of M- to be the set

M° =Ix €HIsup |(m, x) | < ll.
1 Wm J

Since the sets in Eq. 2 are closed,convex and symmetric, using the

Bipolar Theorem it is enough to show that

(C+{y})° D((cflx1)+ {y}) . (3)

From the definition of the polar we see that Eq. 3 is equivalent to

c° n yl D(C n x1)0 n Yl w

which in turn is equivalent to

conyiD(c0 +{x})nyi. (5)

Let Q = C . Q is a convex symmetric set and we have to show that

there exists a vector y such that

Qply1 D(Q+ {x}) fl y1. (6)

•15-



If Q 2 (Q + {x} ) the assertion is trivial. Therefore, suppose that

ffx^Q for some or. Now define

P = {q + <zx|ar > 0, q e Q, q + ax { Q}
+

and

P = {q + ax|or<0, q €Q, q + ax ^Q} .

Then P = -P , and 0 { P . It can also be verified that 0 does not

belong to the convex hull [P ] of P . Therefore, 0 4 [P_] . 0 can

therefore be separated from [P ] , i.e., there exists a vector y in

H such that

0 < (y, p), for pc[P+] .

It can be checked that y satisfies Eq. 6. Q.E.D.
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