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ON THE EXISTENCE OF SOLUTIONS TO A DIFFERENTIAL GAME
P. P. Varaiya

ABSTRACT

In this paper we consider the problem of the existence of a
"min-sup' strategy to a pursuit-evasion game., The dynamics of
the players have been modeled by a general dynamical system
rather than by a differential system, This has helped to achieve
mathematical simplicity as well as clarification of the problems
involved in a competitive situation, We have discussed the relation
between the two models and the relevance of our results to time-

optimal control problems.



I. Introduction, In this paper we study the problem of the

existence of a solution to a pursuit-evasion game. The rules of the
game can be framed as follows:

There are two players, one called the pursuer and the other
called the evader. The states of these players at any time t,
0 <t < x are represented by n-dimensional vectors p(t) and e(t),
respectively. The game starts at time t= 0. The dynamics of the
two players are given by certain axioms, These axioms are a weaker
version of those given in [1] but more restrictive than those given in
[2]. The basic notion used in the formulation of these axioms is that

t)) which represents

of the attainability function P(po, to, t)(E(eO, to,
the set of states that can be reached at time t by the pursuer (evader)

starting in state po(eo) at time t A motion for the pursuer (evader)

00
is therefore a mapping u(-) (v(+)) of an interval of [0, ®) into R"

such that

u(t) e P(u(to), to, t), t>t,

(v(t) ¢ P(v(to), £ t), t > t0>,

The evader is informed of the dynamics of the pursuer and the initial
state of the pursuer (as well as his own dynamics, of course). This
is the extent of the evader's knowledge. A strategy for the evader
therefore, consists in selecting, a priori, a motion which satisfies
his constraints. The pursuer, on the other hand, together with being
supplied with the dynamics of both players, is also told at each
instant of time the motion of the evader up to that time, Based on
this knowledge, the pursuer selects a course of action which takes
him within a specified region (called the endzone) of the evader in
the shortest possible time. The evader, -of course, tries to escape
from this predicament as long as possible.- The game ends as soon

as the pursuer has achieved his goal. For each strategy (= motion) v



of the evader and each strategy g of the pursuer, let 7(g, v) be

the time (possibly + x) when the game ends. Let

T(g) = sup{T (g, v)|v is a strategy of the evader}

and let
T = inf{T(g)l g is a strategy of the pursuer},

i, e.,

T* = inf sup T (g, v).
g v

We say that the game has a solution if there is a pursuit strategy g*
such that T* = T(g*).

The main result of this paper (see Sec. V) consists in showing
that if T* < oo, then there exists a solution,

In Sec. VI we consider the appropriateness of our model and
discuss the relation of our results with the known [ 5], [6], [ 7]
existence results on time optimal control. Section II deals with the
postulates of the dynamics of the two players. In Secs. III and IV we
investigate the properties of the motion space and the strategy space,
respectively,

II. Dynamics of the Players, Instead of giving the dynamics

of the two players by means of differential equations, we adopt the
axiomatics of Roxin [1], [ 2] . The basic notion of these postulates is
the attainability function P(p o’ t t

t) for the pursuer, (E(e t)

s s oy
for the evader) which representg the set attainable by the ;ursuer
(evader) at time t, which starting in state po(eo) at time to. There
are two reasons for using this model, First of all the mathematics

is greatly simplified. More important is the belief that this simplified
development enables us to distinguish the special problems arising

in differential games, as opposed to optimal control,
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The attainability functions have to satisfy the following axioms:
(we only give the axioms for the pursuer since those for the evader
can be obtained by replacing P by E and p by e).

Al. Ppy, ty, t) is defined forall p in R" and for all ty

and tl with 0 < tO < tl <o, For each value of the argument,

P(po, tO, t) is a nonempty compact subset of R",

A2. Forall p,, t,, Plp, ty t)) = {py}.

A3, F i < <
3 or all PO’ to, tl’ tz with tO < tl <t

P(p03 t09 tz) = U P(Pl’ t13 t2)°

2’

A4, For fixed Py t P(po, to, tl) is continuous in t, i.e.,

09

0’ t1 and ¢ > 0, thereisa & > 0 such that

1’
for each Py t

P(po, ty tl) (; P(po, tye t') + Se 1

and

P '
(po, to, t) C P(po, to, tl) + Se
when
1 1
- <
It tll 6§ and t > to.,
Ab, P(po, tO’ tl) is upper semicontinuous in the triple

t. and ¢ > 0 thereisa &§ >0

Py to, tl), i.e., for each Py’ to, 1

such that

1 1 1
t) S Pleg ty 1)
P(po, b tl) S Plog ty t)+ S,
whenever

_ : 1 2 t 1
<65, IPO"POIS & and t ftl.

[t - )] <
AERN P LA 0

ol

e




III. Motions of the Players, In this section we define the motions

of the two players subject to the dynamical constraints of the previous
section, The most important result (Theorem 3.1) is that the set of
motions of each player over a fixed time interval [0, T], T <o is
a compact set under a suitable topology. We assume throughout that
each player starts from a fixed initial state,

Definition 3.1,

a, A motion of the pursuer (evader) is a mapping u(.) (v(-)) of

a subinterval I of [0, «) into R® such that

(1) 0eland u(0)= pO(V(O) = eO) where po(eo) is the fixed
initial state of the pursuer (evader), and

. . <
(2) for tO’ tl in I with tO < t1 we have,

u(tl) € P(u(to), to, t1)<v(tl) ¢ E (v(to), to’ t1)> .

We will say that the motion is defined on I.

b. Let u(v) and u vl) be motions defined on I and Il’

(
1
respectively. We say that ul(vl) is a prolongation of u(v) if
() 1C I, and
(2) w(t) = u() (v(6) = v() for ¢t in I.

Cc. An entire motion is a motion defined on the entire interval
[0, «) of interest. |

d. A pursuer (evader) motion defined on [0, T}, T <o will
be denoted by uT(vT). The set of all such motions will be denoted by
UT(VT). An entire pursuer (evader) motion will be denoted by G(\'})
whereas the space of all such motions will be called 6({\/).

Remark. In the main, we will be only interested in motions on
a finite interval, i.e., in the spaces UT and V,I,.

For a proof of the following fact the reader is referred to

Lemma 6.1 of reference [2].



Lemma 3.1. A motion defined on an interval I is necessarily
. . n
a continuous mapping of I into R'.
Definition 3.2. For T < o let CT denote the Banach space
(see [3], pp. 261-28l) of all continuous mappings of the interval
[0, T] into R" where for £ ¢ CT, the norm of £ 1is given by
lell= sup [£(0)].

0<t<T

Because of Lemma 3.1, UT and VT can be considered to be
subsets of CT' We consider UT and VT as subspaces of CT.

The next result follows directly the axioms of Section II,

Lemma 3, 2. UT and VT are bounded subsets of CT.

Lemma 3, 3. UT and VT are closed subsets of CT'

Proof. It is enough to prove the assertion for UT since the

o0

£ . . ) .
proof for VT is identical. Thus, let {uT, n}n=1 be a sequence in
UT which converges to an element £ in CT’ i.e.,
(3.1) lim sup |uT (t) - £(t)]| = o.

n o< T

We have to show that § ¢ UT' First of all, since UL n(0) = P, for
each n, £(0) = pO, so that by Def, 3.la, it remains to show that

for all t_, t with Of_t0<t<T,

0’ 1 -1
£(t) eP(&(tO), tos tl)

or, since P(g(to), vto, tl) is closed, we have to show that for each

e >0,

(3. 2) £(t) ¢ P (g(to), tys tl) +5 .

Let ¢ > 0. Because of A5 and (3.1), for sufficiently large n, say

n > nl,
P
g (6 € (uT’ (et tl)gp<g(to), £y tl) +S, 5



But again for large n, say n >~ n,,

€
) - up ()] <5

Therefore, for n > n, + n,, (3.2) is satisfied. Q.E.D.
Lemma 3. 4. UT and VT are equicontinuous subsets of CT.

Proof, Again we prove the assertion for U_, only. We have

T
to show that for each ¢ > 0 and for each te[ 0, T], there is a
6 > 0, depending on ¢, t such that

- 1 < .
(3.2) IuT(t) uT(t )I < ¢ forall up in UT and all

t'in [0, T] with |t' - t] < 6.
Suppose the assertion is false. Then thereisane¢ > 0, te[0, T],
0 o0
and sequences {uT’ n}n=1 - U {tn} n=1g [0, T] such that

1
le-el <50 legp () -up (0] >e.

Taking subsequences, if necessary, we can assume that there are

X € Rn, y € R™ such that

3.3 — — —
( ) uT,n(t) X, uT,n(tn) y as n-—-o
so that

(3.4) |x - y[>e.

Again, taking subsequences if necessary, we may assume that either
(i) tni t for all n or (ii) tnzt for all n.
Case (i). tn_<_ t for all n,

By axiom A5 of Section II, using (3. 3) we see that for large n,

P(uT, et t) C Pyt 045,

But t <t i 1i th
L, Jt implies that ur n(t) € P(uT’ n(tn), ts t) so that, for

large n '



lup L0 -yl <3
:

and hence |x - y| < g/2 which contradicts (3.4). Interchanging t
and t in the above argument yields a contradiction of (3.4) for Case
(ii) also. Hence, the assertion must be true, Q.E.D.

Combining Lemmas 3.2, 3.3 and 3.4, the Ascoli-Arzeld theorem
[3], p. 266, yields the following theorem.

Theorem 3.1, UT and VT are compact subsets of CT.

Remark. For an alternative proof of Theorem 3.1 see Roxin

[2], Theorem 6. 2.

IV. Pursuit Strategies and Feasible Pursuit Strategies.

Definition 4., 1.
a. A pursuit strategy is a mapping gt VT—)UT such that if
' .
Vo and vy arein VT and

'
= <
VT(T) vT(-r) for 0 <7<t
then
1
gTVT(T) = gTVT( T) for O 5 TE t.

We say that g, is defined on [0, T].

b. Let GT denote the set of all strategies defined on [0, T].

Definition 4, 2.

a, Let F(VT, UT) be the space of all mappings 7 from VT
into UT. We give F(VT, UT) the topology of pointwise convergence
(see [4], p. 217). Thus a net {na} C F(VT, UT) converges to an
element 1 of F(VT, UT) if and only if

na(vT) converges to 'q(vT) in UT

for each VT in VT.

b. We can consider GT as a subset of F(VT, UT) and give

GT the relative topology.



Definition 4, 3. Let ©® be a fixed closed subset of [0, o) XRn.
© is called the endzone.

Definition 4. 4.

a. A pursuit strategy 8y ¢ GT is said to be feasible if for

each VT in VT’

(1) - v (1) ¢ ©.

(7, 3

il
for some T, 0= #< T,

b. We will denote a feasible pursuit strategy defined on [0, T]
by fT’ and the set of all feasible strategies defined on a fixed interval
[0, T] by FT. Ve consider FT as a subspace of F(VT, UT).

Thus a feasible pursuit strategy f'I‘ is a strategy which guarantees
the pursuer that the game will end in time at most T independent of the
strategy used by the evader,

Lemma 4.1, FT is a closed subset of F(VT’ U

Proof, Let {fT, Q} be a netin F
n of F(VT, UT T

By the definition of convergence in F(VT,

)

T which converges to an

). We must show that ne F

18] we have that for

7
each vT in VT,

(4.1) fT, a(vT) —>T](VT) in UT'

1 L}

First of 1 i -
irst of all, let Vip and Vi be in VT such that VT(T) VT(T) for

0 £ rv< 4t Sinece fT N is a pursuit strategy for each @, we must
2

h g = ' < < . .
ave f. aVT(T) fT, QVT('T) for 0 < 1 <t so that (4.1) implies that

TIVT(T) = T]V,'I,('r) for 0 < 7 <t. Therefore m is certainly a pursuit

strategy.
Now let VT be a fixed element of VT. For each « there is a

Toz’ 0 < Ta < T such that (see Definition 4, 4a),



(Toz’ PG AL VT(Ta?)e ®

*
Taking subnets if necessary, we can assume that T, converges to T

for some 1".* with 0 < ¥ < T. We now show that,
(r" (+)
(4. 2) fT, onT(Tar) - VT(TQ) ’r]vT T ) - vilT
(4. 3) l'qu(T ) - VT(‘T ) - T, QVT(TO!) - VT Ta
< vt ) - v (T el + v (T ) - £ v (7))
- T T « T « T,a T «

+ v (7™) - vl

Now v, MV, f are continuous functions on [0, T];

T T,a T

furthermore, convergence in U_ means uniform convergence over

T
[0, T] so that from (4.1) we see that each of the three terms in (4. 3)

converges to zero. Hence (4.2) is true. Therefore,
(4. 4) ('ra, fT, avT(Ta) - VT(TQ')) - (‘r , 'r]vT('r ) - VT(T ))

in [0, w) x R".
But each term in the left-hand side of (4.4) belongs to ® and
® is a closed subset so that the right-hand term also belongs to 0.

This proves that n is a feasible pursuit strategy (see Definition 4, 4a),

i.e.,, Me F'I" so that FT is closed. Q.E.D.
Theorem 4.1. F’I’ is a compact subset of F(VT, UT).

Proof. The topology on F(VT, UT) is the product topology on

the product space of |VT | 3copies of the space U But by Theorem 3.1,

T.
UT is compact. By the Tychonoff product theorem [4], p. 143,

F(VT, U,I,) is compact., By Lemma 4.1, F, 1is a closed subset of

T
FT(VT, UT) so that F_, is compact. Q.E.D.

T
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V. Existence of Solutions., Suppose that thereisa T, 0 < T < o

such that FT is nonempty, i.e., suppose that there exists a feasible

pursuit strategy.
Definition 5.1, For each v in VT and each fT in FT let

'r(fT, vT) be the smallest nutmber T such that (T, fTvT(-r) - v,I,('r )) e®
Remark. Since ® is a closed subset of [ 0, ©) X R® and

fTVT(T ) - VT(T‘ ) is a continuous function on[0, T], T (fT, VT) is

well defined.
Definition 5, 2

a. For each fT in FT let

T(fT)z sup T(fT, VT).

b. Let

c. We say that the game has a well solution if there is an f‘*T

in FT such that

T(f%p) = T*,

We will call f*T a well solution of the game.

Lemma 5.1, For fixed v 'r(fT, VT) is a lower semicontinuous

T’
function ([4], pp. 101-102) on FT

< .
{le T (fT, VT) <a} is a closed subset of F

, i.e., for each a the set

T.

Proof. Let a be fixed. Let {fT, a} - F . be a net such that
(i) T(fT;a: 'VT) < a for each @, and

(11) fT, o converges to an element f'I' of F’I"

We have to show that 'r(fT, vT) <a, i.e., we must show that there

isa T, withO_<_-r _<_a such that

-11-



(5.1) (-r, fTVT(‘T) - vT('r))e .

Because of (i), for each @, thereis a T, with 0 < T, < a such

that
(Ta’ fT, arVT(TOf) - vT('ra)) e 0.

Taking subnets, if necessary, we can assume that T, - 7* and

0 < T < a. But then the same argument as in Lemma 4.1 shows

that (5.1) is satisfied with T = T . Q.E.D.
Lemma 5,2. (See Definition 5, 2a.) T(fT) is a lower

semicontinuous function on F_,.

T

Proof. Let a be a fixed real number and let {fT a} g FT

be a set such that

i <
(i) T(fT, a') < a for each @, and

(ii) fT, o converges to an element fT of FT'
We must show that T(fp) < a, Let Vo be an arbitrary element of
Vv Because of (i) above,

T.
T(fT’ « V1) X a for each a.

But then by Lemma 5.1, T(fT, vT) < a, so that

T(fT) = sup T(fp, vp) < a.
VTEVT
Q,E.D.
Theorem 5.1. If there exists a feasible pursuit strategy, then
there exists a well solution to th?game. .
Proof. By the hypothesis thereisa T, 0 < T < w such that
FT is nonempty. By Theorem 4.1, FT is a nonempty compact set,

By Lemma 5.2, T(fg) is a lower semicontinuous function on FT and

~12-
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hence it has a minimum at some point f(T of FT. Clearly, fT is

a well solution to the game.. Q.E.D,

VI. Discussion of the Model and Relation with Time-Optimal

Control Problems. Suppose that the dynamics of the players are

given by differential equations instead of via the axioms of Section II,

For example, let the pursuer dynamics be given by

(s) B(t) = £(p(t), o (t), t) (p(0) = p,,

where o(t) e = g R™ is the control vector, Suppose that Z is
bounded, and f satisfies enough conditions to insure uniqueness and
boundedness of the solution for each measurable control function o (t)
with range in Z. We can define the attainability function P(po, tg, t)
for this differential system (S) to be the set of all states p which can be

reached at time t, starting in at time t by using an admissible
g Py y g

s
control, Then under mild conditions on £, lg(po, tg» t) is bounded

for each value of its argument and the attainability function satisfies
axioms A2-A5., However, in general P(pg, tg, t) is not a closed

subset of R" (see Ref, [8]). Let us assume that conditions are imposed
on f (see [5]-[8]) such that P(pg: tps t) is closed. Now the system

(S) has a well-defined notion of trajectory which is any solution of (S)
arising from a measurable control. The attainability function P, on

the other hand, gives rise to the concept of motion as in Section III. A
little reflection shows that every trajectory is a motion. However, the
converse is not true in general, The precise relations between the set

of trajectories of (S) and the set of ""derived motions" will be

investigated in another paper. This relationship is very similar to the
one between the ''original curves' and the ''relaxed curves' discussed

by J. Marga [9]. In References[5]-[8], varying sets of sufficient
conditions are imposed on £ (see (S)) which insure that (a) the

attainable set is closed, and (b) every motion is a trajectory. If any

-13-



of these sets of conditions are satisfied by (S), Theorem 5.1 tells us
that if there exists a feasible solution to the time optimal problem,
there exists an optimal solution.

VII. Summary and Conclusion, In this paper we have considered

the problem of the existence of a "min-sup strategy' to a pursuit-
evasion game, The dynamics of the players have been modeled by a
general dynamical system (as developed by Zubov, Roxin, and
others) instead of a differential system, the purpose being to clarify
the problems arising in the competitive situation of a game as
distinct from an optimal control problem. Usually in game theory,
interest centers around the existence of a more symmetric solution,
i.e.,, on both "minimax'" and "max-min' strategies. The existence of
such solutions, seems to the author, to be extremely unlikely in a
differential game, except under very restrictive conditions. In any
case, it is hoped that the results of this paper will evoke interest
among both game theoreticians and people working in the theory of

optimal control,
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FOOTNOTES
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Joint Services Electronics Program (U, S, Army, U. S. Navy and

U, S, Air Firce) under Grant No. AF-AFOSR-139-66.

1Throughout S_ represents the closed sphere in R® of radius
¢ and center 0, Also, if A, B are subsets of Rn, then

A+B={a+blacA, beB}.

2
Throughout for x e Rn, [xl represents the Euclidean norm

of 'x,

3
IVTI denotes the cardinality of the set VT .
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