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I. Introduction

1 2
Recently Sandberg, and Bergen, Iwens and Rault obtained con

ditions for bounded-input - bounded-output (b. i. b. o.) stability of contin

uous nonlinear feedback systems. In this paper, the absolute stability

in the b. i. b. o. sense of nonlinear sampled-data (NSD) feedback systems
3

is investigated, and the previous results obtained by the authors are

extended. In Reference 3 the main emphasis is on NSD systems with a

monotone nonlinear element, a restriction that is relaxed in this paper.

Conditions for absolute stability of certain classes of autonomous
4

NSD systems are summarized by Jury and Lee.

It is shown in this paper that the same conditions that Jury and

Lee give also establish absolute stability in the b. i. b. o. sense.

Notation and Definitions.

f(n) = f(nT), n = 0, 1, 2, * • • , the value of f(t) at the nth sampling

instant for a sampler with sampling period T ;

f(n) = 0, Vn < 0

Vf(n) = f(n) - f(n-l), the backward difference;

jw AJooT,. , „ sT ...
e = e , for values of z = e on the unit circle.

II. Description of System

Consider the single input, single output sampled-data feedback

system S shown in Fig. 1. The nonlinear gain element N is memoryless,

the linear plant G is nonanticipative, time-invariant, and completely

controllable and observable.
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Assumption 1. The nonlinear element N is characterized by a piecewise

continuous, integrable function <?(•) defined on (-00, +00) satisfying

0 < Sill < k < «,, \/cr * 0 (1)

<p(0) = 0 (2)

and -k < f£ < k- (3)
1 — dcr — 2

The output of N is given by u(t) = <p(cr(t)) .

Assumption 2. The linear plant is characterized by its transfer function

G(s) , which has no poles in the right-half s-plane. Hold circuits and

any continuous or discrete compensation networks may be thought of as

being included in G(s). However, G(s) must have a z-transform,

Z[G(s)j = G (z), which is a rational fraction in z whose numerator

polynomial is, at most, of the same degree as the denominator. Further-

more G (z) has poles only inside the unit circle in the z-plane (principal

case), or has some poles on the unit circle (particular cases), but is

analytic everywhere outside the unit circle. z(t) is the zero input res

ponse of the linear plant.
4

Following the notation of Jury and Lee, an NSD system S

satisfying these assumptions for specific nonnegative k, k , k? is

referred to as an NSD system S of T(0, k; -k , k ).

HI. Main Results

Theorem 1. The NSD system S of T(0, k;-oo, k2), for the principal
case, and of T(e , k;-oo, k?) for the particular cases (e > 0 arbitrarily

small), is absolutely b. i. b. o. stable if the following inequality is

satisfied for all ]z| =1 and some finite nonnegative number q.
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ReH*(z) =Re{[l+q(z-l)]G*(z)} +±- -^- |(z-l)G*(z) |2 >6>0

In addition, for particular cases, the conditions for stability-in-the-

limit must be satisfied. (6 may assume the value of any positive number),

Corollary 1. The NSD system S of T(0, k;-k-, k,), for the principal

case, and of r(e , k;-k , k?) for the particular cases, is absolutely

b. i. b. o. stable if the conditions of Theorem 1 are satisfied for some

finite number q, positive or negative.

Theorem 2. The NSD system S of T(0, k;-k.,oo), for the principal

case, and of T{e , k;-k., oo) for the particular cases, is absolutely b. i. b. o.

stable if the following inequality is satisfied for all |z| = 1 and some

nonnegative finite number q.

ReH*(z) =Re{[l+q^]G*(z)} +\- - ^r— |(2-l)G*(z) |2 >6>02 k (T^

In addition, for particular cases, the conditions for stability-in-the-limit

must be satisfied.

Corollary 2. The NSD system S of r(0, kj-k^k.), for the principal

case, and of r(€,k;-k_, kj for the particular cases, is absolutely b. i. b. o.

t The absolute bars are added to the second q in view of Corollary 1.

These conditions require that the system under consideration be

asymptotically stable for a linear gain <p{o") = € tr, € > 0, arbitrarily

small. This is a linear problem which has been extensively treated
5 6

by Jury ' and others. Root locus techniques, for instance, could

be used to check whether the conditions for stability-in-the-limit

are satisfied.
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stable if the conditions of Theorem 2 are satisfied for some finite

number q, positive or negative.

Corollary 1 and Corollary 2 predict stability for exactly the

same class of systems, but their criteria are different. This is no

contradiction since only sufficient conditions for stability are given.
4,7Corollary 1 gives stronger results for most systems.

i * i2
Because of the negative squared term |(z-l)G (z) | in inequali

ties (T ) and (T ), it is obvious that for particular cases, (T ) and
12 1 ^

(T ) can only be satisfied for the simplest particular case, i. e. , G (z)

has only a simple pole at z = 1.

Note that the stability theorems of Reference 3 can be obtained

as special cases of Theorem 2 (except for the fact that the nonlinearity

can also be time-varying when the stability inequality is satisfied for

q = 0).

Remarks. Without loss of generality, the theorems need only be proved

for

(i) principal cases of G (z),

(ii) the nonlinearity <p(cr) in the reduced sector [€,k-e], i.e.,

€ < £L2J <k-e, vcr^ 0, where e > 0 is arbitrarily small.
— <r —

These remarks are justified in Appendix I in a similar manner
3

as shown previously. The method used is the technique of system
g

transformations of Aizerman and Gantmacher, adapted to sampled-

data systems.

Auxiliary Lemma. The following lemma plays an important part in the

proof of Theorems 1 and 2 and is considered to be the main contribution

of this paper.
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Main Lemma. If the NSD system S of T(0, k;-oo, k2) [r(0, k;-1c, oo)]
which is a principal case, satisfies all the conditions of Theorem 1

[Theorem2], then the following inequality holds for sufficiently small

a > 0

^e2«V(i)] <1[c0.2- +c1^.2alx2(i)
4=0 / \ 1=0

where

4 = 0

n

(n) =^ g(n-l)[r(l) -z(4)]x,

4=0

and g(n) is the inverse z-transform of G (z) of the linear plant, c , c

and c? are finite positive constants independent of n.

Proof of Theorems 1 and 2. Referring to the remarks we need only to

prove the theorems for principal cases of G (z). Denote g(n) as the

inverse z-transform of G (z). At the nth sampling instant the system

S is described by the equation

n

o-(n) = r(n) - z(n) - Y g(n-i)u(i) (4)
4=0

or equivalently

-6-
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n

i \ i \ i \ V a(n-4) . % -<*(n-4) _.o-(n) = r(n) - z(n) - > e 'g(n-4)e 'u(4) (5)

4 = 0

Using the triangle inequality and the Schwarz inequality, we obtain

Using inequality (L) of the Main Lemma, we obtain

/ oo \ 1/2

|cr(n)| <|r(n) -z(n) | +(^ e2a?i g2(4)
\4=0

V 4=0 4=0

Since G (z) is a principal case, there exist positive constants K , KL

such that |g(n)| < K e-K0n, V* > 0. Therefore, there exists an c,
oo 2or4 2

0 < a < K , such that S e g (4) < A < oo. The second and third

sums are bounded for all n > 0 since each of them is the discrete con

volution of a strictly stable, linear, sampled-data system with a bounded

input. (Note that x(n) and z(n) are bounded for principal cases). Thus

the r.h. s. of inequality (7) is bounded for all n > 0. Therefore,

|o-(n)| < B < oo, V n> 0 (8)

which implies that the output c(n) of the system is bounded. This com

pletes the proof of Theorems 1 and 2.
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Proof of Corollary 1. Suppose the NSD system S of r(0, k; -k^,^)
satisfies inequality (T ) with a negative q. The transformation

<p(cr) = kcr - <p{cr) (9)

changes this system into an equivalent system S of 37(0, k; - k_ + k,

k +k) with G^(z) =— ^—. To see this, substitute (9) into (4) and
1 + kG (z)

take z-transforms. Theorem 1 is now applied to test for

the stability of the transformed system with a positive q = -q . Forming

ReH (z) and substituting for G (z), we obtain

R

- * - * (k -I- k) |q|
eH^z) =Re{[l-q(z-l)]G'(z)}+ - - —^

ReH (z)

1+kG (z)|
- kq(l -cos co )

1 + kG

Since q < 0

ReHx (z)
ReH^z)

"i * i~21+kG (z)|

(z-l)G (z)

k|q| (1 - cos co)
1 + kG

(10)

It is clear from (1 0) that the satisfaction of (T ) for a negative q implies

that there exists a 6 > 0 such that

R eH (z)>6>0, V|z|=l with q = -q > 0

1 - * 1
— in H, (z) must be replaced by ;
k 1 N ' * y k -€

that (11) hold. Inequality (11) implies absolute b. i. b. o. stability of the

(ID

For particular cases, f- in H (z) must be replaced by , in order

transformed system, by Theorem 1. The original system is then also

-8-



stable. This completes the proof of Corollary 1.

Proof of Corollary 2. The proof of Corollary 2 follows the same

procedure as the proof of Corollary 1. By applying transformation

(9) to the original system S of T(0, k; -Isl, k.), we obtain an equivalent

system S of r(0, k; -k. + k, k + k), to which Theorem 2 may now be

applied with a positive q = -q.

Proof of Main Lemma. Let

f(n) = r(n) - z(n)

Denote for any positive integer N

r u(n), 0 < n < Nr f(n), 0 <n<N

^ 0 , otherwise

fNW = < uN<n) = S
0 , otherwise

Then define ^^(n) and Vo- (n) by the following equations.

n

<rN(n) = fN(n) - ) g(n-4)uN(4)
4=0

n

VcrN(n) =VfN(n) - Y Vg(n-4)uN(4)
4=0

(12)

(13)

(14)

Clearly, cr (n) = tr(n) for 0<n<N and Vcr (n) = Vtr(n) for 0<n<N.

Note that oVrfn) and Vcr (n) are not identically zero for n > N + 1 but

satisfy the following inequalities.

-9-



- TC n

K_(n)| iK?e ° , \/n>N +l
N'

-K n

|V(rM(n)| <K e ° , \/n>N+l
N'

where K , K are positive constants (depending on N) and K was
XT n

defined in | g(n) | <Ke" 0f \/n > 0. Define the following auxil-

ary functions:

KN(n) =°N(n) " (f "V) Vn)

k2q
i{iN(n) = -^— Vo"N(n) + qu^n-1)

vN(n) = VcrN(n)

(15)

(16)

(17)

where, in (15), y is such that 0 < y < 6 , but otherwise arbitrary.

Because of the truncation of u(n) and f(n) at N, the z-transforms of

these auxiliary functions are analytic...on and outside the unit circle in
•-•••'" v

the z-plane. Using (13) and (14) we see that they are given by

VZ) =FN(Z) " [G*(Z) +k • Y] UN(Z)

*N<z) = 2
k2q ZT-1FN(z)-ZTiG(z)UN(z)

* -7-1* 5T-.1* *

VN<Z> =£IiFN(z)--^G(z)UN<z)

4> 7Next, define a Popov function ' p(N).

-10-
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(20)



00

p(N) =£ [;(e^uN(n))(ean X^n)) +(e^ yn))^.))] (21)
n=0

where 0 < a < K , so that the z-tranform of each term under the

summation sign is still analytic on and outside the unit circle. Note
6 *

that in general for any y(n) with z-tranform Y (z) ,

r an . , * -arT .
[e y(n)J = Y (e z)

If (22) is used it follows immediately from (A 2.1) in Appendix II that

r 2 -> N
p(N) <

if

_ 2(6-v) 2k2qJ I
2 an 2

e f (n)

8(k2q)'
1~T~

00

n=0

n

I
4=0

n=0

a(n-4) . .. aS. . ,..e v 'g(n-4)e f^i)

ReH*(e"QfTz) > 6 > 0, V I*I =1

(22)

(23)

(Tx)

It is shown in Appendix III that for sufficiently small a > 0, satisfaction

of (T ) implies (T ).
-Kn

Since by hypothesis f(n) is bounded for n > 0 and | g(n) | < K. e ,

it is true that

n n

£g(n-!)fN(i) =^g(n-4)f(4), 0<n< N

4 = 0 4=0

-11-



and

n

Y g(n-4)fN(4)
4=0

-K (n-N-1)
< K, e ,n>N + l
— 4 —

where K is a positive constant, independent of N, given by

K. =
sup

4 0 < n < oo
f(n) ^(e "-I)'1

Then

N

p(N) <
(l +2q) 1 Y 2cm .2
-JiTTW + 2k2q Z e (n)

8(k2 3)2 V 2cm
n=0

n=0

n

l)f(i)Ig(n"
4=0

2 2<*N

4(6 -Y)

where c is a positive constant, independent of N, given by

oo

2 2a 2 V -2(K0-*)ncQ = 32(k2q) e K4 ^e
n=0

Denote the r.-h. s... of inequality (24) by C(N). Substituting (15) - (17)

into (21), inequality (24) becomes

N N

2cm (^(n)-f )u(n) +v ^e2anu2(n)
n=0 n=0

(24)

N

2 an
+ ) e < qu(n-l) Vtr(n) +

n=0

k2q 1 k q °°[Vcr(n)]2 j +-f- £ e2Qrn[VcrN(n)]2 <C(N)
n=N+l

(25)

-12-



which is rewritten as

Sx + S2 + S3 + S4 < C(N) (26)

by identifying the corresponding terms on the 1. h. sides of (25) and (26)
dco

with each other. Because of the constraint -co < -— < k , the following
— acr — c

4
area inequality, due to Jury and Lee, applies.

o-(n)
k,q24 2 Cqu(n-l) Vo-(n) + -=— [Vcr(n)] >q \ <p{(r)d<r, \fn > 0 (27)

Jcr(n-1)

Using this inequality, we show in Appendix IV that

S3 - -\ ^k<e2° -l)
N

2an 2.
e c (n)

n=0

For any finite integer N, S satisfies

0 < S^ < oo
— 4

(28)

and may be deleted from the l.h. s. of (25). Remember that u(n) = co(cr(n))

and note that

(29)
k

co(o-) \ € 2
o- - ~—- ) <p{<r) > — o-

since it may be assumed that co(o-) lies in the reduced sector [€,k-e],

e > 0 arbitrarily small. Substituting (28) and (29) into (25) yields

N

2 an

n=0

1 i / 2a i\- - qk(e -1) o- (n) + y

-13-
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2 i 7e 1 ca
The first sum in (30) is nonnegative if — - -r qk(e - 1) > 0. For

any €>0, 0<q<oo, 0<k<oo one can always find an a > 0,

sufficiently small, such that

0 9 2
0 < (e -1) < ^-r (31)

~ qk2

Delete then the first sum in (30) and set y = T ' slnce Y *s arbitrary

as long as 0 < y < b. Using (12) and (24), inequality (30) becomes

N \ 1/2 / N
V 2«n 2. . If 2«N , V 2cm 2y e u (n) I < -jt I cQe + ^ > e x (n)
n=0 / \ n=0

where

N \l/2

^e2an[r(n)-z(n)]2 ,
n=0 / (32)

+C2 7 e [r(n) "Z(n)] , V N>0

n

x( ;

4=0

-K„n

:(n) = Y g(n-4)[r(4) -z(4)] (33)

which is bounded for all n > 0, since | g(n) | < K e , yn > 0.

The constants c and c9 are given by

C]L =32(k2q)2 (34)

and

c2 =2(1+ 2q)2+ 46k2q (35)

-14-



This completes the proof of the Main Lemma as far as its application

to Theorem 1 is concerned.

To prove the Main Lemma for application to Theorem 2, redefine

the auxiliary function ikj(n), first defined in (16), by

+N(n) = jkjqW^n) + qu^n) (36)

and follow the same procedure as above. Need will then arise for
4

another area inequality (see Jury and Lee) given by

1 2 p(r(n) w
qu(n)Vo-(n) + Tkq[Vtr(n)] >q \ c/>((r)do-, \/n> 0

1 Jcr(n-1)
(37)

Following the steps of the derivation given above, one obtains inequality

(32) under the condition that

* -c*T v / , , »ReH2(e z) > 6 > 0, V |z| =1 (T2)

Using the same arguments as in Appendix III we can show that for

sufficiently small a > 0 , satisfaction of (T ) implies (T ) .

This completes the proof of the Main Lemma.

IV. Additional Results

It is worthwhile to note that the proofs given in the previous

section do not only establish absolute stability in the b. i. b. o. sense,

but also prove absolute stability of the null solution of the autonomous

NSD system S. To see this, set r(t) = 0 and rederive the term c e

appearing in (32) . Note also that for the principal case z(t) -** 0 expo

nentially at the same rate as g(n) -*• 0. From Equation (23) it is clear

that the term of interest is

-15-



N+l

oo _ N

2 cm

•l
n=N+l

Y g(n-4)z(4)
L4=0

It is easy to show that

SN+1 i "l
sup

n
z(n)

2f 2(K0-«)
e - 1

-. -1

(38)

- 2(K - *)N

N e (39)

2«N . 2 -2(Ko"^N
Therefore the term c e in (32) can be replaced by c N e ,

where

2 r 2(KQ-c) -1

C0 =32fr2q)2Kf sup

n
z(n) - 1 (40)

With these modifications in mind, for the case r(t) = 0 inequality (7)

becomes

oo 1/2

|cr(n)| < |z(n)| + ( Ve2"1^)
4=0

n n

. I
6

i 2cQn e
-2K n \0 +Cl ^e-2a(n-i)x2(i) +c2 Jj-'2a{n'i)-2W\

1=0 i=0 /

where now

n

:(n) =-^ g(n-4)z(4)
4=0

Clearly, cr(n) is stable in the sense of Liapunov and cr(n) -** 0

-16-
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exponentially as n -+ oo. Because the linear plant is assumed to be

completely controllable and observable, absolute asymptotic stability-

in-the-large follows.

CONCLUSIONS

Popov-type frequency criteria for absolute stability in the

b. i. b. o. sense of nonlinear sampled-data systems have been obtained.

The class of systems considered are feedback systems containing a

single memoryless nonlinear element described by a function c/>(<r).

The bounds on the slope of the nonlinear function <p{<r) play an im

portant role in the stability criteria. The stability criteria obtained
* 4 7, 9,10,11

in this paper are identical to those obtained by other researchers

for the absolute stability of the null solution of autonomous nonlinear

sampled-data systems of the same class. For this reason no examples

demonstrating the use of the developed stability criteria are given,

since several examples already exist in the literature. 4' 7' 9' 10>U

Some authors differ by exchanging the position of the signs, " > "

and " > ", regarding the sector restriction of the nonlinear element

and the stability inequality. The results obtained, however, are

the same.

-17-



APPENDIX I

Justification of Remarks

To justify (i), assume that G (z) is a particular case satisfying

all the conditions of Theorem 1. Make the change of variable

c^(cr) = <p (cr) + e cr (Al.l)

which transforms the system S of T(e , k; -oo, k2) into an equivalent

system S of T(0, k-€ ; -oo, k9-€) with the z-transform of the linear
*^

/s/* G (z)
plant given by G (z) = ~— , which is a principal case. Consider

1 + €G (z)

ReH (z) for all |z|=l, i.e., z = eJ , -*rr<co <tt, and substitute
rvsjc

for G (z). Then one obtains

ReH(z) =

ReH*(z)
*,21+eG |

k€

k-€

* 1

1 + €G
*

(A1.2)

It is clear from (A 1.2) that the satisfaction of (T ) in Theorem 1 implies

that there exists a 6 > 0 such that

*-> s{c

ReH^z) > &> 0, V lzl =1

* * Jw0 — —
If G (z) has a pole at z = e , then the r.h. s. of (A1.2) at co = co

becomes k/[€(k-e)] >0, -^ < <*>n < "fr*

-18-
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If Theorem 1 has been proved for principal cases then (A 1.3) establishes

stability of the transformed system S . The original system S of

T(€ , k; -oo, k ) is then also stable, which was to be shown.

The same arguments can be repeated for Theorem 2. Applying

again the same transformation, one obtains the equivalent system S of

~# Q (z) /N'*
T(0, k-€;-k -e,co) with G (z) = L~ . Formulation of ReHJz)

1 -._•*.. <£

>.*
and substitution for G (z) yields

~* ReH (z)
ReH2(z) =

|l +€G*i 2
+

k€

k-e

1 + eG (z)

* 1

G +k
*

1 + €G
Vl-I =i (A1.4)

from which the desired conclusion follows as before.

To justify (ii), assume G (z) is a principal case and make the

change of variable

<p{ o") = <P€ (o") - «o- (A1.5)

which transforms the system S of F(0, k; -oo, k_) into an equivalent

system S of T{e , k+€ ; -oo, k0 +€ ) with G'(z) = ^r—. For € >0
6 Cd € *

1-eG (z)

sufficiently small, G (z) will be a principal case. It can be shown, by

using (A3.2) with a negative e, that satisfaction of (T ) in Theorem 1

implies that there exists a 6 , 0 < 6 < 6 , such that the inequality

(k2+6)|q|
Re{[l +q(z-l)]G€(z)}+— -

-19-
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is satisfied for a sufficiently small € > 0. Hence, if Theorem 1 has

been proved for principal cases of G (z) with the nonlinearity in a

reduced sector [e, k-€ ], then (A1.6) establishes the stability of S

in the sector [€, k+€ ] . The original system S of T(0, k; -oo, k ) is

then stable in the sector [0,k], which was to be shown.

The same arguments, with slight modification, can be repeated

for Theorem 2.

APPENDIX II

Proposition. Let

oo

P0(N) =2[UN(n)^N(n)+ Vn)vN(n)]
n=0

If inequality (T) of Theorem 1, i.e., ReH (z) > 6 > 0, is satisfied

for all |z| =1, then

P0(N) <

N

"«&-.♦»»« Z'"
n=0

8(k2q)2 oo

n=0

n

Y g(n-4)fN(4)
4 = 0

(A 2.1)

4,7
Proof. By the Liapunov - Parseval Theorem

-20-



- IT

Substituting (18) - (20) and using (T )

P0(N) =^rJ - |UNI [H1-7] +[l +q(eJ -D]FNU

k2q , iw i2P *-*-* -* * *_ k2q— UJ -H [FNG UN +FNG UN] +— (eJt°-l)F

Noting-that the r.h. s. must be real and completing two squares

P0(N) 2ir J
-TT

\/iRe[H*-7]'u

4ir J

*.2tt |[l +q(eJ -l)]Fj
N'

-tt Re[HrV]

J"[l +q<eJ -1)]F
N

Z^RefH^-Y]'
dco

dco

-TT

/I r * ? *
i ico i 2 * — *k2q|eJ -1| FNG

2^Re[H*-Y]

(k q) pir |eJ -l| |F G |
+ —: \ - dol

4ir I-tt Re^ - y]

k2q ^
4tt

-IT

J |(ej"-l)F*| dol
-21-
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(A 2.2)



* ico —
Since by hypothesis ReH (eJ ) > 6 > 0, -it < co < it, it follows that

ReH (eJC°) -v>6-v>0, if0<v<6. Therefore,

P0(N)^ifc) Jj[l+q(e^-l)]F;|2dol

(k2q) C* , iu ,4, *_*,2 ___f le^-llV^T^
-IT

4tt(6 - y)

k^q ^ir ._ ^2

or strengthening the inequality further,

>o<»><-w^OT~»iZ&
2 <k2q) r*. * *.2 -
4tt(6 - y) J ' N '

4k2q r17, *,2
1 'F„ dwD4tt J ' N

-TT

Applying again the Liapunov -Parseval Theorem, one obtains (A 2.1).

Q. E.D.

* ico - aT + ico
This step remains true if eJ is replaced by e , a > 0.
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APPENDIX III

Proof That Satisfaction of Inequality (T ) Implies (T ). In the expression

of (T ) replace 6 by 6 . It will be shown that this has no consequence

and that if there exists a 6 > 0 satisfying (T ), then there also exists

a 6 , 0 < 6 < 6 , satisfying (T.) and [6-6 I -*• 0 as or becomes
a a 7 b 1 ' or1

i

arbitrarily small. Rewrite (T ) as

Re{[l+q(e * z-l)]G (e z)} + £

kJq|
-aT * -aT

(e z - 1)G (e z) > 6 > 0, V|z| =1
— a

(Tx)

Given any principal case G (z), there exists a sufficiently small a > 0

* I I -aT
such that G (z) is analytic in the domain |z| > e . It follows that

-aT *. -aT * -aT\(e'a z-l)G (e z) -(z-l)G (z)| and |G (e~ z) -G (z) |

approach zero uniformly for all |z| = 1 as a > 0 becomes arbitrarily
i

small. Then there exists 6 satisfying (TJ such that 0 < 6 < 6 and
a 1 a

I6 - 6 I -* 0.
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APPENDIX IV

It is shown that the following inequality holds,

= Y e2<m qu(n-l)Vcr(n) +-|- [V<r(n)]
n=0

N

1 . . 2flf ,. V 20fn 2/ V /A A 1\> -rqk(e -1) > e cr (n) (A4.1)

n=0

Proof. Using (27), one obtains

N / \

S3 ^ ^cr(n-l)
n=0

>q y e2"11 f (p(o-)dcr (A4.2)

Denote

pcr(n)
Vw(n) = \ (p(a-)d(r

Jcr(n-1)

and sum (A4.2) by parts.

N

2*N f0™ „ „ -2«, V 2an r"(r1L\ ^(o-)dcr - q(l - e ) y e \ <p(cr)dcrS3 > qe
0 in=l

which yields because of (1) and (2)
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N

c ^ 1 i /i "2a\ V 2an 2/ 1\
3 - *" 2 q ^ ^ / e °* ^n '

n=l

N

1 2a V1 2an 2S3 - " jqk(e -1) ) e6£mcr>) (A4.3)
n=0

which was to be shown.
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