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ABSTRACT

Methods for generating constant resistance one-ports
with nonlinear and time-varying elements are proposed.
The first step is a general characterization of constant
resistance one-ports with linear time-invariant elements
This characterization is then used to generate classes of
one-ports whose elements may be nonlinear and time-
varying. Examples are given of constant resistance
one-ports that include one-ports which neither need to
be current-controlled nor voltage-controlled. In one
case, the necessary and sufficient conditions for con
stant resistance are given.

This paper deals with the following question: is it possible to

have a one-port with nonlinear and time-varying characteristics which

still exhibits the property of constant resistance. Constant resistance

one-ports with linear time-invariant elements have been known for a

1 2longtime. E. C. Cherry has exhibited purely resistive one-ports

3
which are constant resistance. We have shown that there were con

stant resistance one-ports which had nonlinear and time-varying reactive

elements. Some preliminary results of the present research have been

4
published (without proof) and reported orally. In the present paper we

use the state-space approach to exhibit a general theorem which shows

how given any constant resistance one-port it is possible to make the

element characteristics time-varying and often nonlinear while still main

taining the property of constant resistance: all the constant resistance
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one-ports that we have previously considered are now special cases of

this general theorem. It is of interest to point out how deeply the state

5 6 7
space approach, recently used successfully in nonlinear circuits, ' *

is indispensable in order to obtain the results: the concepts of reacha-

8
bility and unobservability are essential. In the last part, we give three

cases in a far more general context: we deal then no longer with nonlinear

elements but with nonlinear one-ports which need not be zero-state current-

controlled nor zero-state voltage-controlled.

I. Preliminaries

Given a one-port «£ it is usually possible to determine a state

of the one-port such that if 0Q> is in that state at time t and if oh is

either open or short-circuited for t > t , then its port voltage and current

are identically zero for t > t . For example, if vt> is made of linear

elements such a state would correspond to having all its branch voltages

and currents set to zero. It is also true that some linear and some

nonlinear one-ports may have more than one state with the property above:

if such is the case, we assume that one of these states is chosen and

9
henceforth called the zero-state of the one-port. Throughout the paper

we assume that each one-port is z-s (zero-state) determinate under

both voltage source and current source drive; by this we mean that each

of its branch voltage and currents are uniquely determined by the source

waveform (the function e or i), given that the one-port is in its z-s .
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when the source is applied.

Suppose a one-port Vv has the following properties'. (1) it is in

the z-s at time t , (2) if it is connected at time t to an arbitrary

one-port Ofo then its port-voltage and port-current satisfy v(t) = i(t)

for t > t • The one-port AS will be said to be constant resistance

iff these properties hold for all t . The theory of constant resistance

one-port will be greatly simplified by the following

Assertion. Let the one-port Wo be z-s determinate and z-s equivalent

to a one ohm resistor when it is driven by a voltage source. Under these

conditions, if it is connected to an arbitrary one-port TO then its terminal

voltage and current are uniquely determined and the one-port «w is con

stant resistance.

Proof. Let at time t 35 be in the z-s and be connected to ow as shown

on Fig. la. We wish to show that v = i on [tn,oo). Consider all the

KVL and all the KCL equations of the circuit. Call XJ* ( G , resp.) the

subset of the KVL (KCL, resp.) equations which include branch voltages

(branch-currents, resp.) of 0$) . Change the equations of TJ and C as

follows: (1) in each equation of \¥ replace the sum of branch voltages

of ?& by v (or -v , as required); (2) in each equation of 0 replace

the sum of the branch currents of ^ by i (or -i , as required). This

modified set of equations consists of all the KCL and KVL equations of

the circuit of Fig. lb. By assumption, this circuit has a unique solution
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Fig. 1(a). The one-port tf& is zero-state equivalent
to a 1-ohm resistor when driven by a volt
age source as shown in (b).

Fig. 1(b). 0& is still zero-state equivalent to a 1-ohm
resistor when it is connected to an arbitrary

one-port Aw as shown in (a).
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and v = i on [t ,00). Hence the same must hold for the circuit of

Fig. lb.

Thus, from now on, if we show that a one-port is z-s equivalent

to a one ohm resistor under voltage source drive, then this one-port

has the same property under all one-port terminations, i. e. , it is con

stant resistance.

II. General Method

Our general method for obtaining constant resistance one-ports

made of nonlinear time-varying elements is based on a general charac

terization of such one-ports made of linear time-invariant passive ele

ments.

Characterization. Let % be a one-port made of linear time-invariant

passive RLC elements (inductive coupling is allowed). Let its input be

a voltage source e(«) and the current through the source be i(*)« Under

these conditions, (a) if 1Kb is a constant resistance one-port, then there

is a representation of M> of the form

x = A x + be (1)

i = < £,x > + e (2)

where A, b, c are, respectively, constant nXn, nXl, nXl matrices

subject to the conditions that
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< c , A b > = 0 for k = 0, 1, •' • , (n-1); (3)

(b) conversely if iHp has such a representation satisfying (3), then it is

a constant resistance one-port.

Proof. A. We write the state equations following the idea of Bryant.

We use the notations of Kuh and Rohrer. 00? is driven by a voltage

source e. We pick a tree so that it includes the voltage source, the

maximum number of capacitors, then the maximum number of resistors

and, finally, the minimum number of inductors. Since Ofo is constant

resistance, there cannot be a capacitor-only path connecting the terminals

of the voltage source, for otherwise the driving point impedance would

go to zero as s -*• oo. Therefore, in the notation of the Kuh-Rohrer

paper, e =0 and the state equations read (see their (56) and (57)).

-w -mo g?l \±L] \*Lj

\ L\ L\
3-c *c

where the second term in the right hand side of (4) is

Zrc & -R
-1

-1 '

\

-^lg I" ^rg^r^l/

The passivity of the elements is required in order to guarantee the
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invertibility of % and G . Let us now establish (2). Consider the

fundamental cut-set defined by the voltage source: in view of the way

the tree was selected, this cut-set includes only resistive and inductive

links, and

iR =&"X£R - «fx ERC JL"1 ac -A'^rgSzIlg &"1*!, (6)

iL =A"1^ <7>

Thus the current through the cut-set is a linear function of the state

(q _, (|> T ) and of eD, which in our case is a vector whose components

are e, -e or 0 since there is only one voltage source in the circuit.

Thus the form of (2) is established; the coefficient of e in (2) is unity

because the driving point impedance of 0© is one ohm. It remains to

12
prove (3). Let r be the degree of the minimal polynomial of A , then

r-1

At

55 1 \{t) ^
k=0

The zero-state response is then easily computed from (1) and (2):

r-1

i(t) =S <£,Akb> \ ak(t-t')e(t')dt'+e(t)
k=0

For any fixed t > 0 and for any 0 < t < t there is an input e(« )
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identically zero over (t ,t] such that the r integrals of (2) are equal to

r arbitrarily prescribed numbers v~» Y,» • • • » Y , * this follows imme-
0 1 r-1

diately from that the r function ex (•) are linearly independent over any

open interval. Hence for such input e (•)

r-1

i(t) =^ <c_, Akb> Yk (10)
k=0

The constant resistance condition requires that i(t) = 0, hence (3) must

hold.

B. The converse follows immediately from (9)»

Q

Comment: the condition (3) states that the set of reachable states from

the origin lies in the subspace orthogonal to c_. It is easy to see that if

e is considered to be the input and i the response, then any state in that

set is equivalent to the zero state.

We turn now to a theorem which will allow us to construct constant

resistance one-ports made of nonlinear time-varying elements. Using

the notations of the proof above, and if we call v^, and iT the tree-

branch capacitor voltages and the link inductor currents, then for the

one-port of the above theorem we have

v_\ / e-1
-C

H
(ID
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Suppose we let the capacitors and inductors be nonlinear and time-varying

such that

(12)

where x = (Sir,* $t)

_f(0,t) = 0 for all t (13)

j£ is Lipschitz in x and, for each fixed x, is a regulated function

of t. (14)

The resulting one-port has the representation

x = Aj[(x,t) + be . (15)

i = < c , f^x,t) > + e (16)

n —1

Theorem. Let ($L be the subspace spanned by b , A b , • • • , A b.

Let V&& be a linear subspace of R such that (i) ?Tf& D (R, , (ii) #ff£ ± £,

(iii) A Wo C VbZ • Under these conditions, if, for all t, _f(?3S, t) QWo >

then the one-port is constant resistance.

Proof. The differential equation (15) is equivalent to

x(t) = f AJ^xffKt'Jdt' +b l e(t')dt' t > t (17)
t Jtn

0 0
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where we assumed x(t ) = 0_ since we consider only zero-state responses,

We study (17) by considering the following successive approximation

scheme: let § be the zero-state solution of (1) to the same input, then

we set

x (t) = f A£(e(t'),t')dt' +b f e(t')dt' (18)
1 J Jt

0 0

and for k = 1, 2, • • •

-k+l(t) =J A_f(xk(t'),t')df +b J e(t')dt« (19)
0 0

The curve £(t ), t < t < oo, lies in GC , hence in Wo , by (i). Since

_f maps VfZ into Wo , since A Wo C ^ and since b €VRo , it follows

that x (t), t < t < oo lies in IRRo . The same considerations apply to

(19) for each k: all curves x lie in 7f$ti> . Since over any finite interval

the convergence is uniformi and VFd> is closed, the solution x of (15) is

in Wo • So is j[(x, (t),t), then by (ii) and (16) we get i(t) = e(t) for all

This theorem calls for the following remarks :

1. Si, is the subspace of all states reachable from the origin (in the

linear one-port described by (1) and (2)).

2. Conditions (ii) and (iii) of the theorem imply that W is included

-10-



in the set of all unobservable states (call itli); indeed XL is the
t n_1

orthogonal complement of the subspace spanned by £, A c_, . . . , (A) c_.

3. If (k/ = *LL , then in the theorem O^o must be OC itself.

A Necessary Condition. Let Vo be a one-port described by Eqs. (15) and

(16) subject to the additional condition that J_(x, t) be continuous in t for

each x. Then 72> is constant resistance if and only if <c_, £_(x(t), t) > = 0

for all t and for all z-s responses x (• ) • Let t be arbitrary, x(t - ) = 0^,

and e(t) = X6(t- t ), where X. is an arbitrary constant. By (15),

x(t +) = \b. For t > t , put x(t) = \b + £(t), then £{t+ ) - 0_ and

£(t) = Af(x(t),t)

= A[f(\b,t) + f'(X.b,t)g (t) + ••• ]

where i_ denotes the derivative of the mapping i_(* , t) . Solving by iter

ation, the solution may be written as a series whose kth term is of the

order of (t - t ) :

g(t) = \ Af_(\b,t)dt + \ A_f (\b,t) \ Af(\b,t )dt
*0 to L t0

Using this result in the constant resistance condition, we get

-11-
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< c, _f(\b + £(t),t) > = < c, j:(\b,t) > + < c, j: (\b,t)g (t) > + -

p* i .1
= <c,J[(Xb,t)> + \ < c,^(\b,t)Af(\b,t ) > dt +

0

Since the leading terms of this series dominate only if (t - t ) is small

and since f is continuous ui t, we conclude with the

Corollary. If for some \ and for some t, either < c_,_f(\b,t) > t 0
I /\y

or < £,^f (X.b,t)Af (\b,t) > £ 0, then the one-port % is not constant

resistance.

We turn now to examples of the theorem and of the corollary.

4

Example 1. Start with Olo , a constant resistance one-port, made of

lumped, linear, time-invariant passive RLC elements. Construct?^?

from OC as follows: let \\i be a real-valued positive continuous function

which is bounded away from zero; replace each capacitor C of ?£ by a
k y

capacitor Ck/^(t) and each set of coupled inductors with inductance

matrix Lfc of %by a set with Lk/i|;(t) as inductance matrix. Clearly
referring to (11) and (12) we have

_f(x,t) = x Ljj(t) (20)

All the conditions of the theorem are satisfied, hence the one port T(o
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made of linear time-invariant resistors and linear time-varying reactive

elements is constant resistance.

Example 2. The bridge network y62snown on Fig. 2 is constant resis

tance since S, = S~ = F = T. = 1. Its equations are
12 3 4 ^

-1 -1 0

-1-110

0-100

-10 0 0

i = <c,x> + e

with

- = ^i'^'^'V

c = (-1, -1, 1, 1)

T
1

1

1

(21)

(22)

(23)

(24)

Let f be a real-valued function satisfying the conditions of the theorem.

If the reactive elements have the characteristics

Vj = f(qL,t) i3 = f«t3,t)

v2 = f(q2,t) i4 = «*4.t)

we see that, in the notation of (12) we have

-13-
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Fig. 2. The one-port is made of linear tinne-invariant
elements and it is constant resistance; yet if
all the reactive elements have the same non
linear time-varying characteristic it is still
constant resistance.
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f(x,t) =(f(qi,t),f(q2,t), f(4>3,t), f(4>4,t)j (27)

From (21), & is spanned by (1, 1, 1, 1)'. By (27) and with M6 = Si , we

see i^ (x, t) defined by (27) satisfies the conditions (i), (ii) and (iii) of the

theorem. Hence the one-port 0Q> , whose topology is that of $g2 shown

on Fig. 2 and whose element characteristics are given by (25), (26), is

a constant resistance one-port.

Example 3. Let ^£3 be the ladder shown on Fig. 3. Its equations are

-1

-1

4>r -1 -1 1 4>.
(28)

4> -2 <i>

and

c = (-1, 0, 1, 0) (29)

It is easy to check that (si is spanned by (1, 0, 1, 0)' and (0, 1, 0, 1)'.

Clearly by (29), the conditions (3) hold and hence </&3 is constant resis

tance. Let now f (• ,t), f (• , t) be two real valued functions satisfying

the conditions of the theorem and let

_f(x,t) =(f^q^t), f2(q2,t), f^.t), f2(^4,t)J

-15-



+4

+

iQ-

Fig. 3. The one-port shown is made of linear time-
invariant elements and it is constant resistance.

It is still constant resistance when the reactive

elements are nonlinear and time-varying, the
first pair of reactive elements having one
characteristic and the second pair having another
one.

©
-i-v

Fig. 4. The one-port shown is constant resistance if
and only if the reactive elements have the same
characteristic.
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With WRq - Si , the conditions of the theorem are satisfied. Therefore

the one-port "fi&3, whose topology is that of %3 shown on Fig. 3 and

whose elements have characteristics given by

V]L = fx(qrt) i3 = f^.t)

v, = f2(q2,t) i4 = f2(+4.t),

is a constant resistance one-port.

Example 4. The linear time-invariant one-port *&* is shown on Fig. 4.

In this case

(30)

Let f be a scalar valued function satisfying the conditions of the theorem

then with _f(x, t) = f f(q,,t), f(4>2,t)J , it follows from the theorem that

the corresponding one-port vTd. is constant resistance.

The converse is also true. The corollary requires that for all

real X and t, < c , f (\b,t) > = 0. Since the subspace orthogonal to c_

is spanned by b, this condition is equivalent to

f l\,t) = f?(^,t) for all X and all t>0
1 ^

Thus we conclude: the one-port?^ whose topology is that shown on Fig. 4
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is constant resistance if and only if the reactive elements have charac

teristics

V;L = f(qx,t) i2 = f(cj>2,t)

where f is a scalar valued function satisfying the conditions of the

theorem.

III. Special Classes

All the previous examples were concerned with circuits which

allowed a detailed description in terms of nonlinear ordinary differential

equations. It is of great interest to show that one can also exhibit the

property of constant resistance for some one-ports which themselves

include very general one-ports whose description is in terms of a

relation cX, which gives the zero-state response v (or i) in terms of

the prescribed input i (or v): thus we write i = jC (v). Here i and v

are real valued functions of time and to each v there may be several

possible i's. It is for this reason we called 2C a relation rather than

a function. Of course if the one-port JC is embedded in a network and

the resulting network is zero-state determinate, there will be for each

v, only one branch current i through ji> . The class of one-ports

described by a relation such as 3v is very large, in particular, it

includes the lumped determinate one-ports with nonlinear and time-

varying elements.
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Example 1. The one-port T^ is made by interconnecting a one-ohm

resistor, two identical one-ports N and two identical one-ports N as

shown by Fig. 5. N is the z-s dual of N . 35, is assumed to be z-s

determinate under voltage source drive. We assert that Tfr is constant

resistance.

Analysis. Call v , i the z-s branch voltages and the z-s branch

currents due to the source e . The branch relations are
s

v3 =% (i3) (lb)

i2 =tf (v2) (1c)

i4=X(v4) dd)

v, = ic (le)
-> 5

It should be stressed that in the equations above, the v 's and

i 's denote functions and not the values of the corresponding functions at
k

some time. In (la) and (lb), $C is not necessarily a function: it states

that v is the voltage across N when i flows through N ; it does not

assert that N is z-s current-controlled; however, given the network

of Fig. 2, given e and given that T& , is in the zero-state when e is
si s

applied, then by assumption all the i 's and all the v^s are uniquely

-19-



L

Fig. 5. With N and N being dual one-ports, the
one-port Ifc is constant resistance.
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specified. (1-c) and (1-d) follow from (1-a) and (1-b) by duality. Pick

branches 6, 1 and 3 as a tree for the graph of 0& . with e connected
i s

to it. The fundamental loop and cut-set equations are

es = V2+^ (i3} (2'a)

es = V4+X (V (2"b)

% =X (y+X (i3) -v5 (2-c)

i6 =X"(v2) +tf (v4) -v5 (2-d)

v5 =X (v4) - ix (2-c)

v5 =3C (v2) - i3 (2-f)

Let us repeat (2-a) and (2-b), eliminate v among (2-c), (2-e) and

(2-f), and drop (2-d); we thus obtain the system

eg = v2 +X (i3) (3-a)

% =v4+# <y <3-b>

es =h+X {il] +̂ (i3) "^ (V4) (3"C)

es =i3 +^(V +^(i3) -^f(v2) (3-d)

Clearly any solution of the set (2-a) to (2-f) is a solution of the set

(3-a) to (3-d), conversely any solution of the set (3-a) to (3-d) is a
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solution of (2-a) to (2-f) where i, is calculated by (2-d). The z-s

determinateness of <% implies that the system (3-a) to (3-d) has a

unique solution. Let t be the time at which e is applied, then we
0 s

assert that the solution of (2-a) to (2-f) is such that

i=v=i=v=£ (4)
1 v2 3 4 5

where £(•) is the unique solution of

e = i +X (£) with |(t) = 0 (5)
s u

Let us proceed with the verification: v = v (from (4)) implies, by

(3-a) and (3-b), that

X (\) =K (i3). (6)

This together with i = i (from (4)) implies, by (3-c) and (3rd), that

X (v2) =X (v4) • (7)

From (4), i,, v0, v. and i0 have the common value £ but we do not
N 1 2 4 3

yet know that Jt (i,) =% (v2). To show this use (3-a) with (6) and

(3-d) with (6)

es= £+X(i])

eg= £+2%(ix) -%(vz)

-22-



hence

X{ix) =3C(v2) (8)

Thus (6), (7) and (8) show that (3-a) to (3-d) reduce to

^(\) =3£(v2) =X(Z) = %-i (9)

and we have shown that (4) and (5) determine the solution of (2-a) to

(2-f) where

i, = 2%(|) -(#(£) -£) = e„ (10)

Hence Ob is constant resistance.

Example 2. The one-port Olo ia made by interconnecting two one-ohm

resistors and two one-ports N and N as shown on Fig. 3. N is the

z. s. dual one-port of N . 0Q>7 is assumed to be z-s. determinate under

voltage source drive. We assert that 0fe is constant resistance. We

do not give a detailed proof of this fact since it is obtained by a method

similar to that of the Example 1.

Example 3. If in any of the one-ports described above we replace one

or more of the one-ohm resistors by another such one-port and if we

repeat this process any number of times we obtain a one-port that is

still constant resistance.
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Fig. 6. N and N are dual one-ports and Od is
constant resistance.
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