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1. INTRODUCTION

Starting with a general formulation of a differential system (DS), two

other system representations are derived, and the relationships between the

three represenations are investigated. The first, called a generalized

dynamical system (GDS), studied by Roxin [1, 2, 3], is defined via the

"attainability function" of the DS. Following Warga [4], a relaxed differen

tial system (RDS) is defined by augmenting the set of "permissible" velocities

of the DS. It is shown that the set of solutions of the derived GDS and the set

of solutions of the derived RDS coincide with the closure of the set of trajec

tories of the DS in the topology of uniform convergence over finite intervals.

In a less general and somewhat different setting, Warga [4], has obtained

this relationship between a DS and its derived RDS. The most important dif

ference between Warga's formulation and this one is the replacement of con

tinuity with respect to the time parameter (required by Warga) by local

integrability.

2. NOTATIONS AND DEFINITIONS

2.1. If x is a vector in n-dimensional real Euclidean space R , the norm

of x is denoted by
n \l/2
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2.2. ^I*a> S ] denotes the real Banach space of all continuous functions

x: [t , t_] -*• R where the norm of x is given by

||x|| = max |x(t)| .
trt^t<t,

0 1

2.3. If A is a subset of a topological space, A denotes its closure.

2.4. If x € R and A is a subset of R , then

and for £ > 0

p(A, x) =p(x, A) =infj|x-y| yeA> ;

S(A) =|x€ Rn p(x, A) <£j •

3. THE DIFFERENTIAL SYSTEM (DS)

The differential system (DS) under consideration is described by the

vector differential equation

x(t) =ffx(t), t, u(t)J

where the following conditions hold:

i „

(i) t e R , x(t) € R and u(t) € U for each t, where U is a fixed,

m

bounded, nonempty subset of R .

(ii) For each fixed t, f is continuous in (x, u) for all (x, u) in

RnXRm.
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(iii) There is a locally integrable function k, such that for every u

in U and x, x' in R ,

|f(x, t, u) - f(x', t, u) | < k(t) |x - x' | .

(iv) There are a locally integrable function I and positive numbers

M and N such that for every x in R and u € U ,

|f(x, t, u)| < &(t) (M + N|x|) .

Definition 3.1. A function u : [t , t ] -> R is called an admissible

control, if it is measurable, and if u(t) e U for each t e [t , t ] .

Definition 3.2. A function x: [t , t ] -*• R is called a trajectory of the

DS, if there exists an admissible control u, such that x is absolutely con

tinuous and x(t) = f(x(t), t, u(t)) a. e. in [t , t ]. The trajectory is said to

start at (x(t ), t ) and end at (x(t ), t ) .

Definition 3.3. (i) For x in R , t , t in R with t - t , let

T(x , t , t ) be the set of those vectors x in R for which there exists a

trajectory of the DS starting at (x , t ) and ending at (x, t ). In other

words, T(x , t , t ) is the set of states attainable at time t by the DS start

ing at (x , t ) and using an admissible control.

(ii) Let Q(xn, t , t ) = T(x , t , t ) . Q is called the attainability function

of the generalized dynamical system (GDS), derived from the DS. (See

Section 5)
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Definition 3.4. The set of all trajectories defined on \t . t, 1 and
L 0 1

starting at (x , t ) is denoted by ^"(x, t , t ). cT(^Q> t , t ) is considered

as a subset of C[t , t ] .

•n 1
Lemma 3.1. Let x e R ; t , t € R with t - t • Then

U (t(x t t)

is a bounded subset of R , and hence u (x , t , t ) is a bounded subset of

C[V tx].

Proof. Let t € [t , t ]. Each point of T(x , t , t) is given by

x(t) =xQ +j ffx(s), s, u(s)j ds

for some admissible control u. From condition (iv) of the DS we have

X r*t

x(t)| < |x | + \ M 4(s) ds + \ N i(s) |x(s)| ds

0 0

so that by Gronwall's lemma [ 5, p. 11]

|x(t)| <|xQ| exp f N&(s) ds +f exp f
Vo / *o Vs
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Clearly <p(x , t , t) is a continuous monotonic function of t and is independ

ent of the admissible control u so that the result follows.

Lemma 3.2. (i) 3* (x , t , t ) is an equicontinuous subset of

[t0, tj).

(ii) T(x , t , t ) is jointly continuous in all its arguments, i.e., given

n 1 c
x in R ; t , t in R with t ^ t ; and fc, > 0; there is a 6 > 0 such that if

K " xo' <6* 1*0 " tol K6' 1*1 "*!' <6' and vo " tii then

and

T(x0, t(), t1)CS£[T(xJ)( tj,, t»)].

T(X0' 'o' ^CS^T^, tQ, t:)] .

Proof. Consider two trajectories x and x' starting at (x_, t ) and

(x1, t'), respectively, and determined by the same admissible control u

defined for t £ min {t , t'} . Thus,

x(t) =xQ +j f(x(s), s, u(s)jds ,

whereas

=xo+Cx'(t') =x« + \ fx'(s), s, u(s) ds .
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Let

Ax(t, t') = |x(t) -x'(t')| < |x(t) -x(t')| + |x(t») -x«(t")|

= Ax^t, t*) + Ax2(t') . (3.1)

(i): To prove (i), let B be a finite bound of cf (x , t , t ). Such a bound

exists by Lemma 3.1. Then for t £ t ^ t1 - t. ,

Axx(t, t') =|x(t) -x(t')| <J |ffx(s), s, u(s)j|ds

•r (M + NB) j?(s) ds . (3.2)
t

since ft is locally integrable, given £ > 0, there is a 6] > 0 such that if

11 - t1 | < 6 then

\ (M +NB) &(s) ds < -^ . (3.3)

Since the admissible control u was arbitrary, we see from (3.2) and (3.3)

that, for every x in <^"(x , t , t^) and for every t, tJ in [tQ, t^] with

|t -t'| <61,

and (i) is proved.

C

Axx(t, t*)| < -f- . (3.4)
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To prove (ii), consider

t»

Ax2(tp =|x(t») -x'(tj)| <Ixq-x^I +|| ffx(s), s, u(s)J ds

- j ffx'(s), s, u(s)Jds|

- lxo" xqI +I lfr(s)»Sf u(s))" f(x'(s)' s> u(s)) ds

+J |ffx(s), s, u(s)J|ds
*0

t' VQ
< |x. - x' | + \ k(s)|x(s) - x'(s)|ds + \ (M + NB) i(s) ds .

0 0 xJ,t \),

Let

i c1|3 = jElexp J k(s) ds
*0

,-1

Let 6 > 0 be such that if |t - t' | < 62, then

r° 1\ (M + NB) l{s) ds < T|3 .

Then if |t - t' | < 62 and |xQ - x^ | < (1/2) |3 we have, from (3.5),

Ax2(t«) < (3 +J k(s) |x(s) -x'(s)|ds .

-7-
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By Gronwall's lemma [5, p. 11],

k(s)ds| < ~£ . (3.6)

Substituting (3.6) and (3.4) into (3.1), we see that for 6 = min{6., 6-, —p},
1 ^ 2

Axfk.* *{) - £ and hence (ii) is proved.

4. THE GENERALIZED DYNAMICAL SYSTEM (GDS)

Following Roxin [3], we define a GDS by an "attainability function"

n 1

F(x , t , t), which for every x in R ; t , t in R with t - t , represents

the set of states attainable by the system at time t , starting in state x at

time t . The attainability function F satisfies the following axioms:

n 1
4.A1. For x in R ; t , t in R with t - t » F(x , t , t ) is a non-

, . _ n
empty, compact subset of R .

n 14.A2. For xQ in R and tQ in R, F(xQ, tQ, tQ) ={xQ} .

4.A3. F(x , t , t ) is jointly continuous in all its arguments, i.e.,

n 1 c
given x„in R ; t„, t, in R with t St; and \\> 0; there is a 6 > 0 such
B 0 0 1 0 1

that if |xQ - x^ | < 5, |tQ - tjj | <6, |tx - t« | <6, and tjj St|, then

FK' 4o' li;
and

F V V *i,
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1
4.A4. For x in R ; t , t , t2 in R with t < t < t

F(v v v = P, ut t, F(x> v y •

Definition 4.1. A function x : [t , t.] -*• R is called a motion of the

GDS if for t < x < Tl ^ tn
0 0 11

Mr^Q FWT0)» T0» txJ .

The motion is said to start at ( x(t ), t 1 and end at ( x(t ), t 1 .

Remark 4.1. From axiom 4.A4 it is clear that every motion is a con

tinuous function of time.

Definition 4.2. The set of motions of the GDS defined on [t , t ] and

starting at (xQ, tQ) is denoted by Jfo(xQ, tQ, t^. Jfo(xQt tQ, t^ is considered

as a subset of C[t , t. ].

The following lemma is proved in Roxin [3].

Lemma 4.1. Jfo (x , t , t ) is a closed subset of C [t , t ].

5. THE DERIVED GDS

The function Q of Definition 3. 3(ii) is used to derive a GDS from the

given DS.
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Theorem 5.1. The function Q of Definition 3.3(ii) satisfies the axioms

4.A1 - 4.A4 of an attainability function for a GDS.

Proof. Conditions (i) - (iv) of Section 3 guarantee the existence of a

solution to the DS for every initial condition (x , t ) and every admissible

control. Therefore T(x , t , t ) is nonempty. By Lemma 3.1, T(x , t , t )

is bounded so that Q(xn, t , t ) is nonempty and compact. Hence Q satisfies

4.A1.

For a DS it is evident that T(x , t , t ) = {x } so that

Q(x0, t0, tQ) ={x0} .

By Lemma 3.2, T is jointly continuous in all its arguments. Since

Q is the closure of T, it follows that Q is also jointly continuous and hence

satisfies 4.A3.

From the definition of the function T it is clear that for x in R ,

1
and t , t , t In R with t < t < t

T<X0'V V ^T^t^) T<X'V *2>- {5A)

By Lemma 3.2, T satisfies the hypothesis of Lemma Al of the appendix, so

that

; (J T(x, tr tj f =(J_ T(x, tv t2) .

(5.2)

x€T(x0,t(),t1) J xeTtx^t^t^

-10-



Then from (5.2) and Definition 3.3(H)

X€Q(XQ, tQ, tx)

This completes the proof of Theorem 5.1,

6. RELATIONSHIP BETWEEN MOTIONS AND TRAJECTORIES

Let a, b be fixed numbers with a S b and x a fixed element of R ;

let I = [a, b]; let 3T&=}f&(x , a, b) be the set of motions of the derived GDS

defined on [a, b] and starting at (x , a); and let o -q (x , a, b).

Theorem 6.1. 3Tfr= a

Proof. From the definitions of a trajectory and a motion, and from

the definitions of Q, it is evident that 3T& D a • BY Lemma 4.1 3T6 is

closed, so that

3ft= -JfoD ^. (6.1)

In order to show inclusion in the converse direction it will be demon

strated that for every motion x in }f&, there is a trajectory y€ cT

arbitrarily close to x.

Let C > 0 be given. By Lemma 3.2 d is e quicontinuous so that, there

is 6, > 0 such that if t, t' are in I with |t - t' | < 61? then
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|y(t) -y(t»)| < -f- (6.2)

for every y e d.

Let x € 3Tbbe given. Then x is uniformly continuous on I so that,

there is 6 > 0 such that if t, t' are in I with |t - t' | < 6 , then

|x(t) -x(t')| < &- . (6.3)

Letting 6 = min {6 , 6 } , we choose a finite sequence

a = t_ < t. < • • • < t =b such that t, - t, , < 6 for each k. Denote
0 1 p k k-1

x, = x(t, ) for each k.
k k

By 4.A3, there is -n . > 0 such that if |z - x , I < ri , , then
p-1 ' p-1' 'p-1

Q(x ,, t ., t ) C Sr t [Q(z, t t )] . (6.4)
p-1 p-1 p £/3 P"^- P

For 0 ^ k ^ p - 2, there is rj > 0 such that if |z - x | < r\ , then

Q(V V WCSrJQ<"' V W3 ' (6-5>
k

where r, = min
k

Now let y e T(x , t , t ) such that |y - x | < r and for 2 ^ k ^ p,

let yk€ T(yk_r t^^, tfc) such that |yk - xfc | < rfc_1. This is possible

-12-



because of (6.5), (6.4), and the fact that Q is the closure of T. Since each

y e T(y , t , t ), there is a trajectory v, starting at (y , t ) and
xC JK —1 it —1 K 1C K." JL K —1

ending at (y , t ). Also for t < t ^ t ,

|x(t) - vk(t)| < |x(t) - xk| + |xk - yk| +'|yk " vfc(t) |

from (6.2), (6.3) and because |x - y | < r < ( £,/3). Let y € ^T be

defined by y(t) =v (t) for t <t <t^. Then ||x - y|| ££ . Since £ >0

and x€ JYb are arbitrary. Jft>C cT» and the theorem is proved.

7. THE RELAXED DIFFERENTIAL SYSTEM (RDS)

Following Warga [4], we derive a relaxed differential system from

the DS of Section 3. The class of differential systems under study is more

general than that investigated by Warga. The difference lies in the more

general boundedness and Lipschitzian conditions on f (see Section 3) and, more

critically, the replacement of continuity in t by local integrability.

Definition 7.1. For the DS of Section 3, let

F(x, t) = < y € Rn y = f(x, t, u),u € U

Thus F(x, t) represents the set of "permissible velocities" of the DS at the

phase (x, t).
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n 1

Definition 7.2. For x in R and t in R let G(x, t) be the convex

closure of F(x, t).

Definition 7.3. (i) A function x: [t , t ] -*• R is called a relaxed

trajectory if x is absolutely continuous and

x(t) £ G(x(t), t) .

a. e. in [t , t ]. The relaxed trajectory is said to start at (x(t ), t ) and

end at (x(t-), t ).

(ii) The set of relaxed trajectories starting at (x , t ) and defined on

[t , t ] is denoted by fo (x , t , t ). (f^(xn, t , t ) is considered as a sub

set of e[tQ, \h

Let a, b with a ^ b be fixed finite numbers and x^ a fixed vector in
0

R ; let I =[a, b]; let ()^ =(R. I x , a, b), and let a - o (x , a, b).

Lemma 7.1 is standard, and Lemma 7.2 is proved in Cullum [6].

n *
Lemma 7.1. Let A be a closed convex subset of R . Then x e A if

and only if for each y € R

inf <^ y, x^> ^ <^ y, x" ^> < sup <^ y, x^> .
xcA xeA

Lemma 7.2. Let <p : I -*• R for m = 1, 2, 3, . . ., and <p : I -*• R
m

be measurable functions, uniformly bounded by an integrable function, and

n
suppose that for each y € R and each measurable subset E of I,
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I <y' ?m(t))dt "*J^y» VMS'

Then, for each y € R ,

a. e. in I.

iim<y, ?m(t)> * <y, ?(t)> *iim<y, 5m(t)>
n n

Lemma 7.3. Let x € (Q be fixed. Then for each £ > 0, there exist

measurable functions a., u. for each i = 1, . . ., n+1 such that for each
l l

t in I, a.It) > 0 with
l

u.(t) c U and
i

Ei (t) = 1 ,

j r(s)" La^s) f(x(s)' s* ui(sv ds < £ . (7.1)

Proof. Let q:I -*R be a measurable function. A point t in I is said

to be a regular point of q if

t+h

lim i j* |q(t) - q(s)|ds =0
h->0 "t

we note that if q is in L , almost all points of I are regular points of q.
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For t in I and u € U, let g(t, u) = f(x(t), t, u). Let U be a

countable dense subset of U. For each u in U„ let T be the set of regular
0 u 5

points of the function x. Let

T = T in t i.n< n
U€U

^ 0 ^

u

Then measure (T) = measure (I).

Let v be any positive number. Then for each t € T, there exists

numbers p.(t) £ 0, 1 ^ i ^ n+1 with

I* (t) = 1 ,

and vectors v.(t) € U , 1 ^ i S n+1 such that
i 0

x(t) -^P-(t) gft, v. (t) < Y

Furthermore, there is a number h(t) > 0 such that for 0 < h < h(t),

ii
t+h

x(t) - x(s) ds < y ,

and

iCt+h g|t, v.(t)l - gls, v.(t) ds < -y

(7.2)

(7.3)

(7.4)

Thus from (7.2), (7.3), (7.4), and the triangle inequality, we see that for

0 < h < h(t),
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ii
t+h X(8) -^P-(t) g(s, V.(t) ds < 3y (7.5)

Let I =(t, t +h(t)J; then J = ^* I covers I except for a set of measure

zero. Let E be an open set containing this null set such that

J Mx(s)| +i(s) (M +N||x||)jdx <V

Let E, I , . . •, I be a finite subcovering of I. It is assumed that
*1 *<

(7.6)

"n

t, < t, , for each k. Now let J. = t. , t' where t' = min
k k+1 / v k V k' k/ k {h<V- Vi}

and let J =I -\UJ, )• Then J C E. Now define the function a-.(t), u.(t)

as follows:

<*.(t) = P.(t, ) for t c J, k = 1, . . ., N; i = 1, . . ., n+1,
ix "i k k

u.(t) = v.(t, ) for t € J. k = 1, . . ., N; i = 1, . . ., n+1,
l l k k

a^t) = 1, «2(t) = • • • = arn+1(t) =0 for t e JQ,

u.(t) = u. i = 1, . . ., n+1, for t € J ,
11 0

where the u. are arbitrary fixed elements of U. Then,
l
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J |x(s) -^or^s) g(s, u.(s)j ds <J I|i(s)| +^0^(8) |gk u.(s)j| ds

+ZI |i(S) -I "i(S) 4' ^
k Jk

ds

Y+ 3y y mes |J | < y + 3y mes (I)

by (7.5) and (7.6). By taking y < £/(1 + 3mes (I) j , we obtain (7.1).

Theorem 7.1. (R, is closed in C .

Proof. Let x c (£ so that x(t) e G(x(t), t)l a. e. in I. But then from

the fact that G(x, t) is the convex closure of F(x, t), and condition (iv) of

Section 3, we see that

|x(t)| < i(t) (M + N |x(t)|) a.e. in I . (7.7)

Therefore the same argument as in Lemma 3.1 shows that there exist

B < oo such that ||x|| ^ B for x e (ft.

Now let {x } be a sequence in <R* such that x -*-x forsome x in C. It
n n

must be shown that (i) x is absolutely continuous and (ii) x(t) e G(x(t), t) a.e.

in I. Because of (7.7), given any €,> 0, there is a 6 > 0 such that for every

x in (ft and every finite sequence t. < t.1 ^ t. < t* < • • • ^ t < t! in I with
J 1122 mm

I |t!-t.|<6,

-18-



) |x(t!) - x(t.) I - ) J |x(s) Ids <V f l(s) (M +NB) ds <£ .
t. . wt.

(7.8)

Therefore,

Y|x(t') -x(t.)| s£ |S(t!) -xn(t')| +£ |xn(t!) -xn(t.)| +^ |xn(t.) -x(t.)|
i i i i

The second term on the right-hand side is less than c by (7.8), and the

remaining terms can be made arbitrarily small by choosing n large since

|x - x II -*- 0 . Therefore

y ix(ti) -X(t.) i <£ ,

so that x is absolutely continuous.

Next, it will be shown that the functions x and x satisfy the hypothe

sis of Lemma 7.2. Clearly, from (7.7) these functions are uniformly

bounded by an integrable function. Let E be any measurable subset of I.

For y > 0 there is 6 > 0 such that

j7|x(s)| +|xn(s)|jds <I

for every n and every measurable set A of I of measure less than 6. Let

J be a finite union of intervals (t , t'), k = 1, . . . , p, such that measure

-19-



(E - J) < 6, and let N be so large that ||x - x || < (y/3p) for n > N. Then

for n > N,

\ (x (s) -x(s))ds < \ x (s) +x(s)
JE\ n /I JE-J I n

ds

k

k k

ds

5?• +) (KK) - i(*i> I+l*n(y - x(tk)3 " Z_.V'"nv"k'

k

Hence

* Y

\ x (s) ds -» \ x(s) ds
JE n JE

n
for every measurable subset E of I, and therefore for each y c R ,

J <Cy> ^n^^ ds j <^Vi ^s)^ d!

n
By Lemma 7.2, for each y € R ,

lim < y, xn(t) > >< y, x(t) > > Urn < y, xjt) >
n n

(7.9)

a. e. in I.

Since the function f(x, t, u) is continuous in x for fixed u, t,

the set function G(x, t) is continuous in x for fixed t. Hence for every

-20-



fixed t and every y € R , since ||x - x || -*• 0 ,

max <^ y, z ^> -*- max <^ y, z ^> ,
zeG(xn(t),t) z€G(x(t),t)

and (7.10)

min <C y» z /* •* min <C ?» z^
z€G(xn(t),t) «G(*(t).t)

Hence from (7.9) and (7.10), for each y e R we have

max <^ y, z ^> > <^ y, x(t) ^> £ min <^ y, z^>
zeG(x(t), t) zeG(x(t), t)

a.e. in I. By Lemma 7.1, x(t) e G(x(t), t) a.e. in I and the theorem is

proved.

Lemma 7.4. Let u be an admissible control, X a compact subset of

R , and £ > 0. Then there is a continuous function h : X XI-+R such that

for every measurable function x : I -> X,

\ f(x(t), t, u(t)J - h(x(t), t) dt <£ . (7.11)

Proof. From Section 3,

|f(x, t, u) -f(x', t, u)| < k(t) |x - x'|

for u in U and x, x1 in R .
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Let

5 =t£(|i| \ k(t)dt'

where |l| = measure (I). Let V , . . ., V be a finite covering of X such

that the diameter of these sets is less than 6. Therefore, if x, x1 are in

V. then |x - x' | < 6, so that
J

J |f(x, t, u(t)j - f(x«, t, u(t)j| dt <6j K(t) dt =j^j- . (7.12)

For each j. let x. be a fixed point in V. and let h. : I -*• R be continuous
J J J

functions such that

J |fL, t, u(t)j - h^t)! dt <jjjj . (7.13)

Now let ?>,(x), . . ., <p (x) form the partition of unity on X with respect to

the {V.} i.e., the op. are continuous real-valued functions on X with the
J J

property that

0 * <p.(x) * 1; <p.(x) = 0 x^V , ) <p (x) =1 .
j

Then define,

h(X, t) =y h.(t) 9.(x).
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Now let x: I ->• X be any measurable function and define the measurable sets

v{tu| X(t) €Vj V.

Then, by (7.12), (7.14), (7.15), and Schwartz inequality,

j j

dt

• 11 X ^-(x(t)) at r i j Kx(t)'*• u(t))" £(xj*tf u(t))
v. J J J

Hence

mes (E_

J J

Similarly by (7.13), (7.14) and (7.15),

r= mes (Ej) w\

ZPj=Z™'<Ej,2§

^|^.(x(t))|f(x., t, «(t))-h.(t)j

-£.
~ 2 '

dt <•§• .

(7.15)

dt

Combining the last two results, an application of the triangle inequality

yields (7.10).

Lemma 7.5. For i = 1, . . ., n+1, let u. be admissible controls and

let a. :I -*• R1 be measurable functions with a.(t) £ 0,
i 1
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I«,(t) = 1.

nLet x: I -*• R be any continuous function. Then, for each £ > 0, there is an

admissible control ur» such that for every t., t in I,

(s) flx(s), s, u^s)) - f(x(s), s, Uf.(s))|dsl# <£ .

Proof. Let the range of the function x be the compact subset X of

n
R , and let y > 0 °e fixed. By Lemma 7.4, for each i there exists a con

tinuous function h. : X X I -*• R such that
l

l\ flx(t), t, u.(t)l - h.(x(t), t) dt < y • (7.16)

Let 61 >0 be such that for every x in X and t, t' in I with |t - t' | < 6.

|h.(x, t) - h.(x, t')| < Y (7.17)

for each i. Let 6. > 0 be such that for every measurable subset A of I

with measure less than 6? ,

T (M +NB) i(t) dt < y •
JA
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Here B is the uniform bound of fa Let 6 = min {5•_, 6- } , and let

a=t < t, < • • • < t =b with ( t. . - t. ) < 6 for each i. Let0 1 p y l+l iy
I = t. ,, t, L and subdivide each interval I, into n+1 subinterval
k Lk-1 kj' k

I ,» I, ^i «... I, , such that the measure of I. .,
k, 1* k, 2' * k, n+1 k, j

|lk A = \ «.(t) dt . (7.19)

Now define the admissible control u, by

u(t) = u.(t) whenever t e I for some j, k . (7.20)
j j

For convenience, denote f.(t) = f.(x(t), t, u^t) J; f(t) = flx(t), t, u(t) I;

h.(t) = h.(x(t), t). Then from (7.20),

r i(t) dt =y r i.(t) ^. (7.21)
Xk j *kj

Let r , r be any integers with 1 - r - r-> - P • Then from (7.21),
12 L £i
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A(rrr2>= t \[ X«iV<| =I \[ lai~£i-l[ h
k=r k i k=r k i i k, i

L> IJj Zj ai\ i " i) Jj Zj ai i "Zj Jj i
k=r, k i k i i k.i

-EtM)
i k, i

4iii^i-w\ii{ \\-\\]
\ k=r i k / \k=r i k, i /

(i\ii->\-i{ h\)-
\k=r "k i i k, i /

(7.22)

Consider the first term of the last bound in (7.22); by (7.16),

k=r i k i k=r k

" ZI'?i "£i' " (n+1) Y' (7>23)

-26-



Similarly by (7.16), the second term is bounded by (n+1) y. The third term

can be written as

r

Zj Jj /j "i i Zj X i
k=r k i i Ki

2

k=r k i i ki

£i[{ Zai(t,i£i(t)-wi +Zj[ M-wi
k=r \ k i i ki

s t(y £ I ai(t) dt +yI ^ dt)s IS mes(y
k=rA k i 1 ki / k=r.

^ 2y mes (I).

The third-last bound in (7.24) follows from (7.17). Using the above

bound, we see from (7.22) that,

A(rr r2) < 2y(n+l + |I|) .

(7.24)

(7.25)

Now let t. and t be arbitrary points in I with t S t. Let r and r. be

integers such that
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6<vy-ir(£vt-!)ls T. \[(lai1i-1
2

1 \i k=r k\ i

i(l^"')|* lifev.-
(7.26)

where I, is a subinterval of I or I . and I- is a subinterval of I or1 rL rx+l 2 r2

I _. Then by (7.18),r2+l

|liz-iJi-?)lsJ,f(l^^ +>?'
< f (M +NB) i (t) I > a. +1 ) < 2y (7.27)

Similarly,

HEv.-
V1

< 2y . (7.28)

From (7.26), (7.27), (7.28) and (7.25) we see that
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6(tr t2) 5 A(rr r2) +4Y * 2Y(n+l + |l|) +4y

= 2y(n+3 + |l|) .

Therefore for y = (£/2) (n+3 + |l|)~ , the function u defined in (7.2))

satisfies the assertion of the lemma.

Theorem 7.2. ft =0 .

Proof. By definition, & 3 cT and by Theorem 7.1 uv. is closed so

that it suffices to show that ft Q d . To this end, let x in ft and £ > 0

be given. Let

• iff HY= y I J Mt)dt ] , (7.29)

where k is the function of condition (iii) of Section 3. By Lemma 7.3, there

exist measurable functions a., i - 1, . . ., n+1 with or (t). £ 0 and

> a.(t) = 1 and there exist admissible controls u, . . ., u . such that for

all t in I

j* |x(s) -y a.(8) ffx(s), s, u.(s)\ ds < y • (7.30)

By Lemma 7.5, there exists an admissible control u such that for all t

in I
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$]l°t(s) ffx(s), s, u.(s) j - f(x(s), s, u (s) ) )ds <Y- (7.31)

Let y in a be defined by

y(t) =f(y(t), t, u^(t)

with y(a) = x(a) .

Then from (7.30), (7. 31) and condition (iii) of Section 3,

|x(t) -y(t)| =|J x(s)ds -J ffy(s), s, u.(s)j ds

j |x(s) -^a.(s) ffx(s), s, u.(s) di

+IJ Xai(s)ffx(s)» s» ui(S)) " f(x(s)' S' Uy(s))

III+ I \ lf(x(s), s, u^s)! - f(y(s), s, u (s)))ds

2 2y +J k(s) |x(s) -y(s)|ds .
a

ds

By Gronwall's lemma, the last estimate implies that for each t in I,
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|x(t) -y(t)| <27 J k(s) ds <£ .

This completes the proof of Theorem 7.2.

Combining Theorems 6.1 and 7.2 gives

Theorem 7.3. (R. = cf = 0^ .
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APPENDIX

Lemma Al. For each x in R let T(x) be a subset of R such that

the mapping x -*• T(x) is continuous, i.e., for x in R and £ > 0 there is

a 6 > 0 such that for |x - y| < 6

T(x)C S£ [T(y)] (A-l)

and

T(y)C S^. [T(x)] . (A-2)

Then for every bounded set A in R

(J T(x) =(J_T(X) • (A~3>
xeA xcA

Proof. Let y € I J T(x) ; then there is a sequence y € [J T(x) such
x£A n xeA

that v -*• y . For each n let x in A be such that y € T(x ). Taking
'n 3 n n n

subsequences if necessary, it can be assumed that x converges to x in

A. Given £ > 0 let N be so large that, for n > N

T(xn)C Sp [T(x)]

and

|yn-y| < i >
so that,
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p/y, T(X)J <2£ .

Since £ is arbitrary, this implies that y e T(x) and hence

(J T(x) C U__T(X) •
xeA xeA

On the other hand let y e L-/_ T(x) ; then there is x € A such that y e T(x),
xeA

Let x be a sequence in A converging to x, and let y be a sequence in

T(x) converging to y. Let £ > 0, and let N be so large that,

T(x) C S£ [T(xn)]

and

|y-ynl <€

for n > N. Therefore pi y, I J T(x) J< 2£ and since £ is arbitrary
\ xeA J

ye II T(x) and the lemma is proved.
xeA
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