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ABSTRACT

A simplified model of a neural element which can be of interest

in the study of sensory receptors and the transmission of information

to the axons is obtained in this work. This model exhibits the time-

varying adaptive characteristics of the neuron receptor. These

characteristics are supported by physiological experiments. It is

furthermore shown that the model describes satisfactorily the main

electrical properties encountered in the electrical behavior of a

neural meni&rane and that digital simulation can be easily achieved.
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I. INTRODUCTION

Several attempts have been made in the past to simulate by

electrical networks the behavior of neural elements. Physiologists

[1] have tried to match their experimental results with partly empirical

formulas describing the variations of the main chemical or electrical

factors taken into consideration. Engineers in the field of bioengineer -

ing have directed their efforts toward developing models reproducing

qualitatively the main electrical properties of the neurons [2-4].

A brief*survey of the literature shows that the connection

between the work of physiologists and bioengineers is not always as

strong as would be desirable. For some reasons, due mainly to the

complexity of the phenomena to be studied, the different models pre

sented by engineers appear to lack a certain unity which would have

been preserved if more attention had been devoted to the assumptions,

approximations, and limitations involved. Furthermore, as the models

become more and more sophisticated, the risk of making speculative

assumptions increases unless the physiological aspects of the prob

lem are constantly kept in mind. Finally, it appears that the models

in question do not display enough degrees of freedom to take into

account most of the parameters influencing the neural behavior.

It is our opinion that the problem of neuron modeling ought to

be further studied if the work of bioengineers is to contribute more in



this particular domain of neurophysiology. Further research could be

oriented in two different directions:

1. Accurate models could be developed based on quantitative

and qualitative experimental data on chemical and electrical behavior of

the precise neural element to be studied. Owing to the nonlinear and

time-varying character of the phenomena involved, it is likely that any

model of this sort will necessarily be complex and defy any serious

analysis with the mathematical tools now available. However, a com

puter study is always possible. Any such attempt should require the

combined efforts of physiologists and engineers. It would be particularly

helpful if further investigation were made of the neural properties as a

function of different parameters, such as temperature or external

chemical concentration.

2. Simplified models could be developed, in which more initiative

could be left to the bioengineer, in order to investigate very complex

problems such as those arising in the behavior of groups of neurons or

synapses. Any approach to those problems should require definitions

and methods not always available to the physiologist. Optimal models

could then be defined with respect to certain performance criteria-

corresponding to the particular behavioral function (or functions) to be

studied. By such a study, one may acquire knowledge related to the

phenomena of adaptive behavior data handling and the process of
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transforming information. Hence, one can apply such knowledge to

man-made machines. In the following discussions, we will present a

model for the sensory receptor and indicate the mathematical descrip

tion of this model. Furthermore, the model properties are compared

with the biological properties of the neuron and close agreement is

obtained.

II. A SIMPLIFIED MODEL BASED ON THE PROPERTIES

OF FUNCTIONAL PULSE-FREQUENCY MODULATION

WITH TIME-VARYING THRESHOLD

The physiological behavior of the neural sensory receptor is

briefly discussed (for a more detailed study see Selkurt [5]) in this

paper.

As shown in Fig. 1, the original stimulus (could be pressure)

causes a deformation of the dendritic branches of the receptor. A long-

lasting depolarization of the "resting potential", known as "generator

potential", follows. The generator potential acts as a persistent

cathodal stimulus generating current that cause the initial segment of

the axon to respond repetitively to the depolarization. A block diagram

of Fig. 1 is shown in Fig. la. This system is composed of two parts:
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Fig. 1. Sensory receptor.
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Fig. la. Equivalent system of the sensory receptor.



1. A transducer which connects the original stimulus e(t) into

the electrical stimulus V(t) (generator potential), and

2. A modulator which converts the information provided by the

generator potential V(t) into a sequence of pulses m(t) (action poten

tial) called the repetitive discharge. In the following, both the trans

ducer and modulator are discussed in detail.

Transducer

The transducer is assumed to be a linear time-invariant system

for small values of the input e(t) . For large values of e(t), saturation

effect exists and thus we have:

V(t) = f h(t - u) g[e(u)] du (1)
J0

where g[e(u)] is shown in Fig. 2. As a first approximation h(t) may

-at
be considered equal to e with a ^ 0 .

Modulator

The modulator part represents the most important factor in the

system study of the neuron receptor. It generates a sequence of pulses

which convey information about the original stimulus to centers of

motion or higher centers, as the brain, where it is processed. Certain
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stimulus strength

Fig. 2. Saturation curve of the electrical
structures.
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forms of the modulator have been proposed [4, 6], but the present

extended form fits more closely with the electrical properties.

The modulator, called "Pulse Frequency Modulator" (PFM) in

this paper, is defined by the use of the following equations. These

equations represent certain symbols which are indicated in Appendix I,

^m;yt,tp=\ exp[-c(v-t£.)] V(v)dv, t>t^ (2)

Tk(t) - 1-exp[-q(t-t^-tr)] (3)

ph(t) = hp(t-tk) (4)

In the above equations, the symbols used are explained as

follows. The parameters h, q, T are positive constants. The

symbols t and c are positive or equal to zero. The time t is the

instant at which the kth pulse (action potential) is emitted (k is a posi

tive integer to count the action potentials). In order to account for the

time of application of the stimulus V(t), chosen as the origin of time,

the value k = 0 will also be considered. Hence, t = 0 .

The potential V(t) is the generator potential (assumed positive),
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The function p(t) is a continuous function of time, equal to zero

outside a certain interval (0, d) where d is positive constant (see

Fig. 3).

Furthermore, we also have

4k = 4k+ d •
if k > 0 . (5)

0 0

The function f. is defined as
k

V*"^ =bkexPf-a(t-t^] (6)

where b and a are positive constants or equal to zero.

From the above equations we can determine the input-output

relationship of the modulator.

Assume that an action potential has been emitted at time t .

The value of t (the time of the next action potential) is the smallest

root, greater than t' , of the following equation. (See Appendix I)

Iy (t, t£) - Tk(t) =0 (7)

or alternatively (from Eqs. (2) and (3)) of the following equivalent

relationship

-9-



•P(t)

.t

Fig. 3. Normalized action potential,
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b exp[-a(t-t')]
T e * Ki -p[-c(v-tk)] V(v) dv =̂exp[,q(t,t,,v] • (8)

The output of the modulator, Fig. 4, is equal to I (t, t') in the
V K.

interval (t^, tfc+1) and Ph<t-tk+1), for t^ S t * ^ . Hence,

m(t, =£[yt, t-, {i(t-t-, -Kt-tk+1)} +Ph(t-tk+l)] (9)

(k20)

where l(t) is the unit step.

The determination of the modulator output for a constant input

is shown in Fig. 4.

It is of interest to note that if we set c=0, t =0, d=€,
r

b = 0, q = co in Eq. (8) and let, furthermore, h = uA , the modulator

becomes identical to IPFM (Integral Pulse Frequency Modulator). Such

a modulator has been proposed in an earlier work [ 4] . Furthermore,

if we let c £ 0 with the above values, the modulator becomes equivalent

to FPFM (Functional Pulse Frequency Modulator) [8] corresponding to

the decision function fQ e V(v) dv . The study of such a modulator

in an engineering application is of importance [8] (also see Appendix I).

-11-



I

•
V

(t
)

V
0 ge
ne

ra
to

r
po

te
nt

ia
l

de
te

rm
in

at
io

n
of

t k
+

Tk
(t)

Iv
of

t.O

F
ig

.
4.

G
ra

ph
ic

al
de

te
rm

in
at

io
n

of
th

e
se

qu
en

ce
{t

}
an

d
m

od
ul

at
or

o
u

tp
u

t
re

p
re

se
n

ta
ti

o
n

fo
r

a
c
o

n
st

a
n

t
in

p
u

t.

P
hH

>
iv0

(t,t
;>

k+
ll

i'k
+

1

H
d

h
-

ou
tp

ut
of

th
e

m
od

ul
at

or
in

the
int

erv
al

tk«
t«

tj.



III. RELATIONSHIP BETWEEN THE MATHEMATICAL

PARAMETERS AND THE PHYSIOLOGICAL

CHARACTERISTICS OF THE SENSORY RECEPTOR

In this part an explanation of the physiological phenomena

related to Eqs. (2) - (4) will be presented.

The function I (t, t! ) describes the variation of a "subthreshold
v k

potential, " as a function of the stimulus V(t) and t. The constant "c"

refers to the delay separating the start of a "stimulus above threshold"

and the time of emission of an action potential. The function T (t)
JK

refers to the time-varying threshold of the membrane. The term

"T " can be described as the value of the membrane threshold when no

action potential has been elicited. One feature of this function is that it

reduces to "T " when an action potential has been elicited at t = t, and
0 k

when in the interval (t' , oo), the stimulus remains subthreshold, i.e.,

T (t) -* T when t -*• oo • This is seen from Eq. (3).

The rate of adaptation of the receptor is represented by "b",

which is generally a small value. The term exp [-a(t - t' )] , the
JK

quantity "q", and the function 1/1 - exp[-q(t-t' -t )] , are related to

the variation of excitability after the period of absolute refractoriness,

following the emission of an action potential. They refer to the

"relative refractoriness". It is assumed that "q" is much larger than

"a". This is justified because when an action potential has been elicited
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at t = t,' , the excitability (the inverse of the threshold T (t)), increases
k k

bk
rapidly from its null value at t = V to a value close to 1/T e

(as "q" is large). Afterwards it returns slowly ("a" is small) to the

value 1/T .

The function p (t) describes the form of the action potential.

The coefficient "h" is used to adjust its magnitude. It should be noted

that the origin of the potential axis has been taken as (-E ) (where E

is the resting value of the membrane potential). Finally, "t + d"

represents the period of the "absolute refractoriness" (explained below).

The function V(t), the input to the modulator, is assumed to be

positive because we are considering the case of a depolarizing generator

potential. Finally, the parameters (c, b, q, h, t , a and T ) as well

as the function pn(t) are chosen from experimental data available in

the literature [9]. Appendix II illustrates a range of possible numerical

values.

IV. AGREEMENT BETWEEN THE MODULATOR

PROPERTIES AND THE ELECTRICAL

PROPERTIES OF THE SENSORY RECEPTOR

In this part, the electrical properties of the neural element con

sidered are enumerated first, then it is shown that the modulator char

acteristics represent all these experimentally measured or observed

properties:
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1. Nondependence of the action potential on the stimulus

V(t) [5],

2. Strength-duration curve (for constant stimulus) [5],

3. Gradient threshold curve (ramp input as a stimulus) [ 5],

4. Absolute and relative refractoriness (for constant

stimulus) [ 5], and

5. Adaptation (for constant stimulus) [5].

Property 1.

From Eq. (4), the term p (t -1 ) which represents the action

potential emitted at time t = t does not depend on V(t) , except for

its emission time.

Property 2.

If we use a constant stimulus V(t) = V in Eqs. (2) and (3), we

obtain the following equation for determining t (the emission time of

the first action potential) :

or

r'1J *-CVV0dv =V (10)
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Therefore,

V / -ct
o L i1 - e 1= TQ . (11)

c

*i =-^log(1-irj • <12>

It is immediately noticed from Eq. (12) that no excitation

(elicitation of an action potential) exists if V ^ cT . The value

"cT " is called the Rheobase. The strength-duration curve follows

directly from Eq. (12). This is shown in Fig. 5. It should be noted

that Eq. (12) will also hold for any interval (t , t) .

Property 3.

The gradient threshold curve corresponds to the case of a ramp

input, i.e., V(t) 5 st, where s is a positive constant. From Eq. (2)",

we obtain

or

£sv e"CV dv = I (t, 0) for t < t, , (13)
0 v 1

Iv(t, 0) =--|te-Ct+-!^l-e-Ctj . (14)
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Fig. 5. Determination of strength duration curve.



The function I (t, 0) is monotonically increasing as seen from

/ 2Eq. (14) and its maximum is s/c . Therefore, no excitation occurs

2 2
for s < c T . This value of c T corresponds to the gradient

threshold. From Eq. (14) (by setting I (t, 0) = T ) we deduce the

gradient threshold equation as follows:

T

"2 = =cTj ^cTT • (15)
: 1 - e - ct e x

The above equation is plotted in Fig. 6, which is known as the

gradient threshold curve.

Property 4.

We assume as before V(t) = V (= constant) and furthermore

let t, be the emission time of an action potential (k 2: 1) . From Eqs.
k

(2) and (3), we obtain the following relationship which enables us to

obtain t, , the emission time of the next action potential.
k+1

vo

""I cT0 expi^bk e J

exp[-q(t-t^-tr)]
1 - exp[ -c(t - ty] = — — . t >t^ . (16)

The left side of Eq. (16) is always positive for t > t' , whereas

the right side is only positive for t > t' + t (see also Fig. 7). Hence
jk r
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Eq. (16) cannot have a root in the interval (t , t' + t ) . This indicates

that no action potential may be elicited in the interval d + t following

the emission time t of the preceding action potential. Consequently,
JK

t1 = t + d corresponds to the "Absolute Refractoriness Period",
r r

In some cases the refractory period may be longer than the

duration of the action potential, therefore the constant t is introduced.

The phenomena of "Relative Refractoriness" is also exhibited

by this modulator. This is observed from the variation of Tk(t), *or

t > t' + t . This property indicates that the excitability (the eventual
k r

emission of an action potential after t ) increases with time after the

absolute refractory period has elapsed (see Fig. 7).

Property 5.

Assume that V = V and consider two values k and k of

k(k. < k ) corresponding to two action potentials omitted at tk and tk .
1 c* 1 £,

Further, consider the value t. . and t. . the emission times of
' k,+l k2+l

action potential emitted after tk and tk . The values of tk +1 and

tk +2 can be obtained from Eq. (16). These two equalities are presented

graphically in Fig. 8. It is observed that when k > k , t implies

4k +1 " *k > *k +1 ' *k • This indicates tnat as long as tk+1 exists,

t - t increases with k. This property corresponds to the property
k+1 k

of "Adaptation".
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To show the above property analytically, let t = t' + At. If

k < k_ , we have

exp -bk e < exp -bk2e -a At
for all At ^ 0 . (17)

Therefore from Eqs. (3) and (17),

\r+ty<TkAAt+\
for all At ^0.

The curve corresponding to the left side of Eq. (16), will

intersect the curve Tt I At + t.1 I before intersecting the curve
1\

T ( At +t' J (see Fig. 8).
'1.

(18)

V. CONCLUSION

In this paper it is shown that the model presented exhibits the

main properties of the sensory receptors. A sufficient number of

parameters are presented in the definition of the modulators, which

can be adjusted to fit the particular neural element to simulate. It

may be emphasized that some properties of the sensory receptors, such

as the gradient threshold and adaptation, are exhibited by our modulator

only because of the time-varying nature. In previous models using

invariant models [6], these important properties are not exhibited.
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Though a simpler model such as IPFM modulator can be used for

simulation, such models have no strong ties with the main properties

of the neural receptors. It is of interest to note that such a simplified

model can be deduced as a special case of the modulator introduced

herein. This can be achieved by setting some or all the parameters

(c, t , d, b, h, q) to zero or infinity as required,
r

From the model presented in this paper, one should attempt to

extend the study to multineuron elements, i.e., neurons connected in

cascade or parallel or a combination of both. By performing such a

study, we can gain deep insight on information processing in the neurons,

This would also aid us in the study of large scale systems. Some

research in this direction has been recently introduced but further

research in this area is indeed warranted. Finally, the model pre

sented in this work can be simulated on a digital computer and will

thus aid in the study of complex neuron connections. Such a study pres

ently defines the analytical tools available; thus, the use of digital com

puters should be more emphasized in future work.
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APPENDIX 1

The Modulator Definitions [8]

A Functional Pulse-Frequency Modulator is defined as a system

operating on continuous or piecewise, continuous inputs and converting

them into sequences of pulses with the following properties.

The shape of the pulse (magnitude and form) is a priori deter

mined. The pulses are numbered by an index k (k integi r > 1) # The

kth pulse is fully characterized by its emission time t , its sign
""~ JK

€ (c = ±1) and a given function p(t) describing its shape. If p(t) is a

function of time, it is assumed to have a bounded support, i.e., there

exists a finite interval (a, (3) while or ^ 0, p £ 0 such that p(t) is

identically equal to zero for all t £ (a, p) . It should be noted that p(t)

can also be a generalized function as 6(t) . In many applications when

the shape is of no importance p(t) is considered as 6(t) .

To characterize the modulator output we characterize the

function I (6, 9') and the parameters T and u which are constrained

to be positive or zero.

The input X(t) to the modulator is assumed to be continuous or

piecewise continuous for all t £ 0 and equal to zero for all t < 0. We

further consider two arbitrary finite numbers 9 , 9' and denote by

(X(t), 9, 9') a point in the space. A function X is defined, which

assigns to every such point in this space a real number denoted by

I (0, 9').
x
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The four quantities (I (0, t), p(t), T, \i) fully characterize the

input-output relationship of the modulator.

Let X(t) be the input signal to the modulator. The correspond

ing output of the modulator is:

m(t) =u^T «kP<t-tk) (A*1)
k>l

If we let t = 0. then c, and t. are determined in a recursive
0 k k

manner as follows:

t, = min
k {'lyw *»i=T- t>4k-i (A-2)

c = sign^ yvi-v^ <A-3)

Thus if X(t) is given, then the modulator output m(t) is uniquely

determined. The above definition of the modulator represents a non

linear and time-varying form.

-28-



APPENDIX II

Some Numerical Values For Parameters Used

In This Paper

c (stimulus-excitation delay factor) = l(ms) , (millisecond)

t + d (absolute refractory period) = 1 ms (millisecond)
r

q (relative refractoriness factor) = (2 ms)

T (threshold) = 20(ms) (mV), (milliseconds millivolts)

h (Action Potential value) = 100 mV (millivolt)

a (parameter determining the time required for the threshold

to return into its resting value = 100 ms)

b (adaptation factor) =

-3
10 for pressure receptors

_2
10 for touch receptors .
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