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ABSTRACT

A solution to the "Firing Squad Synchronization Problem" is pre

sented which requires only eight states per module. The problem of

synchronization for a finite but arbitrarily long row of synchronized

modules is to find the state transition function of the modules under

the following conditions: module inputs are from immediate neighbors

only; for a "start" signal at either end of the row, all modules of the

row will simultaneously go to the firing state. The solution is based

on a procedure of consecutively bisecting the array down to a length of

only two modules at which point the logic carries the modules to the

firing state. Time to fire is about 3n where n is the number of mod

ules in the row. An exact expression is presented. Several extensions

of the firing-squad problem are suggested. As a check of the solution,

the firing-squad procedure was simulated on a computer.
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I. INTRODUCTION

The firing squad synchronization problem devised by J. Myhill first

arose in connection with machine self-reproduction in J. von Neumann's

cellular automaton. The firing squad synchronization problem was

specifically concerned with simultaneously activating all the cells of

that portion of a modular lattice which contained the dormant copy of the

parent machine. Myhill stated the problem for the one-dimensional

case, but the solution carries over to the two- and three-dimensional

cases by using the first firing squad to activate more firing squads.

Consider a finite, but arbitrarily long, one-dimensional array of

finite-state machines, all of which are called soldiers. The machines

are synchronous and identical, and the state of each machine at time

t + 1 is a function of its state and the state of its two neighbors at time t.

The problem is to specify the states and the transitions of the soldiers

in such a way that for a starting signal introduced at either end of the



array, all the soldiers will be able to go eventually but simultaneously

to the firing state. Initially, i.e., at t = 0, all the soldiers are in the

quiescent state. The two soldiers at the ends of the array are allowed

to be different from the other soldiers since they have only one neigh

bor. The structure of all the soldiers is fixed, while the length of the

array is arbitrary,

2
A. Waksman presented a 16-state machine as an optimum solution.

The solution presented here requires only eight states. However, the

16-state solution reaches the firing state at time 2n-2--n being the

number of machines in the array, while the eight-state solution needs

about 3n. The eight-state solution presented here has been checked

on a computer by simulation for arrays of length 2 to 210.

Since several solutions of the firing squad problem have already

been found, several extensions of the problem are suggested in order

to make the solution reasonable for such physical systems as signal

repeaters between stars and for such conceptual models as cellular

differentiation in living organisms where it may be desirable to bring

a modular array into a single state with some degree of simultaneity.

II. DESCRIPTION OF SOLUTION

The solution of the firing-squad problem is based upon the idea of

propagating two signals down the linear array that will bisect the array

into two new, equal-length rows. At the point of bisection, new signals

are injected into each new row, and the process continues and success

ively generates smaller, equal-length rows. When the rows are re

duced to a length of two modules, the logic carries the modules to the

firing state in three time units.
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The bisecting process is realized by two signals, one of which travels

down the row three times faster than the other, reflects off the opposite

end of the row, and meets the slower signal in the middle. Collision of

the fast and slow signals indicates bisection, and four new signals are

initiated --a fast and a slow signal to the right and a similar set to the

left. (Fig. 1). When the rows are of length two, collision of the fast

signals occurs immediately and forces the modules to the firing state.

The solution requires n > 2 where n is the length of the array.

All modules are initially in the quiescent state, state q. A start

signal to an end module sends it to state A. State A initiates the bi

secting signals. To get one signal to propagate across the row three

times faster than the other, the fast signal, state f, moves one module

per time unit, while the slow signal moves one module every three

time units. For the slow signal, a module in state a goes to state b

and then to state c^. State c^ causes a neighboring module to go to

state a, and the slow signal process continues. Which neighbor the

fast signal or the slow signal moves to is determined by inhibition sig

nals that propagate along directly behind both the slow and fast signals.

The inhibition signals prevent fan-out of the fast and slow signals. The

use of inhibition reduced the number of states required in my earlier

13-state solution and simplified the problem of signal reflection at row

boundaries.

How the row is bisected depends upon whether the length of the row

is an odd or even integer. If its length is odd, only the one central

module of the row goes to the bisection state, state A. If the length is

even, the two central modules go to state A, Each module goes to the

firing state if and only if it and its neighbors are in states c or f.
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the array

Fig. 1. The pattern of the bisecting signals in
the array.
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Eight States of Each Module

q Quiescent state

a "j Three states that comprise the slow bisecting signal,

bc J State b also inhibits fan-out of the fast bisecting signal,

d Inhibition state preventing fan-out of the slow signal,

f State generating the fast bisecting signal.

A Bisection state produced by intersection of the slow and fast

bisecting signals. State A_ generates the bisecting signals.

F Firing state

Examples of Transition Scheme

The module states as a function of time and position in the array are

shown for arrays of lengths 12 and 13 (Fig. 2), Quiescent states are

shown by blanks*

III. THEOREM CONCERNING BISECTION

Denote module i of the array by m. .

Definition: A row at time t is any sequence of modules { m , m ml
~ ; i i+l, ...,. y,
j - i > 2, such that for k = i or j, m is a module at the end of the array

or it has been in state A at or before time t . For p = i + 1, i + 2, .,., j-1,

in has not been in state A at or before time t .

Theorem: For a row of length n > 2 with the bisection signals intro

duced at the left (right), if the length of the row is an even integer,

intersection of the fast and slow signals, i.e., bisection, occurs with

states c and f_ (£and £) occupying the respective two central modules.

If the length of the row is odd, intersection occurs with the central module

in state a, the right (left) adjacent module in state f.
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Xl==12

A

b f

c b f

d a b f

d b b f

d c b f

d a b f

d b b f

d c b f

d a b f

d b b f

d c b f

d a f

d b f b

d c f b

d a f b

d b f b

d c f b

A A

f b b f

f b c c b f

f b a d d a b f

f b b d d b b f

f b c d d c b f

f a d d a f

b f b d d b f b

b f c d d c f b

A A A -A

f b b f f b b f

f b c c b f f b c c b f

f a d d a f f a d d a f

b A d d A A d d A b

f b f f b f f b f f b f

f c f f c f f c f f c f

F F F F F F F F F F F F

n=13

A

b f

c b f

d a b f

d b b f

d c b f

d a b f

d b b f

d c b f

d a b f t

d b b f

d c b f

d a b f

d b f

d c f b

d a f b

d b f b

d Q i b

d a f b

d A b

f b f

f b q. b i

f b a d a b f

f b b d b b f

f b c d c b f

f b a d d a b f

f b d d b f

b f c d d c f b

b f a d d a f b

b A d d A b

f b f f b f

f b c b f f b c b f

f b a d a b f b a d a b f

f b d b f b d b f

b f c d c f d f c d c f b

A A A A A A A A

f b b f b b f b b f b b f

f c c f c c f c c f c c f

F F F F F F F F F F F F F

Fig. 2. Module states with time.
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Proof: Let Tf denote the amount of time required for the fast signal

to move to the indicated point of intersection. Time = 1 when one module

of the row is in state A. Let T denote the amount of time required

for the slow signal to move to the indicated point of intersection.

For a row of length n, n even, n = 2m,

then T = n + m = 3m,

T = 3(A = 3m.
s c

for n = 6: T = T = 3m = 9
f s

t = 1 A

t= 2 bf

t = 3 cbf

t = 4 a f

t= 5

t= 6

t = 7

t = 8

t= 9

b f

c f

a f

b f

cf

For n odd, n = 2m + 1

then T = n + m = (2m + 1) + m = 3m + 1,

T = 3m + 1.
s

Consequently, T = T for both n even and n odd, and the type of
i s

collision indicates which module(s) are in the center of the row. Q.E.D.

The Transition Tables for Interior and End Modules

The transition tables for the interior modules are in the form

s.(t)

T.N. -,.,(*) -1+1(t) s.(t+l)

where the s.(t) is the present state of module i ; the neighbors are in

states s (t) and s.+1(t) ; and the transition number T.N. indicates
which branch from state s.(t) in the state transition diagram is to-be

taken. The transition relationships for the end modules are of the form
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Table 1. Transitions for interior modules,

q

1 q q q

2

f f

b f

f b

fq
qf
Aq
qA
A A

f

3 c <f>

<p c

a

0 0

0 0

f

1

bb

b f

f b

f

2

a f

fa

aa

ab

b a

a d

d a

q

3

qb
bq
qd
dq

b

4

b c

c b

c d

d c

A

5

q q

qf
f q

d

6

c c

c f

f c

F

d

1

a (p

<p a

b <p
</> b

d

2

q c

c q

c c

d f

f d

f f

q

3

qA
Aq
d A

A d

f

4 A A b

a

1 df
t d

b

2 d f

f d

A
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T.N.

B.(t)

s (t) s.(t+l)
a 1

where s denotes the state of the module adjacent to the end module,
a

The "don't care" condition is indicated by "0", and "not f" by "f ".

In almost all instances we have been able to ignore the difference be

tween the state of the module and its output (input to neighbors) by

equating output with state, but for the end modules the fa/bi symbol of

the state transition diagram (Fig, 4) denotes that the module is in state

a with an output of "state b",

IV. TIM£ REQUIRED TO REACH FIRING STATE

Theorem: With each module of the row initially in the quiescent state,

to reach 1
L

I ^ •

the amount of time required to reach the firing state is

T = 3n - 2 +

i=l

where n is the number of modules in the entire array (n > 2), and

[n,] is defined as follows:
i

nl — n,

<ni> \
n.

n.

if n.
i

+ lif

is

n.
i

even,

is odd,

<V
ni+l 2

t

[n.] \
'°

if

if

n.
l

n.
l

is

is

even,

odd.

The condition n = 2 determines L. Trivially, n = 2 always exists for

some finite L, n > 1. Since n = 1 for p > L, the condition is unique.
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Example

Consider the ar ray oi: length 41. n = 41 = n

n = 41 <n!>=42 [*ii =i

n2 = 21 (n2)=22 [nz] = 1

n3=U (n3>=12 [ngl =1

n4=6 <n4>=6 [nj =0-

n5=3 <n5>=4 [Hgl =1

n> = 2
6 <n6>=2

6

[n6] =0

L = 6, T = 3n - 2 + ) [n. ] = 123 -• 2 + 4 = 125

Proof:

The proof is by finite induction,

la. For n = 2, T = 4 both by the formula and by the logic,

lb. For n = 3, T = 8 both by the formula and by the logic.

2a. Adopting the convention T for the time to fire, T, of an array of

length n, we assume that n is even, n = 2m, m > 1.

To divide once (time from an intersection to the next intersection)

takes a time 2m + m = 3m by the bisection theorem and the new

rows are of length m, i.e.,

nl =
2m, n2 =• m.

T -
n

3m + T
ir

•

T =
n

3n - 2 + I
i=l

=3(2m) - 2+([ nx] +^ [*.]), but [n^ =[2m] ,= 0, n2 =m,
(cont'd)i=2
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Tn= 3m +(3m- 2+̂ [n.] ).
i=2

L

a Since m = n0, we may write T = 3m - 2 + / [n. ] .
-' 2 m // i

1^2

^ Thus T = 3m + T so that if T is correct, T is correct, n
n m m ' n '

even.

2b. Assume that n is odd, n = 2m - 1, m > 2

Dividing the row once takes time (2m - 1) + (m - 1) = 3m - 2 by the

bisection theorem. The new rows are of length m.

nl ="* n2 =m' t nl^ =1#
Thus it must be shown that the timing formula satisfies the expression

T = 3m - 2 + T .
n m

T = 3n - 2 +
n

i=l
IW

=3(2m- 1) - 2+(l +̂ [n ])
i=2

L

=(3m - 2) +(3m - 2+̂ [n.]).
i=2

L

Since m =n , we may write T = 3m - 2 + / [n. ] .
i=2

Thus Tn = 3m - 2 +T^ and if T_ is correct then T_ is also, when
n is odd.

-14-



3. Since it has been shown that the expression for the time to the

firing state is correct for n = 2, n = 3, and that it satisfies the

recursive relationships

T = 3m + T for n = 2m, n > 2 or
n m

* T = 3m - 2 + T for n = 2m - 1, n > 3,
n m

it follows by the principle of finite induction that the relationship

is correct for any row of length n, n > 1. Q.E.D.

As observed previously, the time to fire is about 3n.

V. EXTENSIONS OF THE FIRING SQUAD

SYNCHRONIZATION PROBLEM

If the solution to the firing squad problem were found to be relevant

to physical systems, there are several extensions of the problem that

would be of interest. Relevant systems might be repeater stations

spaced between stars or biological cells in the process of differentiation

or heart muscles in the process of contraction.

In one extension of the problem, the process could start from any

module, not just from the end modules. This extension and an indicated

solution was suggested by R. Moore of the Department of Mathematics,

U. C, Berkeley. The solution is based upon finding the mirror image

of the initially triggered module, using these two modules (the triggered

j and image modules) to find the center of the row by bisection, then

using the previously described procedure to get to the firing state.

4 There are several ways to find the image module. (See Fig. 5).

While Fig. 6 is only a sketched example of the solution, Professor

Moore's observation reduces the remainder of the problem to details.

A second extension of the firing squad problem would be to find a

reliable solution in the presence of logical errors in computation. That
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the array

Fig. 5. The initial signal pattern for an
arbitrary starting position.
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is, devise an error-correcting scheme that can reconstruct lost bi

secting signals and eliminate extraneous states, when each module has

a probability p of computing the next state incorrectly.

A third extension of the firing squad problem would be a solution for

systems where the modules are not synchronous but have slightly differ

ent time intervals between state transitions. In this extension the bi

secting signals would propagate erratically down their respective rows

and might eventually cause some portions of the array to go to the

firing state before others. To make the problem explicit, assume that

the new state of a module depends upon the states of its neighbors at its

time of transition. (If a neighbor is in the process of transition, use

that neighbor's prior state.) It would be useful to say something about

how extensive the error-correcting code needs to be as a function of

the maximum difference in transition times of the modules. A modifi

cation of the problem would be to bound the maximum difference in

transition times between any two adjacent modules.

VI. CONCLUSION

The Firing Squad Synchronization problem is concerned with

simultaneously activating all modules of a synchronous, linear, modular

array of arbitrary length. Information is transferred only between im

mediate neighbors. The "start the process" signal may be introduced

to only one module. A solution to the Firing Squad Synchronization

problem is presented which requires only eight states per module. Due

to the general nature of the problem, the solution is expected to offer

insight into the communication processes during mitosis and differen

tiation in living cells and have application for such devices as signal

repeaters between stars. Several extensions of the firing squad problem

are suggested which are of practical as well as theoretical interest.

Their intent is to remove the requirements on the modules of synchrony

and error-free computation of states.
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