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ABSTRACT

This paper considers some aspects of two dimensional random

fields with a view toward application in representation of images. In

particular, we call attention to two possible properties which have

important implications in terms of representations. They are: (a)

Second-order homogeneity with respect to some groups of transformation,

(b) Markovian property. The most interesting results of this paper are

those concerning Gaussian random fields which are both homogeneous

and Markov.
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1. Introduction

Two-Dimensional Random Fields

and Representation of Images

In an increasing number of information processing situations,

one encounters data which are most naturally presented in two-

dimensional form. In such situations time series or stochastic pro

cesses with a one-dimensional time parameter are no longer suitable

abstractions for the signals and noise that are encountered. The suit

able framework for studying the random phenomena arising in these

image processing problems is the theory of random function with a

multidimensional parameter spaces, i.e. , random fields. The purpose

of this paper is two-fold; first, to call attention to certain known results

which may have important implications in image representations, and

secondly, to present some new results concerning two-dimensional

random fields. The most interesting of these results concern the

characterization of Markovian random fields.

Consider a family of complex-valued random variables

2
{£ (w), zeE } defined on some fixed but unspecified probability space,

z

2
Here, the parameter space E is the Euclidean plane. In this paper



we shall deal only with second-order random fields, i.e. , finite first

and second moments, and assume the mean to be zero hereafter.

Furthermore, we suppose that the convariance function R(z, z ) is
<

2 2
continuous on E X E . Then, there is a version of £ which is

z

separable, Lebesque measurable, and locally integrable, and we assume

that such a version is always chosen.

In one dimension a zero-mean stochastic process x(t) is said

to be wide-sense stationary, if its covariance function is a function of

tonly the time difference, i. e., Ex(t)x(s) = R(t - s). By Bochner's

theorem R(t) can always be written as

R(t) = f eiVrF(d\) (1)
J-oo

where F(#) is bounded and non-decreasing. The sample functions of

x(t) also admit a spectral representation

x(t) = f emx(dM (2)
J-oo

where x(') is a random measure (completely additive random set function)

with

Ex(A)5(A') = F(Ar\A'). (3)

The integral in (2) is a stochastic integral to be interpreted in a

Complex conjugate is denoted by an overbar.
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standard manner, e. g. , as the limit in quadratic mean of a sequence arising

from approximating e by simple functions.

Recognizing that the spectral representation formulas arise from

the translation-invariance property of a stationary covariance function,

we see immediately that these formulas can be generalized in a number of

different ways for a random field with a higher dimensional parameter

space. For a two-dimensional random field the most straightforward

generalizations of the spectral representation theorems are asso

ciated with invariance of the covariance function under translation.

The resulting formulas are precisely the same as equations (1) through

2
(3), except that the integrals are now over E . The mure interesting

results, and possibly more useful, are those associated with a

rotational symmetry, especially when it is coupled with additional

invariance properties. The remark about being possibly more useful is

in part justified by the fact that optical systems, where some applications

of the present theory should be useful, frequently exhibit a rotational

symmetry.

For one-dimensional stochastic processes one of the most

fruitful ideas is that of a Markov process. There is not only a rich

theory associated with Markov processes but the Markovian properties

also play an important role in applications of stochastic processes.

The idea of Markovianess can also be generalized to two dimensions

(and higher dimensions). The generalization is a rather subtle one due
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to Levy. From the point of view of applications a study of two-dimensional

random fields is motivated by the same considerations as in one-dimension.

Because of its simplicity, a Markovian model (of some degree) is always

to be preferred, provided that such a model is compatible with basic

requirements of the problem, e. g., continuity. Intuitively, the

Markovian property is related to memory. Hence, a Markovian model

has an additional advantage in the sense that storage requirements can

be controlled. Our results on two-dimensional Markovian random

fields are concerned with relating the Markovian character of a Gaussian

random field to its second-order properties. Some.of these results are

surprising. For example, with some obvious and natural qualifications,,

the following statement is true: "There is no continuous Gaussian random

field of two dimensions (or higher dimension) which is both homogeneous

(invariant with respect to all rigid body motions) and Markov (degree 1). "

2. Isotropic Random Fields

2
Let {£ (w), zeE } be a second order random field (with zero

z

mean as usual). It is said to be isotropic, if its covariance function is

invariant under all rotations about a fixed point. This can be made

more explicit by choosing a polar coordinate system {r,<p) with the

fixed point of the rotations as the origin. Isotropy then means

E5(r,?)f(r0,^) =EUr,^+6)f(r0^0 +6) (4)
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for all 6 . It is always assumed that angular additions are modulo 2tt.

By setting 6 = - <pn in (4) it becomes obvious that the covariance function

depends only on <p - <p , i. e.,

E£(r,<p)f (rQ, <pQ) =R(r, rQ, <p-<pQ) (5)

Equation (5) immediately implies that the Fourier coefficients

n(r) =i- j" e-in,P|(r, V)dP (6)

are orthogonal, in fact,

,2-nr

'0
^n^m^ =6mn2^I *<*> V ^ "^ ^ (7)

The orthogonality of the Fourier coefficients suggests that

the Fourier series representation for £ (r, <P) i-s an advantageous one

i. e.

oo
q.m. _

l(r, <?) = > em,,|n(r) (8)
-00

with orthogonal coefficients.

Suppose now that the covariance function of £ is invariant

under translation as well as rotation, then clearly the covariance

function can only depend on the Euclidean distance, i. e. ,

-5-



Efi.g =R(|z-z0|) (9)

or

E|(r, <p) (ro'̂ =R(N'r2+ro-2rrocos{<i£,"<po) J (9)

In this case it is well known [1] that R(') admits a spectral represent

ation of the form

R(r) = \ J (\r)F(dM (10)

where J (•) is the Bessel function and F(.) is bounded and non-

decreasing. The sample functions of £ also admit a spectral

representation

oo
q.m.-_^ . pooe<r.d = £ em* J JB(M6n{dM (ID

n=-oo

where § (•) is a completely additive random set function with
n

E£ (A)| (A') =6 f F(dX) (I2)
'm* ' *n mn J

AHA'

By comparing (8) and (11) we have

p00
£ (r) = JJMfjdM (13)

n Jrt n n
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with

>oo

El (r)f (r ) =8 f J (\r)J (\r )F(d\) (14)
n mi U mn j n n u

Of course, (14) can also be obtained from (1 0) by an expansion of

J0(\|z-z0|).

Homogeneous Random Fields

2
A second-order random field {£ , zeE } is said to be homo-

z

geneous if its covariance function is invariant under all Euclidean

motions. We have seen that such random fields have the feature that

their second order properties are characterizable in terms of a single

one-dimens ional spectral distribution. In this sense, a homogeneous

random field is no more complicated than a one-dimens ional stationary

process. Of course, random fields which are not homogeneous but

easily transformable into homogeneous fields also have this property.

This question arises as whether there are other classes of random fields

in two dimensions which can be so simply described. There is indeed

a natural generalization of the notion "homogeneous". Under this

generalization formulas (9) through (14) will appear as special cases.

These formulas were given by Yaglom [1], who generalized the concept

much further than we will here.

Our definition of a homogeneous random field is not entirely standard.

In the literature homogeneity often refers to just translation-invar iance.
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Consider a two-dimensional space V- in which a Riemannian

metric is defined. Such a metric is given by a symmetric quadratic

form (first fundamental form)

2
ds = g..(x,, x )dx. dx. (Sum over repeated indices)

lj 1 £ 1 J
(15)

which relates the differential arc length ds to a given coordinate system.

The element of length is independent of the coordinate system, hence so

are all properties derivable from it. In particular the metric defines

at every point of V_ a scalar function, called the Gaussian curvature,

which is independent of the coordinate system. Two-dimensional spaces

2
of constant Gaussian curvature include the Euclidean plane E as a

special case (zero Gaussian curvature), and constitute a particularly

suitable generalization of the Euclidean plane for the purpose of studying

two-dimensional isotropic random fields.

For spaces with constant Gaussian curvature, (15) takes on a

simple form in terms of a polar coordinate system [r$<p) with respect

to a fixed point (origin)

ds = dr + g (r) d<p , (16)

The Gaussian curvature K is given by

K-=-l£i^g(r) <17>
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with the requirement that g(0) = 0 and K be a constant, there are

basically only three solutions to (17), namely,

g(r) = r, sinh r, sin r (18)

representing spaces with Gaussian curvature 0, -1, +1 respectively.

The first case g(r) = r is clearly the Euclidean plane. The third case

g(r) = sin r is geometrically equivalent to a sphere S_ in 3-space.

The distance between two points (r , <p ) and (r, <p) can be

obtained by integrating ds along a geodesic connecting the two points.

Since rotation (r, <p) -*• (r, {<p + 6) mod2ir) preserves the metric, the

distance must be a periodic function of (<p ~^n)» For the three cases

corresponding to (18), we have

r

d(r,rQ, <p-<pQ) ={

/ 2 2
Nr + r . - 2r rAcos (<p - <pn)

0 0 . 0

cosh [coshr coshr - cos(<p - <p ) sinhr sinhr ]

cos [cos r cos r + cos(^» -<p ) sinr sinr ]

(19)

Consider now a random field {§ , ze V_} with a covariance function
Z £>

which is invariant under rotation, we call such fields isotropic thus

generalizing our earlier definition. For all isotropic random fields

formulas (4) through (8) require no change. It is well known [2] that

a space V? with constant Gaussian curvature admits a 3-parameter

-9-



group G, of transformations which preserves all metrical properties

and acts transitively on the space, i. e. , takes any point into any other

point. We call a random field £ with parameter space V"2 homogeneous,

if its covariance function is invariant under all transformations of G_.

Rotations being a subgroup of G^, a homogeneous random field is

necessarily isotropic.

Since G~ acts transitively on V-, there exists a transformation

which takes (rn, <p ) into the origin and simultaneously (r, <p) into

(d(r, r , <p - (p ), 0). Therefore, the covariance function of a homogeneous

random field must be a function of the distance only, i. e. ,

E£(r, <p) I (rQ, <pQ) = R(d(r, rQ, <p - ?>0)) (20)

It is clear that (20) is a generalization of (<?)• Corresponding to (10)

and (11), we now have

00

R(r) = f
'0

and

^0(r,v)F(dv) (21)

00
q.m

i(r,9) = 2, e J Vr,v)Udv)
n= -oo A

n

where F(») and £ {• ) satisfy the same conditions as in 10) and (11).
n

-10-
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The functions i^ (*, v) are eigenfunctions, and A the spectrum, of

1 d

g(r) dr g(r)
di}i (r,v)

n

dr

n7 4Mr,v) =
en

g (r)

-v ^ (r,v)
n

(23)

For the three cases corresponding to g(r) = r, sinh r, sin r, (21) and

(22) can be written explicitly as

oo

I JQ(\r)F(dM

R(r) =<J PMv)(coshr)F(dv), Mv) =- j +«Vj -v'

00

I Fi pi <cos r)
1 = 0

oo

{{r.d = £•**<
n=-oo

f J (Xr)| (dX)J0 n n

00

I Yw ,Pw .(coshr) I (dv)
' Mv) Mv) n

00

Vi Pi (C°S r) ^
i>Tn|

V. —
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The Legendre functions P^(x) are defined by the generating function

oo

[x+(x* - l)1/2cos 0]X = 2r(X+l) Y C°Sn9 P>) (26)
^ninr(X +n +l)
n=0

and the normalizing constants y are given by

n _ f n r(\-n+l)
YX. " ^ r(X+n+l)

1/2
(27)

It is clear from (24) that every homogeneous random field is

characterized (up to second order properties) by a one-dimensional

spectral distribution. They form a natural generalization of wide-sense

stationary processes, and may be said to be the simplest random fields

2
in two dimensions. By suitable mapping V_-*• E , a large class of

2
isotropic random fields on E can be generated.

Gauss-Markov Random Fields

For a two-dimensional space V_ of constant curvature with a

metric given by (12), consider a smooth simply connected closed curve

BG separating V? into a bounded region G which includes the origin,

and G . Using the language of time series, we shall call 3G the present,

G the past and G the future. Following Levy [3], we shall call a real

random field {| , zc V } Markovian of degree p + 1, if an approximation
Z i-

§ to £ in a neighborhood of 8G can be found so that
z z
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|£ -e I = o(6P) 6 =distance (z, BG) (28)
z z

and given § , the past {£ , zeG } and the future {£ , zcG } are
—— z z z

independent. If § has continuous sample functions, then the definition

of a simple Markovian field (degree 1) reduces to the usual definition:

(Future independent of Past|Present). We note that a sufficient condition

for sample continuity is that for some a > 0 [See e.g. 4, p. 519}

1+P,
)»

P > 0 (29)

E|| -I T = 0(61+P), 6=d(z,z )
z zQ u

Suppose § is Gaussian with zero mean. Then, whether § is Markovian

or not must be determinable by examining its covariance function.

Furthermore, suppose that g is isotropic, then it must be possible to relate
z

the Markovian character of £ to the properties of its Fourier coefficients

{£ (r)}. Since the Fourier coefficients are independent Gaussian processes

in one-dimension, this simplifies its analysis considerably. The results

obtained here are in this spirit.

Theorem 1. Let £(r,<p) be a real zero-mean, Gaussian, isotropic sample

continuous, and Markov (degree 1). Then

*-<r> - 2*(
n (r) n = 0, 1, 2, •••

- n >s

r > 0

-13-



constitute a family of independent zero-mean Gaussian Markov processes

And it follows as a simple corollary that

R(r,r0,<p-?0) = E§(r,<p)£(r0,<y>0)

00

= ) cosn(?-<pA)f (min(r,r ))h (max(r,r )) (31)
/ j U n u n u

n=0

Proof: That {§ (r)} {ti (r)} are Gaussian zero-mean is obvious.

Independence follows from

E*n(r)em(V = E\(r,V(r0)

,2tt

'0

p2ir
= 8 \ R(r,rn,<p)e~m</,d?. (32)

mn J_ 0

Eim{r)\{r0] = °- (33)

To prove that they are Markovian, consider r > c > r . Then clearly

£ (r) and £ (rA) are independent given {£(c,<p)f 0 < <p < 2ir}. But given
n n 0 —

{£(c,9>), 0 < ?> < 2tr}. is the same as given {£ (c), ti (c), all m} . For

a fixed n the joint distribution of £ (r) and £ (r ) given {£ (c), rt (c),

all m} must be the same as that given § (c), because of (32) and (33).

Hence, £ (r) and £ (r ) are independent given £ (c). The same proof
n n 0 n

applies to ti (r).

The corollary is easily proved by iij.i.ic: that

-14-



00

R(r, TQ><P-<PQ) = / cosn(<p-<pQ)Rn(r, rQ)
n=0

and

Rn(r,r0} = Egn(r)en(r0) =E\{l) \{TQ] (excePt n=°>

f (min(r,r )h (max(r,r )).
n U n U

(34)

(35)

must have the product form because £ (r) and r\ (r) are Gauss-Markov

[5]. ^

Equation (31) provides a simple necessary condition for an

isotropic Gaussian random field to be Markovian. It is not known

whether it is also sufficient. It probably is not. However, a simple

sufficient condition can be stated as follows:

Theorem 2. Let f (r) and h (r) satisfy
n n

*A<-> =ife £ g(r)
dr

n

g2(r) fn(r> K(r)fn(r)

Ah (r) = K(r)h (r)
n n n

where K(r) is bounded and nonnegative,

(36)

K(r) > 0 can probably be relaxed. It is imposed here to insure that

the exterior Dirichlet problem associated with (38) is always well posed.
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Suppose that R (r, r ) = f (max(r,r ) h (min(r,r )) are

non-negative definite and the sum

oo

I
n=0

f (r)h (r)
n n

converges uniformly on every compact set in [0,oo). Then

oo

R(r,r , <p-<P0) = \ cosn (^-^Q)fn(max(r, rQ))h2(min(r, rQ)) (37)
n=0

is the covariance function of an isotropic Gauss-Markov random field.

Proof: For an arbitrary smooth 9G, we need to prove that § , ze G

and £ , z €G are independent given £ , z€9G, or what is the same
z 0 z

thing, that Eg {£ - E(g \£ ,, z'€9G)} = 0. Now, let (r ,<p ) be a
z _ z z z u u

0

fixed point in G". Then, R(r,r ,«p-<p ) as a function of (r,«p) satisfies

_1 B_
g(r) 8r

g(r)
8R

Br

82R
2 2

g (r) B<p
(r,^)eG

= K(r)R (38)

Treating (38) as an exterior Dirichlet problem with boundary conditions

given on 8G, we see that R can be written as

-16-



R(r,r ,?-<?) = f H(r,p|r(s),<p(s))R(r(s), r , <p{s) -<pQ)ds
U U J8G

Hence

0|_ Z" ^9GZni z
H(z|z(s)) ez(g)ds = 0

which completes the proof, if we identify

j* H(«|»(«))e a» =E(eziiz,. z'̂ g)
8G

(r,<p)eG

(r0,^)eG

(39)

(40)

It may be well at this point to consider an example of Gauss-

Markov processes to be sure that the class is not vacuous. Consider

oo

R(r,V„)= Y H£in|
0 ^(n+ir

n=0 *

in

Since r are solutions of

min(rQ,r)'
max(r ,r)^

1 A ( df \ 2i JL( r E ) _ E_ f = o
r dr I dr J 2 n

min (r
n

n

and
oiiH

max(r , r)
is easily shown to be

-17-
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of Theorem 2 are satisfied. The random field £(r,<p) satisfying (41)

can be represented as

oo

Z(r,<p) = £n + ) — cosik?' \ (r')n" x (dr1)
n=l

+ sin

A»r . »~ I

-s/2nwhere a =—rr and {x (Oily (*')} are independent standard
n n+1 n n

Brownian

motions, and § is a Gaussian random variable with zero-mean and

unit variance and independent of x (•) and y (•). It is easy to see that
n n

£{t,<p) cannot be homogeneous for this case because

V-'o' =
(n + 1)

do not satisfy (11)

min(r,rQ)
max(r, rQ)

n

Homogeneous Gauss-Markov Fields

(44)

For a homogeneous random field the Fourier coefficients are

interelated through (22). For the processes {£ (r)} {^(r)} defined by

(30) we have

E£n(r)gn(r0) = EVl-)lln(r0) -I >\> (r, v)^ (rn, v)F(dv)
n n u

n

-18-
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where F(') is bounded nondecreasing and independent of n . It follows

that once E£ (r) §n(rJ is given, the covariance functions for the re

maining components are already specified.. This suggests that we can

sharpen the conditions for being Markovian considerably. Indeed, the

conditions of Theorem 2, suitably modified become both necessary and

sufficient. Specifically, we have the following:

Remark: Let £{r,<p) be a real homogeneous Gaussian random field with

continuous sample functions. In order for §(r,<p) to be Markov, it is both

necessary and sufficient that its covariance function satisfies

, , dR(r)
g(r)(r) dr Lg(r) dr dr

= KR(r) , r > 0 (46)

where K is a finite constant.

At the very outset we should note that the content of this remark

is somewhat empty in the sense that all the cases that satisfy the conditions

of this remark are rather trivial. However, it is a rather remarkable

assertion in another sense, because it states that there are no Gauss-

Markov fields in two-dimens ions (or any greater dimensions) which are

also homogeneous. A sketch of the proof will now be given.

Proof. We note from (35) and (45) that

E|0(r)|0(r0) =f0(r0)h0(r) = f +0(r.v)VV v) F(dv)
Ao

r > rQ (47)
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For the three cases under consideration A = [0,oo) or {0,1, 2, • • • },

c.f. (24). Consider the continuous spectrum case, A = [0,oo), the

discrete case requiring only trivial modifications in the arguments. Now,

letfij (0, T), £J (T,oo) denote subspaces of the Schwartz space JO with

supports contained in (0, T) and (T,oo) respectively. Then,

|00 s»00

J S(r0)f0(r0)<Pl(r0)dr0 J g<r)h0(r)*2(r)dr

|00 r%OQ

J g(rQ) fQ (rQ) 9l (rQ) drQ J g(r) hQ (r) <p£ (r) dr (48)

=J $1(v)£2(v>F<dv>' ^€^3(0,T)

<P2^(Tico)

where

?(v) = J g(r)i}i0(r, v)<?(r)dr (49)

Now, let A denote the differential operator

A = — —
g(r) dr drJ*(*> JZ (50)

then since A ^nU\. ) = - vty {r,v), we ha-

-20-



»00 a*00

Jg(r)f0(r)A^(r)dr j g(r)hQ (r) ^ (r) dr

.00 ,-tOO

=J g(r)f0(r)^(r)dr J g(r)hQ (r) A<pz (r) dr

=- J vF(dv)$1(v)$2(v) pl€£>(0,T)

<p2 €|j(T,oo)

(51)

or

100 /-kOO

J g(r)fo(r)A^(r)dr J g(r)hQ(r)A 9z^)di
(52)

.00 /-»00

J gCr^^^dr J g(r)h0(r)<?>2(r)dr
'0 "0

Since (52) is to hold for arbitrary <p €$J (0, T), p €J[J (T,co) we must

have both sides equal to a constant. Hence

|00 >^ooj"g(r)f0(r)A ^(r)dr =KJg(r)fQ(r)^(r)dr ^ 6jE) (0, T)
(53)

Jg(r)h0(r)A<p2(r)dr =K J g(r)h0(r)^2(r)dr <p2<ifJ(T,co)
'0 "0

Since R(r) = f (0)h (r) and T in (53) is arbitrary, we have
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fg(r)R(r)A?(r)dr =K \ g(r)R(r)<p(r)dr, <P *<P(0,oo) (54)

or

- \ vF(dv)£(v)dv = K I F(dv)?(v)
J0 J0

But it follows by a standard approximation argument that

pOO ^00
-I vF(dv)tn(r,v) =K I F(dv)^ (r,v), (55)

J0 J0

whence it follows that AR(r), r > 0, not only exists but is equal to KR(r)

proving that (46) is necessary. To prove sufficiency we can make use

of Theorem 2. But it is easier to exhaust all solutions of (46), and show

that if a solution of (46) is the covariance function of a Gaussian random

field satisfying the stated conditions, then the random field in question

must be Markov. Now, consider first K > 0, then for r » 0 either

K 2
R(r) ~ in r which violates the continuity condition, or R(r) « R(0)[1 +— r ]

which cannot be a covariance function. For K= 0, the only solution

bounded at the origin is a constant, for which £{t,<p) would be merely

a single random variable. For K < 0, the only solutions bounded at

the origin are of the form

R(r) =Ai|i0(r, |K|), (56)

-22-



for which F(v) is simply a step at v= |k|, and £(r,<p) can be written

as

oo

6(r,rt =^^e^VrjKl) (57)
-00

Equation (57) indicates that if £(r,<p) is homogeneous and Gauss-Markov,

then its Fourier components take on very special forms

en(r,o>) =e^^trjKl) (58)

which represent a rather degenerate situation. The degeneracy is

clearly revealed by the fact that £ (r, <p) is perfectly predictable by

its value on any nondegenerate closed contour.

Multiple Gauss-Markov Fields

Since in a very real sense all homogeneous Gauss-Markov

fields (of degree 1) are degenerate cases, homogeneous Markovian

fields of degree more than one assume even greater interest. We

begin with an example. Consider a real homogeneous Gaussian random

field £ with zero mean, and a covariance function of the form
z

R(lz-Znl) =h f Sn J0(M*-»J)dX. (59)
0 J0 (l+\) ° °
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It is easy to show that

(V2-l)2R(|z-z0|) =6(z-zQ) . (60)

Heuristically, this means that £ should satisfy

(v2-i)lz =nz (")

where Etj tj = 6(z -z ), hence n is a two-dimensional white
Z Z/% U z

noise. However, as it stands, (61) has no meaning since § is not
z

even once differentiable. Even though (61) is formal, its parallel with

the Langevin equation in the one-dimens ional case is clear. Somehow

one suspects that § is indeed Markovian of degree 2. To show this is

not too difficult. The main idea here is due to McKean [ 6 ]. Let 9D

2 - +
be a smooth curve separating R into D and D . Consider the following

boundary value problem

(V2-1)2G ,(z) = 6(z-z«), z, z'€D+ (62)

G ,(z) = 9 G ,(z) = 0, z€9D, z'€D+ (63)
z' n z1

Because of (63) and the continuity of % , we can write
z

!i" i+h. =1+ *z(v2-1)2Gz (z)dz (64)

-24-



If I had continuous second partials, (which it does not), we would be
z

able to write

i= \>+\
(z)(V -1)4 dz

f [U F (z) -8£ F (z)] di (65)J8D z n zx n z zx

where F (z) = (V -1)G (z). Although (65) is completely formal, we
zi zi

can now write using (61)

1=V Fzi
(z)u(dz) + j^[£ 9 F (z) - F (7)9 6 ] di (66)

9D Lbz n z v ' z l ' n*zJ z x

where u(») is a Gaussian random measure with

Efi(A)fi(A') = area(AflA')

Equation (66) now admits a precise interpretation. First of all, it is

easy to show that

I , F (z) dz < oo
, + z
D 1

hence the first integral is well defined. Secondly, we can interpret

I F (z)9 | dz
9D Zl n Z

_9_
dt

\ F (z)| , dz
J__ z. l ' *z +tn
'9D 1
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t=0

(67)

(68)

(69)



The Markovian character of £ is immediately deducible from (65) or
z

(66). Specifically, for any z eD ,

E £ f F (z)(V-l)g dz = f F (z)(V2-l)R(|z-z |) dz
z0 "D 1 JD+ Zl °

= C Gz (z)(V2-l)R(|z-z0|) dz =0, (70)

In other words

[vtE £ \ £ - \ [5 9 F (z) - F (z) 9 £ ] di
ZoLZl J9D Z n Zl Zl * 2 Z

= 0

Z € D

zQ€ D" (71)

The preceding example suggests two directions of investigations,

First, analogous to the one dimensional case, it should be possible to

prove that for a homogeneous (Euclidean motion) Gaussian random field

to be Markov of degree p, its covariance function must satisfy the

following:

either R( |z -zQ|) = £ ay JQ (\J z-zQ|) (72)
v=l

poo
or R(|z-z0|) = J -\«|»(MJ0(X|z-z0|)dX (73)

'0
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m

I**•kx
with 4>(M = -^ (74)

P

A x2kPfcX
k=0

Subject to mild additional constraints these conditions should also be

sufficient. A second direction of interest is suggested by (61). It

should be possible to generalize (61) to include a large class of

stochastic partial differential equations. The suitable framework

should again be a suitable definition of a stochastic integral. These

problems will be investigated in a separate paper.
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